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Abstract 
 

In this review, we explore the evolving evidence linking physiological assessment 

of coronary artery disease with plaque progression and vulnerability. Reducing 

clinical events including acute coronary syndromes (ACS) remains the ultimate 

goal for diagnostic tests and we highlight evidence supporting their use as 

predictors of patients at risk of adverse clinical events. Historical and 

contemporary studies support synergy between lesion severity, ischemia, plaque 

vulnerability and patient prognosis. Ischemia contributes to clinical events 

through association with plaque burden, however we review the emerging 

concept that it signifies disturbed lesion hemodynamics with a role in 

atherothrombosis. Biomechanical pathophysiological forces including endothelial 

shear stress – the frictional force generated by blood flow on the vessel wall – are 

increasingly linked with atherogenesis, vulnerable plaque morphology in addition 

to platelet and leucocyte activation. We conclude by transitioning from the model 

of the vulnerable plaque to the concept of the 'vulnerable patient' looking more 

broadly at physiological contributors to Virchow's triad underpinning ACS. 
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Abbreviations 
ACS – Acute coronary syndrome 
APS – Axial plaque stress 

AMI – acute myocardial infarction 
CFD – Computational fluid dynamics 

CCTA - coronary computed tomography angiography  
DS – diameter stenosis 
ESS – Endothelial shear stress 

FFR – Fractional flow reserve 
MACE – Major adverse cardiac event 

TCFA - Thin-cap fibroatheroma 
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Introduction 
 

The fractional flow reserve (FFR) reflects the extent to which maximal 

myocardial flow is decreased due to the presence of an epicardial narrowing.(1,2)  

Revascularization decisions based on FFR improve prognosis in patients with 

coronary artery disease.(3,4) Moving beyond flow-limitation, the anatomical and 

physiological characteristics of a plaque implicate a role for physiological factors 

and biomechanical forces in the pathophysiology of plaque rupture.(5) 

Endothelial shear stress – the frictional force generated by blood flow on the 

vessel wall – is increasingly linked with atherogenesis and plaque vulnerability in 

addition to platelet and leucocyte activation.(6,7) While coronary physiologic 

indices such as FFR have been proposed for interrogation of the ischemic 

potential of stable coronary stenoses, lesion hemodynamics are associated with 

atherosclerotic plaque biology and vulnerability.(8)  

 

Coronary physiologic data may be integrated with anatomical information from 

coronary angiography and intravascular imaging to provide novel insights into 

lesion pathobiology with potential to better inform the treatment of coronary 

disease. In this review, we will explore the evolving evidence linking 

physiological assessment of coronary artery disease with plaque progression and 

vulnerability.  
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1 - Ischemia based on anatomic evaluation (invasive coronary 

angiography) 
 
Coronary angiography for detecting plaque and assessing vulnerability   

 

Luminal changes demonstrable on coronary angiography have traditionally been 

used to determine whether a coronary stenosis is of hemodynamic significance 

i.e. associated with myocardial ischemia. However, x-ray angiography is merely a 

‘luminogram’ and estimating physiological significance from diameter stenosis 

(DS) is fraught with many pitfalls: the ratio of the minimum luminal diameter to 

the adjacent normal segment ignores the facts that atherosclerosis is a diffuse 

disease and angiography alone is often unable to distinguish between normal and 

diseased segments.(9) The Glagov phenomenon of positive vessel remodeling 

may obfuscate plaque within the vessel wall without causing lumen 

encroachment. Histopathological studies show that luminal narrowing typically 

occurs late after the atheroma expands to around 45% plaque burden by cross-

sectional area (the limit of external elastic media expansion).(10) Despite 

advances in quantitative coronary angiography (QCA) techniques, there are well 

recognized limitations of angiography in determining the hemodynamic 

significance of intermediate coronary lesions (40-70% DS).(11)  

 

The relationship between lesion severity and vulnerability  

Only a minority of early atherosclerotic plaques progress to high-risk thin-cap 

fibroatheroma (TCFA) which are thought to be the most common precursors to 

ruptured plaques.(12) Non-obstructive plaques are more prevalent than 

obstructive plaques, however the absolute risk of plaque rupture is higher with an 

obstructive lesion.(8,13) Contemporary angiographic studies support that at the 
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time of myocardial infarction the underlying lesion on angiography is usually 

severely stenotic (Mean DS 66+/-12%).(14) Post mortem data confirms the 

majority of lesions causing fatal infarction are obstructive when plaque burden is 

analyzed by histopathological cross-sectional area: more than 75% stenosis is seen 

in 70% of plaque ruptures.(15) It is likely that rapid, though usually asymptomatic 

progression and resultant stenosis/thrombosis occurs in the days-to-weeks 

preceding AMI such that acute total vessel occlusion typically develops at the site 

of an obstructive narrowing.  

Studies of non-invasive angiography using CCTA strongly support that the larger 

plaque size associates with lesion vulnerability.(16) Other high risk 

atherosclerotic plaque features on CCTA include positive vessel remodeling, low-

attenuation plaques, ‘napkin-ring’ sign, and spotty calcification (17,18). 

The PROSPECT study of the natural history of atherosclerosis using 

intravascular ultrasound (IVUS) is the single most important contemporary 

evidence and supports the notion that events are linked with lesion severity. 

Plaque burden ≥70% was the strongest predictor of future events (hazard ratio 

[HR]: 5.03; p < 0.001). Minimal luminal area (MLA) was also an important 

independent predictor.(13) Lesions with plaque burden ≥70% had event rates of 

almost 10% over a median follow up of 3.4 years. These may not always appear 

obstructive on conventional angiography in keeping with the Glagov 

phenomenon and the accepted limitations of angiography.(10) There was not a 

single event arising from a coronary artery segment with <40% plaque burden. 

Analysis of non-culprit lesions in PROSPECT that were responsible for future 

MACE showed that the majority of these plaques were non-obstructive on 
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baseline angiography (mean diameter stenosis (DS), 32.3±20.6%), but later at the 

subsequent event the angiographic severity in this subgroup had progressed to a 

mean DS of 65%. Importantly, the dominant driver of these events was 

progression of angina; the more robust clinical end-point of AMI in a non-culprit 

vessel occurred in less than 1% of patients. Taken together, the most likely model 

of vulnerable plaques is that of step-wise accelerated progression with subclinical 

plaque ruptures and increasing lumen encroachment, with a continuum of both 

obstructive and non-obstructive plaques underlying ACS.(19)  

2 - Ischemia based on functional evaluation  

The adverse prognostic impact of ischemia has been well established using 

various imaging modalities for non-invasive functional assessment. Myocardial 

ischemia identified on single-photon emission computed tomography (SPECT) is 

strongly predictive of major adverse cardiac events (MACE) in both symptomatic 

and asymptomatic individuals.(20,21) Comprehensive follow up data from 

almost 70,000 myocardial perfusion scans highlights the high rates of MACE 

with moderate to high risk ischemia on SPECT compared with low risk – up to 

8.5% per annum versus 0.6%.(22) Studies using stress perfusion cardiac magnetic 

resonance (CMR) offer additional insights owing to superior spatial resolution 

and enhanced classification of inducible ischemia and myocardial scar. Out of 

1,152 patients with angina followed up after stress perfusion CMR, those with 

inducible ischemia suffered MACE at 3.9%/year compared with only 1% in those 

with negative scans. On multivariate analysis, ischemia was the strongest 

independent predictor of cardiac death, nonfatal myocardial infarction, and 

stroke at mean follow up of 4.2 years (HR 3.21, 95% CI 2.06–5.00; 
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P<0.0001).(23) Furthermore recent CMR data suggests the presence of an 

‘ischemic threshold’ whereby a burden of 1.5 ischemic segments was 

independently associated with nearly 9-fold increased risk of cardiac death, MI, 

or late coronary revascularization during a mean follow-up of 2.5 years.(24) 

Importantly, even when left ventricular function and myocardial scar burden 

were accounted for, this ‘ischemic threshold’ remained the strongest independent 

predictor of ‘hard’ clinical end-points - cardiac death and MI. 

Ischemia may be a surrogate marker for anatomical plaque burden – indeed the 

COURAGE trial highlighted the intuitive interaction between ischemia on 

SPECT and anatomical disease burden on baseline angiography (p=0.03). Taken 

together, the COURAGE data showed anatomic disease burden to be a more 

consistent predictor of events compared with ischemia.(25),(26) Importantly, this 

study overlooked the fact that the degree of ischemia was determined before 

treatment. The influence of ischemia on outcome should be at least partly 

annulled following initiation of treatments aimed at alleviating its existence - thus 

it is unsurprising that plaque burden was more predictive of events. The 

COURAGE nuclear substudy did not show that ischemia was associated with 

risk of future events, however it was not powered to perform this non pre-

specified analysis and may have been affected by selection bias.(27) Other 

contemporary cohorts have found ischemia on SPECT to be the strongest 

predictor of events, providing complementary additional information to the 

anatomical disease burden assessed by coronary artery calcium score.(28) 

Amongst patients with previous revascularization, the residual ischemic burden is 

the strongest independent predictor of future events, consistently identifying high-

risk patients in groups with similar degrees of anatomical plaque burden.(29,30)  
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Lessons from FAME – is FFR a predictor of lesion vulnerability?  

The FAME-II study (FFR versus Angiography for Multivessel Evaluation II) 

showed that patients with functionally significant lesions (FFR≤0.80) had 

superior outcomes with PCI and optimal medical therapy compared with optimal 

medical therapy alone.(3) Critics argue that urgent revascularizations were to be 

expected in this trial given that both patients and physicians were potentially 

aware of the significant lesions that were not stented. This may have lowered the 

threshold for urgent revascularization in patients with FFR-positive stenosis in 

the medical therapy group. Besides the fact that this phenomenon did not happen 

in the registry patients (also aware of the presence of untreated lesions), half of 

the urgent revascularizations occurred in the context of positive biomarkers or 

new ECG changes, while 80% occurred in patients with these findings or rest 

angina. A blinded and independent clinical event committee adjudicated all these 

events. In addition, it is very likely that the large number of unplanned 

revascularizations in patients randomized to medical therapy actually limited the 

number of “hard end-points” (death or myocardial infarctions). The two-year 

follow up data showed that after excluding the potentially more benign peri-

procedural myocardial infarctions, the incidence of death or myocardial 

infarction was lower in the PCI group than in the medical-therapy group (4.6% 

vs. 8.0%, p=0.04).(3) There was a significantly lower incidence of 

revascularization procedures triggered by ECG changes or MI in the PCI group 

than in the medical-therapy group (3.4% versus 7.0%, p=0.01). 

Equally, FAME and now 15-year follow-up data from the DEFER study 

highlight the negative predictive value of FFR: non-ischemic stenosis have an 

excellent prognosis on medical therapy with <1% annualized incidence of 



 10 

MI.(31) The study also reinforces the known adverse prognostic implications of 

ischemia: lower FFR values are associated with over double the rates of 

death/MI (Figure 1).(32)  

Figure 1 - Adverse prognostic implications of ischemia -  Cardiac death and 

acute myocardial infarction rate in the 3 groups of the DEFER study after a 

follow-up of 5 years. (Reprinted from Pijls et al(32) with permission of the 

publisher. Copyright © 2007, Elsevier). 
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Moreover, the outcome in the FAME 2 registry group (FFR>0.8) at two years 

was identical to that observed in the PCI group. Further comprehensive evidence 

for the relationship between physiological lesion severity measured by the FFR 

and clinical outcomes was demonstrated in a large meta-analysis.(33) Johnson et 

al used study-level and raw patient-level data from all published studies of FFR 

with prospective clinical follow up for MACE, elegantly plotting risk of MACE 

using cox modelling as a function of FFR modulated by therapeutic choice 

(medical therapy/revascularization). Barbato et al recently provided further 

analysis from the FAME-2 study showing the natural history of events according 

to FFR in patients who did not undergo revascularisation . They showed a step-

up increase in the rates of MACE by decreasing FFR values (Figure 2).(34)  

Figure 2 - MACE rates at 2 years in FAME 2 patients randomized to medical 

therapy. (Reprinted from Barbato et al(34) with permission of the publisher. 

Copyright © 2016, Elsevier). 

 

 

These findings are consistent with the hypothesis that FFR assists in the 

prediction of plaque behaviour: the ischemic potential of a lesion may be a 

surrogate marker of plaque vulnerability with its attendant risk of rupture. It is 
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important to note that a lower absolute value of FFR corresponds with a higher 

risk of events, however risk stratification using this approach does not necessarily 

detect which ischemia producing lesion will drive events. Prospective studies 

have shown that up to half of future MACE relates to non-target vessels, but a 

large proportion of the future MACE is attributable to the lesion’s FFR. Stenting 

these hemodynamically significant vulnerable lesions may prevent future 

coronary events.(33) 

 

How ischemia affects plaque vulnerability and propensity to ACS 

There are two main reasons for why an ischemia-producing lesion is more likely 

to cause ACS than a non-ischemia-producing lesion. First, an obstructive stenosis 

that limits blood flow is more likely to become occlusive leading to an acute MI 

as the burden of plaque increases (plaque progression). Second, the increasing 

stenosis severity leads to changes in flow dynamics and wall shear stress which in 

turn increase the likelihood of plaque rupture.(8) Versteeg et al. demonstrated that 

the responses and expression of monocyte toll-like receptors 2 and 4, which are 

thought to be related to plaque vulnerability, are significantly greater in patients 

with an FFR <0.75 compared with patients with an FFR of >0.80.(35) 

 

Recent data has shown that the fibrous cap thickness (FCT) of intermediate grade 

lipid-rich plaques correlates with the physiological significance of the lesion 

(FFR<0.8).(36) A positive FFR is strongly predictive of a thin-capped 

fibroatheroma (<80 microns). Histopathological studies suggest that vulnerable 

plaques are those with a cap thickness of <65 microns, more recent in-vivo OCT 

data supports the FFR-predicted critical cap thickness value of <80 microns.(37) 
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Importantly, rupture of these thin caps overlying vulnerable plaques is the cause 

of 75% of ACS.(38) There is a wealth of evidence supporting the role of more 

severe (and likely ischemia producing lesions) to be more dangerous. ROMICAT-

II showed stenosis severity on CCTA to be the strongest predictor of ACS in 

acute chest pain.(39) Multivariate analysis from a cohort of over 3000 patients 

undergoing CCTA showed that whilst non obstructive plaques were almost 4 

times more prevalent than obstructive ones, stenotic lesions were stronger 

predictors of ACS (HR: 3.2: 95% CI: 2.11–5.00; p<0.0001).(40) In ACS patients 

studied with IVUS & OCT severely stenotic areas had TCFA with more features 

of plaque vulnerability.(41) Pathology studies have shown that plaques are 

constantly rupturing and healing and when this happens over a non-severely 

obstructing lesion it is more likely to be silent.(42) Ruptured TCFA with 

thrombus formation superimposed on a severe stenosis is more likely to limit the 

coronary blood flow (and lead to clinical events) than the same event 

superimposed on a non-severe stenosis.  

3 – Biomechanical pathophysiological forces including endothelial 

shear stress 
 

Blood flow within a conduit artery exerts three distinct types of biomechanical 

strain on the vessel: axial, circumferential, and shear stress. Stress is a reflection 

of force normalized per unit area (Newtons per square meter or Pascals or dynes 

per square centimeter; 1 N/m2 = 1 Pa =10 dyn/cm2). Endothelial shear stress 

(ESS) is the most studied of these forces and appears to be the most fundamental 

and robust predictor of atherosclerotic initiation and development.(43) ESS is the 

tangential force exerted on the vessel wall attributable to the friction of blood flow 

on the endothelial surface (Figure 3 – central illustration). These endothelial cells 
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are incredibly sensitive to ESS and regulate vascular function in health and 

disease through mechanotransduction. Axial plaque stress (APS) is a longitudinal 

mechanical force applied along the length of plaque resulting from arterial blood 

pressure and stretching with phasic cardiac motion. APS occurs at force 103-105 

times greater than ESS and thus may be the biomechanical factor more causally 

related to plaque rupture. Challenges with in-vivo estimation may partly explain a 

relative paucity of research into its contribution to atherosclerotic plaque 

pathophysiology compared to ESS. Computerised modelling demonstrates that 

lesions with similar angiographic and hemodynamic severity can have hugely 

variable levels of axial plaque stress potentially accounting for differences in 

vulnerability relating to lesion geometry of the upstream or downstream shoulder 

(radial gradient). (44)  



Figure 3: Central Illustration - Ischemic and physiological factors contributing to plaque vulnerability 
 

 



How is ESS estimated in vivo? 

The derivation of ESS depends on computational fluid dynamics (CFD) - 

incorporating flow data (often obtained from invasive Doppler wire) into 3D 

computerised models of coronary arteries. These reconstructions may be created 

from biplane or 3D coronary angiography and even integrated with intravascular 

imaging for more accurate vascular profiling.(45) CFD has recently been 

combined with coronary computed tomography angiography (CCTA) facilitating 

a non-invasive way of estimating shear stress.(46,47) ‘Virtual FFR’ (FFR-CT) can 

be obtained from 3D coronary reconstructions from CCTA using CFD modelling 

and have been shown to reduce cost and unnecessary invasive procedures in 

patients with stable angina.(48) 

How does shear relate to plaque biology and vulnerability? 

Caro et al first described the pathological role of low and oscillatory ESS, forming 

the hypothesis which is now the consensus mechanism for the initiation of 

atherosclerosis.(6,49,50) Coronary arteries with undisturbed flow and 

physiological ESS facilitate endothelial cell expression of atheroprotective genes 

and the suppression of pro-atherogenic genes leading to coronary plaque 

quiescence and stability. However in areas of disturbed low flow with low ESS, 

atheroprotective genes are down-regulated and pro-atherogenic genes up-

regulated resulting in acceleration of atherogenesis.(43,51) Mechanoreceptors on 

the endothelial cell surface respond to low ESS stimuli leading to mechano-

sensitive gene expression promoting atherosclerosis.(51) Reviewing the details 

nature of these mechanisms is outside the scope of this review, however there are 

a number of complex molecular and cellular signaling pathways outlined in the 

central illustration (Figure 3).  
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Thombotic milieu: emerging relationship between shear stress and platelet 

activation 

Platelet aggregation is a physiological prerequisite at sites of arterial injury to 

arrest bleeding allowing for arterial repair. Nevertheless, an exaggerated platelet 

response at the site of a stenotic vulnerable plaque can lead to acute coronary 

syndrome. Platelets preferentially adhere to the low shear stress zones (typically 

located at the downstream face) forming thrombi as a consequence of disturbed 

blood flow hemodynamics.(52) Yong et al showed in humans that coronary 

artery stenosis severity correlates with shear stress and markers of platelet 

activation. (7)  Shear appears to be a critical determinant of platelet activation 

and thus an important determinant of plaque vulnerability and propensity to 

acute coronary syndrome. 

Relationship between shear stress, plaque progression and rupture  

Depending on the plaque shape, a stenosis results in a concomitant spread of ESS 

with relatively low ESS occurring in the upstream shoulder of the plaque, high 

ESS at the most stenotic site of the plaque, and low oscillatory ESS at the 

downstream shoulder.(6,53) A sustained low ESS environment drives excessive 

inflammation, lipid accumulation and matrix degradation leading to fragility and 

a propensity to rupture. These sites demonstrate augmented mRNA expression 

with increased expression of matrix-degrading proteases thereby shifting plaque 

progression towards atheroma with a thin fibrous cap.(54) Positive (expansive) 

remodeling maintains luminal patency at the expense of perpetuating a low ESS 

environment locally, allowing ongoing lipid accumulation and inflammation and 

enhancing the plaque’s vulnerable characteristics.(55) In-vivo human studies 
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using CT derived coronary artery reconstructions highlights lower average wall 

shear stress to be a sensitive predictor of plaque location.(56) More recently OCT 

vascular profiling after ACS showed coronary regions exposed to low ESS are 

associated with larger lipid burdens, thinner fibrous caps and a higher prevalence 

of TCFA.(57) Low ESS was associated with increased plaque burden on 

longitudinal follow up.  In contrast, high ESS at the site of maximal stenosis may 

increase the strain and erosion of the fibrous cap with increased thrombogenicity 

and the potential for plaque destabilization.(58,59) In-vivo imaging of culprit 

arteries using IVUS supports a role of high ESS in fibrous cap rupture.(60)  

 

Prospective in-vivo studies of atherosclerosis have only limited accuracy in 

predicting future events based on anatomical plaque characteristics 

alone.(13,61,62) The PREDICTION study is the largest prospective observational 

study of wall shear stress and morphology on clinical outcome allowing insights 

into the natural history of coronary atherosclerosis. A combination of low local 

ESS, large plaque burden, and a large necrotic core gave a positive predictive 

value of 53% for identifying coronary lesions leading to cardiac events. Low ESS 

was an independent predictor of worsening luminal obstruction both in the 

natural history of CAD and in the development of clinically relevant lesions 

treated with PCI.(63)  

In summary, low ESS is a pathophysiological parameter important in localization 

of plaque burden and also correlates with features of vulnerability. High ESS may 

occur concurrently at the ‘neck’ of a stenosis increasing in magnitude with 

progressive lumen encroachment. This enhances local thrombogenicity and 

triggers molecular pathways implicated in fibrous cap disruption increasing the 
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probability of clinical manifestation as ACS.  

Future directions: natural history of plaques, inflammation and 

plaque vulnerability 

 

 The pathobiology of atherosclerotic lesions is a dynamic process (Figure 4). 



Figure 4: Contemporary premise on the natural history of coronary plaques: drivers towards ACS include local 

features of plaque vulnerability combined with systemic inflammatory factors and thrombotic milieu in the 

vulnerable patient



TCFA are common and can be found in the majority of patients presenting with 

ACS.(37,64) Nevertheless, the risk of an individual TCFA causing ACS is small and the 

nature history of these lesions varies from an indolent course, transforming into more 

stable plaque types(65) or alternatively progressive luminal obstruction may occur in 

step-wise fashion following asymptomatic rupture.(66,67) In-vivo and pathological 

studies support the concept that plaque ruptures are more likely to be symptomatic if 

they occur at the site of a severe stenosis with resultant thrombus potentiating abrupt 

vessel occlusion.(15,68)  

The translation of a ‘vulnerable plaque’ to a ‘vulnerable patient’ involves all 3 

components of Virchow’s triad: altered coagulation/thrombosis, endothelial dysfunction 

and hemodynamic factors. This concept of the ‘vulnerable patient’ is key; efforts to treat 

the entire diffuse atherosclerotic process medically is paramount.(69) Intravascular 

imaging techniques allow for detailed lesion characterization but have not been proven 

to reduce events by directing percutaneous treatment (e.g. PCI). This reflects the 

dynamic nature of intracoronary plaques and low specificity of intravascular imaging in 

predicting lesion-specific future MACE. FFR is currently the most robust tool in 

identifying lesions with ischemic potential (often correlating with markers of plaque 

vulnerability) allowing targeted intervention in symptomatic patients with the aim of 

reducing future MACE. 

Conclusion 
 

Plaque vulnerability may result from the hemodynamic perturbations and altered 

biomechanical forces which associate with the functional significance of a coronary 

artery stenosis (and downstream ischemia). There is interplay and synergy between the 
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degree of luminal obstruction, ischemia, shear stress, activation of blood cells and 

subsequent vascular remodeling. Plaque vulnerability is determined by more than 

anatomy: coronary physiology is a predictor of plaque behavior and complements 

information from angiography identifying high-risk lesions and guiding revascularization 

to optimize patient outcomes. Future refinements in the use of coronary physiology may 

prove useful in the identification and treatment of both the vulnerable plaque and 

vulnerable patient. 
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Figure Legends 
 

 

Figure 1: Adverse prognostic implications of ischemia -  Cardiac death and acute 
myocardial infarction rate in the 3 groups of the DEFER study after a follow-up of 5 

years. (Reprinted from Pijls et al(32) with permission of the publisher. Copyright © 2007, 
Elsevier). 

 
Figure 2: MACE rates at 2 years in FAME 2 patients randomized to medical therapy - 
This figure illustrates the rate of major adverse cardiovascular events (MACE) at 2 years 

of follow-up by 0.05 strata of fractional flow reserve (FFR) values. There is a step-up 

increase in the rates of MACE by decreasing FFR values. This increase is steeper below 

an FFR of 0.80 and plateaus below an FFR of 0.60. (Reprinted from Barbato et al(34) 
with permission of the publisher. Copyright © 2016, Elsevier). 

 
Figure 3: Ischemic and physiological factors contributing to plaque vulnerability. This 
schematic demonstrates the links between coronary physiology, haemodynamic sheer 

forces and pathophysiology of plaque vulnerability. 
MMP = matrix metalloproteinase; ROS = reactive oxygen species; NO = nitric oxide; 

SMC = smooth muscle cell; VCAM = vascular cell adhesion molecule; IL = interleukin; 
IFN = interferon; TNF = tumor necrosis factor; LDL = low-density lipoprotein 

cholesterol; PDGF = platelet-derived growth factor; VEGF = vascular endothelial 
growth factor. 
 

Figure 4: Contemporary premise on the natural history of coronary plaques: drivers 
towards ACS include local features of plaque vulnerability combined with systemic 

inflammatory factors and thrombotic milieu in the vulnerable patient 
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