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Abstract 12 

Coral reefs are in decline worldwide. While coral reef managers are limited in their ability to 13 

tackle global challenges, such as ocean warming, managing local threats can increase the 14 

resilience of coral reefs to these global threats. One such local threat is high sediment inputs to 15 

coastal waters due to terrestrial over-grazing. Increases in terrestrial sediment input into coral 16 

reefs are associated with increased coral mortality, reduced growth rates, and changes in 17 

species composition, as well as alterations to fish communities. We used general linear models 18 

to investigate the link between vegetation ground cover and tree biomass index, within a dry-19 

forest ecosystem, to coral cover, fish communities and visibility in the case study site of Bonaire, 20 

Caribbean Netherlands. We found a positive relationship between ground cover and coral cover 21 

below 10m depth, and a negative relationship between tree biomass index and coral cover 22 

below 10m. Greater ground cover is associated to sediment anchored through root systems, and 23 

higher surface complexity, slowing water flow, which would otherwise transport sediment. The 24 

negative relationship between tree biomass index and coral cover is unexpected, and may be a 25 

result of the deep roots associated with dry-forest trees, due to limited availability of water, 26 

which therefore do not anchor surface sediment, or contribute to surface complexity. Our 27 

analysis provides evidence that coral reef managers could improve reef health through engaging 28 

in terrestrial ecosystem protection, for example by taking steps to reduce grazing pressures, or 29 

in restoring degraded forest ecosystems.  30 

 31 

Keywords: sediment; environmental conservation; dry forest; island ecosystems; Bonaire. 32 

 33 

 34 

 35 
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1. Introduction 36 

Coral reefs are declining worldwide, due to a range of global, regional and local drivers 37 

(Kennedy et al., 2013; Wilkinson, 1999). Globally, climate change-induced ocean warming is 38 

recognised as the most significant threat, and coral bleaching arising from ocean acidification 39 

threatens corals worldwide (Hughes et al., 2003). Regional threats, such as invasive species 40 

(Albins and Hixon, 2008), and local threats such as trawling, over fishing (McClanahan, 1995) or 41 

terrestrial sediment run-off (Álvarez-Romero et al., 2011; Fabricius, 2005; Klein et al., 2014; 42 

Risk, 2014; Rogers, 1990) also cause significant damage.  43 

 44 

Changes in terrestrial ecosystems can impact coral reefs through sediment and nutrient run-off. 45 

Run-off extent is determined by multiple watershed factors, including: soil type  (Millward and 46 

Mersey, 1999; Renard et al., 2000); slope (Boer and Puigdefábregas, 2005; Millward and 47 

Mersey, 1999; Renard et al., 2000); urban development  (Hunter and Evans, 1995); river and 48 

stream presence and length; land use (Hunter and Evans, 1995); and vegetation (Álvarez-49 

Romero et al., 2011; Mateos-Molina et al., 2015; Risk, 2014; Rodgers et al., 2012). Vegetation 50 

impacts on sediment run-off varies by vegetation types, particularly ground cover and tree 51 

density. Vegetation ground cover anchors surface sediments, and slows water flow, therefore 52 

decreasing the amount of sediment dislodged by surface water (Bartley et al., 2014). Tree roots 53 

increase surface complexity through surface roots, which again slow water flow while also 54 

creating pools of water. The creation of pools is associated with increased water seeping into 55 

the soil, and therefore reduced sediment run-off (Bartley et al., 2014). Land use which changes 56 

vegetation cover and tree density or size, or alters soil surface structure such as through 57 

ploughing or laying of concrete, can therefore impact sediment run-off (Álvarez-Romero et al., 58 

2011; Mateos-Molina et al., 2015; Risk, 2014; Rodgers et al., 2012). The impacts of sediment 59 

run-off on the marine system can also be altered by waves and currents, with sediments 60 

remaining in suspension for longer in higher energy environments, while currents may remove 61 

sediment from the coastal area(Rodgers et al., 2012). 62 

Commented [p2]: 1 

Commented [MR3]: 3 

Commented [p4]: 26 

Commented [MR5]: 4 

Commented [p6]: 5 

Commented [p7]: 5 

Commented [MR8]: 4 



 63 

Increases in sediment run-off has negative impacts on coral reef ecosystems. Variation between 64 

species, and interactions with other reef threats, means that the threshold for damage by 65 

sediment is highly context specific (Fabricius, 2005), though some coral species show negative 66 

impacts at levels of 3mg/l of suspended particulate matter (Anthony and Fabricius, 2000). High 67 

sediment run-off can impact corals through both increasing suspended sediment, and through 68 

sedimentation. Suspended sediment increases water turbidity, reducing light availability. In 69 

reduced light coral growth rates are slowed (Fabricius, 2005; Pollock et al., 2014; Stender et al., 70 

2014), coral morphology changes, and structural stability is compromised (Erftemeijer et al., 71 

2012; Fabricius, 2005). High turbidity, often associated with increases in nutrient levels, leads 72 

to increases in macroalgae growth, which smother hard corals (De’Ath and Fabricius, 2010).  73 

Species richness is reduced, because those species most susceptible to low light levels, and 74 

competition with macroalgae, undergo disproportionate damage, leaving only tolerant species 75 

(De’Ath and Fabricius, 2010; Fabricius, 2005). Smothering of corals through sedimentation 76 

directly leads to coral mortality, due to restricting light penetration needed for photosynthesis 77 

(Erftemeijer et al., 2012; Weber et al., 2006). Smothering inhibits feeding polyps, reducing 78 

energy intake in heterotrophic corals (Erftemeijer et al., 2012), though these may see 79 

improvements for moderate increases in suspended sediment (De’Ath and Fabricius, 2010). 80 

Coral morphology changes to favour vertical or sloped, rather than horizontal, surfaces 81 

(Erftemeijer et al., 2012), morphology changes which also reduce area suited to light 82 

absorption, and can therefore increase the detrimental impacts of low light caused by 83 

suspended sediment. Coral recruitment decreases, as juvenile corals struggle to become 84 

established on high sediment substrates (Edmunds and Gray, 2014; Jones et al., 2015; Rogers, 85 

1990). Mucus production is increased to provide protection from settling sediments, but also 86 

increases coral stress (Erftemeijer et al., 2012). Increased mucus production leads to 87 

heightened microbial activity on coral tissue surface, which contributes to anoxic conditions, 88 

damaging coral tissues (Weber et al., 2012, 2006). Furthermore, reefs under high sediment 89 
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loads have unpredictable recovery (Rogers, 1990), and reduced ability to cope with future 90 

ocean warming (Maina et al., 2013; Risk, 2014), or algae invasion (Birrell et al., 2005). 91 

 92 

Fish populations are also negatively impacted by both suspended sediments and sedimentation.  93 

Suspended sediments are related to more random habitat choices of fish larva, reducing 94 

survival and, due to preferences for remaining in clear waters, larva dispersal is restricted 95 

(Wenger et al., 2011). Predator-prey interactions are modified, with suspended sediments 96 

impacting visual recognition of prey, and interfering with chemical signals (Wenger et al., 2013). 97 

Fish increase mucus production in their gills in high sediment waters, reducing efficiency of 98 

oxygen uptake (Hess et al., 2015). Reduced oxygen uptake slows development of fish larva 99 

(Hess et al., 2015; Wenger et al., 2014), and restricts larval dispersal due to reduced energy 100 

availability (Hess et al., 2015). Sedimentation can have direct impacts on fish communities, with 101 

herbivorous fish negatively associated to high sedimentation (Goatley and Bellwood, 2012).  102 

 103 

Within the last 15 years an increasing number of studies have emerged highlighting the 104 

importance of conserving watersheds for coral reef conservation (Álvarez-Romero et al., 2011; 105 

Beger et al., 2010; Carroll et al., 2012; Cox et al., 2006; Klein et al., 2010; Makino et al., 2013; 106 

Tallis et al., 2008), and a number of models have been developed to identify erosion threats 107 

(Álvarez-Romero et al., 2014), or to integrate threat management between ecosystems (Cox et 108 

al., 2006; Klein et al., 2014, 2012, 2010; Tallis et al., 2008). Empirical studies have 109 

predominantly focused on the effects of losses in watershed vegetation directly on sediment 110 

run-off. For example, reductions in vegetation cover in a watershed increase erosion risk 111 

(Bartley et al., 2014, 2010; Maina et al., 2013; Mateos-Molina et al., 2015), and watershed 112 

development, such as increases in agriculture (Bartley et al., 2014; Begin et al., 2014; Carroll et 113 

al., 2012); land cleared for construction (Nemeth and Nowlis, 2001); and unpaved roads (Begin 114 

et al., 2014) correlate with increases in sediment run-off. But the direct link between 115 

watershed-wide ecosystem health and coral reef health (combined coral cover and species 116 
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richness; abundance, diversity and biomass of fish) has been less widely studied. Relationships 117 

between watershed vegetation cover and reef health have been found in coral reefs in Hawaii, 118 

though this impact was dominated by the influence of reef characteristics (wave action; depth; 119 

and degree of shelter; Rodgers et al., 2012). Improvements in terrestrial conservation in Fiji 120 

were estimated to result in a 10% improvement in reef health (Klein et al., 2014), and increases 121 

in bleaching have been observed following increases in sediment caused by land clearing for 122 

construction (Nemeth and Nowlis, 2001). Palaeontological techniques have been used to 123 

estimate historical coral reef cover and species in Caribbean Panama (Cramer et al., 2012) and 124 

the Great Barrier Reef (Roff et al., 2012). Sediment cores in the Great Barrier Reef showed 125 

increases in sedimentation and nutrient levels following European settlement (Roff et al., 2012), 126 

and death assemblages of corals in both locations showed a decline in coral cover correlated to 127 

recorded land clearances (Cramer et al., 2012; Roff et al., 2012). Though the nature of these 128 

studies precludes testing of causation, as these declines were observed prior to ocean warming, 129 

acidification, or bleaching and disease events they suggests that land clearance may have led to 130 

coral decline as early as the 19th Century (Cramer et al., 2012; Roff et al., 2012). 131 

 132 

In this paper we investigate the link between watershed vegetation and coral reef health, using 133 

the coral reefs on the west coast of Bonaire, Caribbean Netherlands, as a case study. Building on 134 

previous studies, links between vegetation biomass and ground cover; and reef health are 135 

estimated, in terms of impacts on visibility (turbidity), coral and fish. The paper thus provides 136 

insights for watershed restoration programs, and adds to the limited empirical data linking the 137 

terrestrial ecosystem to reef health. 138 

2. Methods 139 

2.1 Case study site 140 

Bonaire, Caribbean Netherlands, is a special municipality of the Kingdom of the Netherlands, 141 

situated in the Southern Caribbean (12° 10' N 68° 17' W, Figure 1), with an area of 294km2. 142 
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Bonaire’s terrestrial ecosystem is made up of tropical dry-forest, which receives an average of 143 

500mm of rainfall per year. Rainfall is highest between October and March, and falls 144 

predominantly in short, heavy showers. Bonaire has no above ground rivers or streams, and 145 

only a single freshwater spring. The island is well known for its healthy coral reef (Steneck et al., 146 

2015), but has a long history of terrestrial degradation, with invasive herbivores introduced in 147 

the 16th Century, and widespread tree felling in the early 1900s (Freitas et al., 2005; 148 

Westermann and Zonneveld, 1956). Such changes are recognised as threatening Bonaire’s 149 

marine ecosystems, due to increases in sediment and nutrient run-off associated with reduced 150 

root systems in the terrestrial environment (Slijkerman et al., 2011; Wosten, 2013). 151 

152 
 153 

 154 

As a fringing coral reef, the majority of Bonaire’s corals are found within between 50m-100m 155 

offshore, though in some locations the reef is found almost immediately at the water’s edge. An 156 

often sandy terrace, up to depths of approximately 8m, extends to a sharp drop off to around 157 

12m, followed by a steep slope down to 50m-60m (Bak, 1977). Trade winds are consistent from 158 

the south east, and tides are small, at approximately 30cm. The coral reef is largely uniform 159 

along the leeward (west) side of the island. The windward (east) experiences large currents and 160 

Figure 1. Location of Bonaire. Google Earth V 7.1.8.3036 (14/12/2015). Bonaire, Caribbean Netherlands. 12° 10' N 
68° 17' W [25/07/2017]. 
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wave action, and is therefore more infrequently dived and studied than the west (Bak, 1977). 161 

With no permanent above ground rivers or streams, the major input of sediment into Bonaire’s 162 

coastal waters is expected to be diffuse run-off from land with rainfall, or to a smaller extent by 163 

wind.  164 

 165 

Bonaire’s economy is built on dive tourism, with direct tourist spending making up 16.4% of the 166 

island’s GDP in 2014 (Statistics Netherlands, 2015). The island is internationally renowned for 167 

the quality of its coral reef (Sport Diver, 2016) and there is widespread understanding amongst 168 

government, NGOs and local residents of the need to protect Bonaire’s reef system. 169 

2.2 Conceptual framework 170 

Coral reef health is impacted by sediment run-off, which originates from associated watersheds. 171 

Rainfall increases sediment run-off rates through increasing surface water run-off which 172 

transports sediments from the terrestrial ecosystem. Steeper slopes are associated with 173 

increased run off. Coastal sediment levels can also be influenced by disturbance of marine 174 

sediments including divers entering the area and changes to currents or wave actions. Inputs 175 

from urban systems through sewage and run-off further increases sediment levels. Sediment 176 

run-off is decreased through the presence of a salina (salt water lake with direct connection to 177 

the sea), which traps sediment; and through the presence of vegetation, whose root systems 178 

anchor sediment and slow water flow. Soil type also impacts sediment run-off (Figure 2). 179 

 180 
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 181 

Figure 2. Conceptual model of impacts of watershed characteristics on sediment run-off, and therefore 182 

reef health. * not relevant to Bonaire as no streams/rivers present. 183 
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2.3 Data Collection 184 

2.3.1 Reef characteristics 185 

Attributes for assessing reef health were identified following a review of the literature 186 

(DeMartini et al., 2013; Fabricius, 2005; Pollock et al., 2014; Risk, 2014; Rogers et al., 2014; 187 

Rogers, 1990; Schep et al., 2013; Uyarra et al., 2009), and communication with local dive 188 

operators. Final attributes to be considered were identified as: coral cover at 5m, and coral 189 

cover deeper than 10m; horizontal visibility; fish abundance; species richness; and fish 190 

diversity. These attributes were identified as being both impacted by sediment levels and easily 191 

recognisable by recreational SCUBA divers. Horizontal visibility was used as a measure of 192 

suspended sediment within the water column as this, rather than vertical clarity measured by a 193 

Secchi disk, is the attribute valuable to recreational SCUBA divers. Water clarity has been shown 194 

to relate to suspended sediment in previous studies (Fabricius et al., 2016). Though measures of 195 

sediment directly would have enabled more accurate modelling of watershed impacts on 196 

sediment run-off, this was not possible to conduct on Bonaire’s coral reefs across at necessary 197 

the scale and resolution, due to limits on access and equipment availability. Monitoring reef 198 

characteristics anticipated to be impacted by sediment run-off also enables us to directly link 199 

the models to expected environmental changes, which are the ultimate goals of coral reef 200 

management.  201 

 202 

Coral cover and visibility were recorded by volunteer SCUBA divers. Though the use of 203 

volunteer collected data requires careful design of data collection (Conrad and Hilchey, 2011), 204 

data validation (Tulloch and Szabo, 2012), and accounting of potential biases (Dickinson et al., 205 

2010; Sullivan et al., 2016; Tulloch and Szabo, 2012), the possibility for collection of large 206 

amounts of data at large spatial and temporal scales is important for filling gaps in conservation 207 

knowledge (Conrad and Hilchey, 2011; Sullivan et al., 2016), and accurate results have been 208 

shown with only a small amount of training (Hassell et al., 2013). To ensure accuracy of reef 209 

data SCUBA divers were asked only to record characteristics with which they were already 210 
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familiar. Recording horizontal visibility is a common practise when recording dives, and 211 

estimating such forms part of diver training. To assist with coral cover estimates volunteers 212 

were presented with a card showing four levels of coral cover (Figure 4), and asked to match 213 

the cover observed on their dive to the cards. Data was also tested for reliability through 214 

comparison to data collected by trained scientists. 215 

 216 

A total of 372 reef health surveys were carried out by 61 divers on Bonaire between 13th July 217 

2015 and 12th February 2016, at dive sites on the west coast of the island (Figure 3). No surveys 218 

were conducted on the east side of the island due to high waves and currents which prevent 219 

diving along the majority of the coast. Surveys were handed out to tourists by 13 dive centres, 220 

and at shore dive sites, and were carried out by resident divers following a public presentation 221 

of project aims and procedures. During a normal dive, divers were asked to estimate visibility 222 

(in either feet or meters), and to select which of four options best represented coral cover at 223 

their safety stop (5m) and at their deepest depth (Under 25%; 26-50%; 51-75%; over 75%), 224 

using reference images for comparison (Figure 4). Divers recorded weather at each site as: 225 

clear; overcast; or raining, because this impacts light levels, and therefore visibility. Diving 226 

experience was also recorded. 227 

 228 
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 229 

Figure 3. Locations of dive sites surveyed. Red – Shore accessible. Watersheds outlined, and salinas 230 
presented in blue. Kralendijk represents the only urban area. The gap in sites surveyed is the oil storage 231 
terminal, where access is restricted. 232 

 233 

Figure 4. Cards presented to volunteer reef surveyors illustrating four categories of coral cover. 234 

 235 
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Weather was not found to impact recorded visibility, though changes were seen for depth, as 236 

estimated through use of General Linear Model (Linear Model: Table 1). Visibility estimates 237 

were therefore standardised to 18m in all further analysis. 238 

Table 1. Results from linear model on differences in visibility with varied weather and depth.  239 

 Est. (m) SE P 

Intercept (Weather: 

Clear) 

16.14 1.27 <0.01 

Weather: Overcast 1.67 1.34 0.22 

Weather: Rain -1.26 3.82 0.74 

Depth/m 0.16 0.05 <0.01 

 240 

Data on fish populations were taken from the REEF database (REEF, 2016), using surveys 241 

conducted between 1st January 2015 and 31st December 2015. REEF surveys are conducted by 242 

trained volunteers using the Roving Diver Technique to estimate fish density by species at 243 

individually identified sites (Pattengill-Semmens and Semmens, 2003). From this data mean fish 244 

abundance, species richness and Shannon-Weaver diversity (R package: Vegan) were calculated 245 

for each dive site. A composite fish score was also created, to encompass all attributes. This was 246 

created through calibrating each of fish abundance, species richness, and diversity to a four 247 

point scale, where four represents the highest recorded value, and one represents zero. These 248 

calibrated scores were summed to give a composite fish score, ranging from 3-12.  249 

 250 

Composite reef score was also calculated to illustrate overall reef health. Visibility was 251 

calibrated to a four point scale as with fish attributes above, and the sum of the composite fish 252 

score, calibrated visibility score, and both coral cover scores (with each category assigned score 253 

of 1 (under 25%) to 4 (over 75%). Composite reef scores therefore ranged from 6-24. 254 

 255 
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Currents and wave action have not been included, because these are largely similar across the 256 

sites studied. Currents are generally low, and move in a north westerly direction along the study 257 

site. 258 

2.3.2 Watershed characteristics 259 

Watersheds for each dive site were estimated using watercourse and contour maps for Bonaire 260 

(Dutch Caribbean Nature Alliance, 2016, Figure 2).  261 

 262 

Watershed variables were identified to account for variation within the watershed which could 263 

lead to increases in sediment run off, these include: slope (Appendix A); tree biomass (Appendix 264 

A); ground cover (Appendix A); soil type (Government of the Netherlands Antilles Ministry of 265 

Welfare Development plan on land and water, 1967); landscape type (Freitas et al., 2005); and 266 

presence of a salina (Figure 3). Shore accessibility (Figure 3) was also included because this may 267 

increase re-suspended sediment though divers entering and exiting the site. Distance from 268 

urban areas (Figure 3) was included because urban run-off and sewage contributes to sediment 269 

levels. Rainfall, leading to surface water which is the main transport of sediment into the marine 270 

ecosystem, was not included in models because no spatial variation across the island was found 271 

(e.g. no significant difference between monthly rainfall in the north and south of the island, t = 272 

0.4, df = 15.2 p-value = 0.67; Unpublished data: Cargill & STINAPA). Data was not analysed 273 

separately for the wet and dry seasons as the period of data collection was especially dry, and 274 

rainfall was not found to vary by season in the period of data collection (t = -1.91, df = 5.5, p-275 

value =0.1). This low rainfall during the wet season is not an uncommon occurrence for Bonaire. 276 

Average watershed slope was calculated using contour maps in R using the package: raster (R 277 

Core Team 2016). Bonaire does not have any rivers or streams to transport sediment, so these 278 

did not need to be considered. 279 

 280 

Terrestrial vegetation data was collected at 101 locations, randomly located across Bonaire, 281 

stratified by landscape type (Table 2), including: tree abundance; tree species; tree diameter at 282 
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breast height; percentage grass cover; and percentage herb cover, estimated within 10x10m 283 

quadrats. From this data average tree abundance; tree species richness; tree size; grass cover; 284 

and herb cover was calculated for each landscape type (Table 2). Average watershed values 285 

were derived from the mean weighted by percentage cover of landscape type of these landscape 286 

level values. 287 

 288 

Table 2. Descriptions of landscape types. Taken from Landscape ecological vegetation map of Bonaire 289 

(Freitas et al., 2005) 290 

Landscape type Percentage 

land cover 

Elevation Terrain 

Higher terrace 7.2 % 50-85 m Fragmented, slants to join middle 

terrace. 

Middle terrace 24.6 % 15-50 m Continuous, small hills or cliffs 

bordering coast. 

Lower terrace 15 % 4-15 m Flat continuous, slight dip 

landwards. 

Undulating landscape 30.9 % 0-241 m Peaks and valleys, slopes can be 

steep, but rarely form cliffs. 

 291 

Variables were consolidated into: 292 

 293 

 294 

 295 

 296 

 297 

Soil type was identified using the Bonaire Soil Map (Government of the Netherlands Antilles 298 

Ministry of Welfare Development plan on land and water, 1967) and landscape type from the 299 
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Landscape Vegetation Map of Bonaire (Freitas et al., 2005). Google Earth (Bonaire, 2016) was 300 

used to identify salina presence on the watershed, and distance of dive site from urban areas. 301 

Sites was identified as being accessible from shore using the Bonaire dive map (STINAPA 302 

Bonaire, 2016). Land use was identified from the Bonaire Zoning Plan (Openbaar Lichaam 303 

Bonaire, 2011), as urban or nature area. Nature areas have limited permanent structures, and 304 

are not farmed, though are grazed by free ranging and feral livestock. Sediment from sources 305 

other than Bonaire, such as continental sediments, were not included in the model, as they 306 

would not be expected to vary across the spatial scales considered. 307 

2.4 Data analysis 308 

Statistical analysis was carried out using R Statistical Software (R Core Team 2016). 309 

2.4.1 Data reliability 310 

The use of volunteer data can be limited by the ability of untrained individuals to successfully 311 

identify and record data, and through potential biases in data collection. Data collected by 312 

volunteers should therefore be tested to account for potential inaccuracies. We tested data 313 

reliability using a paired t-test against data collected by van Beek (2011), which measured coral 314 

cover at 5m depth during 2011 using visual estimation during snorkel surveys (van Beek, 315 

2011).  Data showed a significant difference between cover estimated by all recreational divers 316 

(residents and tourists combined) and data collected in van Beek’s (2011) study (t = -2.4, df = 317 

61, p=0.02). No significant difference was seen between data collected by resident divers only 318 

and van Beek’s (2011) data (Paired t-test: t = 0.9, df = 41, p = 0.4). Data collected by Bonaire 319 

residents only was therefore used in further analysis. Mean scores were calculated from this 320 

data for each dive site. 321 

2.4.2 Coral cover categories 322 

Coral cover was organised into categories for analysis. ‘Deepest depth’ coral scores were 323 

categorised as: low-level (under 10m); mid-level (10m-18m); deep (19m-30m); and very deep 324 

(deeper than 30m). The ‘low-level’ and ‘very deep’ categories included only one and eight 325 
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values, and so were pooled with the mid-level and deep categories respectively. An ANOVA was 326 

carried out to determine differences in coral cover between ‘safety stop’ (5m depth, hereafter 327 

‘shallow’), mid and deep level coral scores. Shallow coral cover was significantly lower than 328 

deep and mid coral cover (Table 3).  No significant difference was observed between deep and 329 

mid-level coral cover (Table 3), and these scores were therefore combined for further analysis. 330 

Due to the similarities in coral cover with depth, and previous work indicating that Bonaire’s 331 

reef habitats are largely similar across space (Bak, 1977; van Beek, 2011), we did not therefore 332 

further separate data by habitat.  333 

Table 3. Results from ANOVA on differences in mean percentage coral cover by depth class. Residual 334 

degrees of freedom 107. Est – Estimated model coefficients. SE – Standard Error. P – Calculated 335 

probability. 336 

 Est. (%) SE P 

Intercept (shallow) 60.50 3.00 <0.01 

Mid depth 20.25 5.25 <0.01 

Deep 26.25 4.50 <0.01 

2.4.3 Vegetation-Reef health relationship 337 

General linear models were used to investigate the relationship between terrestrial vegetation 338 

and reef health. In addition to directly measured reef attributes composite scores for reef health 339 

and fish communities were also created. Individual models were created for the following reef 340 

health indicators: composite reef score; shallow coral cover; deep coral cover; composite fish 341 

score; and visibility (full data and excluding one outlier). Data for composite reef score, shallow 342 

coral cover, deep coral cover, and visibility (full data) showed a normal distribution, and were 343 

therefore not transformed. Data were normalised through log transformation for composite fish 344 

score. Plotting model estimates indicated a single high visibility estimate as over 35m, which 345 

was deemed larger than possible visibility. Models were therefore repeated excluding this 346 

estimate, normalising data through log transformation, with both models reported.  General 347 
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linear models were used for these data to avoid potentially over fitting the models to complex 348 

ecosystem data. Model fit in each case was assessed through plotting of residuals, and 349 

consideration of model outputs, which suggest good model fit. 350 

 351 

The full model in each case included the variables: tree biomass index; mean percentage ground 352 

cover; shore accessibility; distance along coast from town centre; predominant soil type; 353 

presence of a salina; average watershed slope; and tree biomass index-percentage ground cover 354 

interaction. Interactions were limited to vegetation characteristics because these are 355 

characteristics that the study is concerned with likely to impact reef health. Model simplification 356 

was carried out using the information theoretic approach (Burnham and Anderson, 1998), in 357 

which the Akaike weights of variables occurring in models within 2AIC of the top model were 358 

calculated, and a representative model created using variables with an Akaike weight of greater 359 

than 0.5. The full model is reported alongside the representative model in each case, except 360 

where no variable had an Akaike weight of over 0.5, or models had poor AIC values and 361 

deviance when compared to the full model, when only the full model is reported.   362 

3. Results 363 

3.1 Vegetation-Reef health relationship 364 

3.1.1 Reef composite score 365 

A single top model was identified to describe reef composite score, containing variables salina 366 

presence and soil type. Reef score decreased where a salina was present, and was lowest with 367 

rocky soil types (Table 4. For figures see Appendix B). 368 

 369 

 370 

 371 

 372 
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Table 4. Results from General Linear Models investigating effects of watershed vegetation on composite 373 

reef health. n=47. Variable deletions did not improve the model. Full model deviance = 72.356, df=28. 374 

Representative model deviance = 81.15, df=35. Intercept for full model set to soil type: loam; shore 375 

access: no; salina: no, land use: nature. Intercept for representative model set to soil type: loam; salina: 376 

no. Significant terms in bold. 377 

 Full Model 

AIC: 163.22 

Representative Model 

AIC: 153.81 

 Est. SE t P Est. SE t P 

Intercept 19.68 3.39 5.80 <0.01 15.18 0.92 16.42 <0.01 

Tree biomass index -1.66 1.04 -1.60 0.12     

Percentage ground 

cover 

-0.04 0.05 -0.75 0.46     

Shore accessible -0.16 0.89 -0.17 0.86     

Distance from town <0.01 0.00 0.47 0.64     

Rocky soil -3.56 2.14 -1.66 0.11 -1.17 1.12 -1.05 0.30 

Terrace soil -3.76 3.02 -1.24 0.22 0.87 0.97 0.90 0.38 

Terrace/rocky soils -1.54 3.34 -0.46 0.65 2.70 1.07 2.52 0.02 

Salina present 0.50 2.29 0.22 0.83 -2.53 0.85 -2.96 0.01 

Slope -18.86 21.16 -0.89 0.38     

Urban use -0.89 4.12 -0.22 0.83     

Tree biomass index : 

percentage ground 

cover 

0.13 0.08 1.56 0.13     

 378 

3.1.2 Coral cover 379 

Five models were identified to explain shallow (5m) coral cover, including the variables: tree 380 

biomass; percentage ground cover; shore accessibility and land use. The representative model 381 
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included only land use, with watersheds containing urban areas having lower cover than nature 382 

areas(Table 5, for figures see Appendix B). 383 

Table 5. Results from General Linear Model investigating effects of watershed vegetation on mean coral 384 

cover at 5m. n=49. Full model deviance = 32.28, df=37. Representative model deviance = 38.62, df=47. 385 

Intercept for full model set to soil type: loam; shore access: no; salina: no. Significant terms in bold. 386 

 Full Model 

AIC: 144.61 

Representative Model 

AIC: 133.39 

 Est. SE t P Est. SE t P 

Intercept 3.35 1.70 1.97 0.06 2.49 0.14 17.57 <0.01 

Tree biomass index -0.56 0.55 -1.02 0.32     

Percentage ground 

cover 

-0.01 0.03 -0.47 0.64     

Shore accessible -0.45 0.43 -1.03 0.31     

Distance from town <0.01 0.00 1.47 0.15     

Rocky soil -0.36 1.24 -0.29 0.77     

Terrace soil -1.17 1.55 -0.75 0.46     

Terrace/rocky soils -0.12 1.92 -0.06 0.95     

Salina present 0.04 1.12 0.03 0.97     

Slope -4.91 9.79 -0.50 0.62     

Urban use -0.66 2.29 -0.29 0.77 -0.61 0.35 -1.75 0.09 

Tree biomass index : 

percentage ground 

cover 

0.04 0.04 1.00 0.32     

 387 

Three top models were identified to explain deep (below 10m) coral cover, including variables: 388 

tree biomass index; percentage ground cover; shore accessibility; distance to town; presence of 389 

a salina; land use; and tree biomass: percentage ground cover interaction. A positive 390 
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relationship was found between deep coral cover and ground cover, with a stronger 391 

relationship as tree biomass increased (Table 6 & Figure 5). Tree biomass had a negative 392 

relationship to deep coral cover, with a steeper relationship with lower levels of ground cover 393 

(Table 6 & Figure 6). Coral cover also increased where the watershed contained a salina, and 394 

where the watershed was predominantly nature areas (Table 6). A decrease in coral cover was 395 

seen with shore accessibility, as well as with increased distance from town, though the latter 396 

impact was very small (Table 6, for additional figures see Appendix B). 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 



Table 6. Results from General Linear Model investigating effects of watershed vegetation on mean coral 413 

cover deeper than 5m. n=49. Full model deviance = 17.39, df=37, representative model deviance = 19.08, 414 

df=41. Intercept for full model set to soil type: loam; shore access: no; salina: no’ land use: nature. 415 

Representative model: shore access: no; land use: nature. Significant terms in bold. 416 

 Full Model 

AIC: 114.3 

Representative Model 

AIC: 110.85 

 Est. SE t P Est. SE t P 

Intercept 4.85 1.25 3.88 <0.01 3.09 0.44 6.99 <0.01 

Tree biomass index -1.43 0.41 -3.53 <0.01 -0.77 0.15 -5.21 <0.01 

Percentage ground 

cover 

-0.02 0.02 -1.33 0.19 0.00 0.01 -0.27 0.79 

Shore accessible -0.73 0.32 -2.27 0.03 -0.71 0.30 -2.35 0.02 

Distance from town <0.01 0.00 2.47 0.02 <0.01 0.00 2.84 0.01 

Rocky soil -1.67 0.91 -1.83 0.07     

Terrace soil -1.73 1.14 -1.51 0.14     

Terrace/rocky soils -2.00 1.41 -1.42 0.17     

Salina present 1.50 0.83 1.81 0.08 0.78 0.46 1.70 0.10 

Slope 2.14 7.19 0.30 0.77     

Urban use -1.88 1.68 -1.12 0.27 -1.06 0.53 -2.00 0.05 

Tree biomass index : 

percentage ground 

cover 

0.11 0.03 3.51 <0.01 0.06 0.01 5.21 <0.01 

 417 
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 418 

Figure 5. Change in deep coral cover with ground cover showing how this relationship was dependent on 419 

tree biomass. Dashed – Median tree biomass; Solid – Min tree biomass. Estimates with maximum tree 420 

biomass are not presented as these are not representative of the majority of locations on Bonaire. Dotted 421 

lines indicate upper and lower confidence intervals of ground cover impact. 422 
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 423 

Figure 6. Relationship between tree biomass and coral cover, impacted by ground cover. Solid: min 424 

ground cover; Dashed: median ground cover. Estimates with maximum ground cover are not presented as 425 

these are not representative of the majority of locations on Bonaire. Dotted lines indicate upper and 426 

lower confidence intervals of ground cover impact. 427 

3.1.3 Fish characteristics 428 

Five top models were identified, including the variables: distance to town; salina presence; 429 

shore accessibility; slope; land use and predominant soil type. The representative model 430 

included: shore accessibility; soil and distance to town. Fish score increased with shore 431 

accessibility and decreased with distance to town, though this decrease was very small. Fish 432 

score decreased in terraced and rocky terraced soils (Table 7, for figures see Appendix B). 433 



Table 7. Results from General Linear Model investigating effects of watershed vegetation on fish. n=53. 434 

Full model deviance = 0.45, df=41, representative model deviance = 0.52, df=47. Intercept for full model 435 

set to soil type: loam; shore access: no; salina: no; land use: nature. Representative model: shore access: 436 

no; soil type: loam. Data has been log transformed. Significant terms in bold. 437 

 Full Model 

AIC: -75.42 

Representative Model 

AIC: -80.12 

 Est. SE t P Est. SE t P 

Intercept 2.19 0.19 11.53 <0.01 2.23 0.07 32.41 <0.01 

Tree biomass index 0.00 0.06 0.07 0.94     

Percentage ground 

cover 

0.00 0.00 -0.25 0.80     

Shore accessible 0.13 0.04 2.97 0.01 0.13 0.03 3.99 <0.01 

Distance from town <0.01 0.00 -2.39 0.02 <0.01 0.00 -3.81 <0.01 

Rocky soil -0.19 0.14 -1.36 0.18 -0.18 0.07 -2.45 0.02 

Terrace soil 0.14 0.18 0.81 0.42 0.09 0.06 1.56 0.12 

Terrace/rocky soils -0.11 0.21 -0.52 0.61 -0.02 0.07 -0.34 0.73 

Salina present -0.19 0.12 -1.57 0.12     

Slope 0.56 1.20 0.47 0.64     

Urban use -0.30 0.22 -1.34 0.19     

Tree biomass index : 

percentage ground 

cover 

0.00 0.00 0.12 0.90     

 438 

3.1.4 Visibility 439 

Seven top models were identified for visibility, including the variables: tree biomass index; 440 

percentage ground cover; shore accessibility; predominant soil type; salina presence; land use; 441 
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and tree biomass index: percentage ground cover interaction. The representative model 442 

included tree biomass index; shore accessibility; predominant soil type; and salina presence. 443 

Visibility decreased with increased tree biomass (Table 8a). Visibility also decreased in shore 444 

accessible sites, with presence of a salina on the watershed, and in rocky, terraced and 445 

combined rock and terrace soils when compared to loam soils (Table 8a). 446 

 447 

Models were repeated excluding a single high visibility estimate, using log transformed data. 448 

Five models were identified, including the variables: percentage ground cover; salina presence; 449 

shore accessibility; and slope. The representative model included slope and shore accessibility, 450 

with both reducing visibility (Table 8b, for figures see Appendix B). 451 

Table 8a. Results from General Linear Model investigating effects of watershed vegetation on visibility. 452 

n=. Full model deviance = 792.16 df=37, representative model deviance = 890.61, df=42. Intercept for full 453 

model set to soil type: loam; shore access: no; salina: no; land use: nature. Representative model: shore 454 

access: no, soil: loam; salina: no. Significant terms in bold. 455 

 Full Model 
AIC: 301.42 

Representative Model 
AIC: 297.16 

 Est. SE t P Est. SE t P 
Intercept 21.79 8.44 2.58 0.01 33.01 2.80 11.80 <0.01 
Tree biomass index 4.84 2.74 1.77 0.08 -0.14 0.09 -1.51 0.14 
Percentage ground 
cover 0.06 0.12 0.44 0.66     
Shore accessible -5.34 2.15 -2.48 0.02 -4.81 1.54 -3.13 <0.01 
Distance from town <0.01 0.00 -0.88 0.39     
Rocky soil -2.57 6.16 -0.42 0.68 -10.36 2.96 -3.50 <0.01 
Terrace soil 4.93 7.70 0.64 0.53 -8.76 2.45 -3.58 <0.01 
Terrace/rocky soils 5.33 9.52 0.56 0.58 -5.74 2.83 -2.03 0.05 
Salina present -11.93 5.57 -2.14 0.04 -2.98 2.47 -1.20 0.24 
Slope 47.23 48.50 0.97 0.34     
Urban use -0.53 11.33 -0.05 0.96     
Tree biomass index 
: percentage ground 
cover -0.37 0.22 -1.72 0.09     

 456 
 457 
 458 
 459 
 460 
 461 
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 462 

Table 9ab Results from General Linear Model investigating effects of watershed vegetation on visibility 463 

with outlier removed. n= 48. Full model deviance = 1.05 df=36, representative model deviance- = 1.2, 464 

df=45. Intercept for full model set to soil type: loam; shore access: no; salina: no. Representative model: 465 

shore access: no. Significant terms in bold. 466 

 467 

 468 

4. Discussion 469 

Coral reef health is impacted by terrestrial ecosystems through sediment run-off. Sediment run-470 

off can be altered by changes to watershed characteristics, including vegetation ground cover 471 

and tree biomass. We modelled the impacts of these on coral cover, fish communities, and 472 

visibility, using the small island of Bonaire as a case study. Bonaire’s coral cover (below 10m) 473 

showed a positive relationship with ground cover and a negative relationship with tree biomass. 474 

When considering reef health across all attributes, the impact of watershed vegetation was 475 

smaller than that of shore accessibility. Shore accessibility is related to increased suspended 476 

marine sediment due to presence of a sandy shelf, and divers coming into contact with the reef 477 

when entering and exiting the site, and had a significant impact on all reef attributes. Soil type, 478 

 Full Model (Outliers removed) 
AIC: -21.25 

Representative Model (Outliers 
removed) 

AIC: -31.50 
 Est. SE t P Est. SE t P 
Intercept 3.64 0.33 11.19 <0.01 3.20 0.05 59.41 <0.01 
Tree biomass index 0.01 0.11 0.08 0.93     
Percentage ground 
cover 0.00 0.00 -0.91 0.37     
Shore accessible -0.35 0.08 -4.34 <0.01 -0.26 0.06 -4.63 <0.01 
Distance from town <0.01 0.00 -0.47 0.64     
Rocky soil -0.07 0.23 -0.31 0.76     
Terrace soil -0.30 0.30 -1.00 0.32     
Terrace/rocky soils 0.17 0.35 0.49 0.62     
Salina present 0.09 0.23 0.39 0.70     
Slope -2.87 1.98 -1.45 0.15 -1.09 0.59 -1.85 0.07 
Urban use 0.53 0.43 1.23 0.23     
Tree biomass index : 
percentage ground 
cover 0.00 0.01 -0.30 0.77     
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salina, and slope, all of which may impact the amount of sediment which can enter the coral 479 

reef, had small impacts, influencing reef score, deep coral, and visibility respectively. 480 

 481 

Composite reef score was impacted by both watershed soil type and presence of salina on the 482 

watershed, with terrace soils associated with a reduced reef score, highlighting the importance 483 

of watershed characteristics to overall coral reef health on Bonaire. Reef score was comprised of 484 

percentage coral cover, fish community index and visibility. Whilst this does not capture all of 485 

the variation in reef health on Bonaire, these are reported to be reliable indicators of reef health, 486 

and have been used in a range of studies  (DeMartini et al., 2013; Fabricius, 2005; Pollock et al., 487 

2014; Risk, 2014; Rogers et al., 2014; Rogers, 1990; Schep et al., 2013; Uyarra et al., 2009). Our 488 

results therefore indicate the importance of the watershed to coral reef conservation, and may 489 

be used to suggest that sediment levels are impacting additional reef attributes not tested here. 490 

It is important to note the large errors associated with this model, which indicates further 491 

analysis of individual reef attributes is important to fully understand the relationship. 492 

 493 

The relationship between watershed characteristics and coral cover varied with depth. Shallow 494 

coral cover varied only with land use, being lower in urban areas. This is likely due to the 495 

watersheds associated to urban areas experiencing higher reef use and boat traffic, which may 496 

damage shallow corals in particular. The lack of relationship with other watershed 497 

characteristics seen to impact deep coral may be a result of shallow corals experiencing multiple 498 

stresses not felt by deeper corals, masking the impacts of watershed. Shallow coral was 499 

measured at 5m, whilst divers were carrying out their safety stop. This stop occurs for three 500 

minutes at the end of each dive, and is therefore carried out in areas of high diver traffic, or near 501 

to mooring buoys, both of which may reduce coral cover. Shallow coral may also be more 502 

vulnerable to collisions from boats, snorkelers, novice divers and other water sports. This study 503 

did not allow us to discern the main factors determining coral cover at shallow depths, however 504 
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further study would be warranted to identify factors, such as restrictions on divers or other 505 

water sports, which could be incorporated into coral reef management plans. 506 

 507 

Deep corals, below 10m depth, showed a positive relationship with ground cover, with 508 

relationship increasing as tree biomass index increased. Increases in ground cover are 509 

associated with increased root systems within the soil, as well as creating surface complexity. 510 

Areas with high ground cover therefore slow water flow, reducing energy available to dislodge 511 

sediment. 512 

 513 

In contrast to existing literature, a negative relationship was seen between deep coral cover and 514 

tree biomass index, though review studies have indicated that ecological context is important in 515 

determining impacts of tree biomass on sediment run-off (Brown et al., 2005; van Dijk and 516 

Keenan, 2007). Increased tree biomass index would be expected to reduce sediment run-off, and 517 

therefore increase coral cover, through tree roots anchoring soils, and creating pools of water, 518 

increasing water seeping into the soil. However Bonaire’s dry forest is characterised by very 519 

low rainfall. Dry-forest tree species therefore have deep root systems, which may have little 520 

impact in anchoring surface sediments susceptible to transport, or in increasing surface 521 

complexity, rather acting to reduce water levels in the water table (van Dijk and Keenan, 2007). 522 

In dry-forest such as Bonaire sediment transport through the water table is of limited impact to 523 

sediment levels when compared to surface run-off (Bartley et al., 2014). The negative 524 

relationship observed may arise from increased tree litter associated with trees with higher 525 

above ground biomass, which would increase sediment available for transportation. In 526 

overgrazed systems disruption of leaf litter has been suggested to be linked to increases in 527 

sediment run-off (van Dijk and Keenan, 2007). The highly degraded nature of Bonaire’s dry-528 

forest may also contribute to the negative relationship observed, with positive impacts of 529 

afforestation observed only in studies which increased tree abundance in over 20% of the 530 

catchment (Brown et al., 2005). The low tree density on Bonaire may therefore limit the impact 531 

Commented [p59]: 14 



these have on reducing sediment run-off. This relationship is reduced where ground cover 532 

increases, suggesting this reduces transportation of this sediment. 533 

 534 

Salina presence is associated with an increase in deep coral cover. This may result from salinas 535 

acting as a sediment traps, therefore reducing sediment run-off. Building of salinas may 536 

therefore also perform a role in reducing sediment run-off into the reef, but have a smaller 537 

impact than increasing ground cover. Shore accessibility decreased coral cover, probably 538 

because it is associated with increased suspended sediment. Both of these impacts are small at 539 

the scale of deep coral cover, though shore accessibility is larger with regard to whole reef 540 

ecosystem health, in comparison to the impact of watershed vegetation. Sites with watershed 541 

dominated by urban areas also showed reduced coral cover. This could be attributed to higher 542 

run-off associated with concrete in urban areas, but may also be a result of increased reef use in 543 

locations close to residences and hotels. 544 

 545 

Composite fish score did not show significant variation with watershed vegetation, though did 546 

vary with soil type. Unlike coral, fish are mobile throughout the reef, and may therefore move 547 

between areas of high and low sediment. In addition to direct impacts on sediment on fish 548 

(Goatley and Bellwood, 2012; Hess et al., 2015; Wenger et al., 2014, 2013, 2011),  large impacts 549 

arise through their relationship with coral (DeMartini et al., 2013; Edmunds and Gray, 2014; 550 

Jones et al., 2015; Rogers et al., 2014; Rogers, 1990), therefore the coral declines seen in Bonaire 551 

may not have reached levels high enough to impact fish communities. In this study we have not 552 

accounted for the reef reliance of the species recorded. Impacts of sediment run-off on reef 553 

dependent species may therefore be masked by responses of less restricted species, though the 554 

ten most common species recorded in surveys across Bonaire are all reef dependent. Further 555 

studies should address impacts on sensitive species in particular to identify declines.  556 

 557 
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Fish score was improved in sites accessible from shore, and increased with increased distance 558 

from town. Shore dive sites are characterised by sandy flats, leading to the reef. This may 559 

provide larger variation in habitat for fish species, a result observed by Pattengill-Semmons 560 

(2002) on Bonaire using the REEF database. Fish may also be more easily identified on sandy 561 

areas when compared to the reef itself, leading to inflated estimates. 562 

 563 

Once a single outlier was removed, a negative relationship between watershed slope and 564 

visibility was found. Increased slope is associated with higher sediment run-off (Boer and 565 

Puigdefábregas, 2005; Millward and Mersey, 1999; Renard et al., 2000), and would therefore be 566 

expected to relate to reduced visibility. Shore accessible sites also show reduced visibility, due 567 

to the presence of sandy flats from which sediment may be disturbed by divers, waves or 568 

currents. 569 

 570 

The overall weak relationship between reef characteristics and watershed vegetation is in line 571 

with existing literature (Ramos-Scharron et al., 2015; Rodgers et al., 2012), and is a 572 

consequence of the multitude of threats to coral reef ecosystems (Hughes et al., 2003). However, 573 

the largely uniform nature of threats impacting the coral reef on Bonaire’s west coast has 574 

enabled us to identify degradation of vegetation ground cover as decreasing composite reef 575 

score and coral cover below 10m depth. Through the use of multivariate analysis we have 576 

intended to capture the biotic and abiotic factors impacting reef characteristics. However in a 577 

complex system, such as coral reefs, these models remain limited. Though the low currents on 578 

Bonaire are likely to mean that sediment transport on entering the coastal ecosystem is limited, 579 

we have not explicitly tested this assumption, and there is potential that sediment entering from 580 

one watershed may be impacting in other locations. We have also not considered the impacts of 581 

sediments originating from other locations. Though these sediment inputs would be expected to 582 

be small in comparison to those directly from Bonaire, large changes in sediment inputs into the 583 

Caribbean sea may have impacts on coral cover. Though we have estimated coral cover and fish 584 Commented [p62]: 39 



abundance, this has not accounted for species or community structures, which could also be 585 

expected to be impacted by sediment run-off. As a result the negative impacts of sediment run-586 

off may be under represented by the models. Similarly due to the need to keep methods simple 587 

for volunteer data collectors coral cover estimates were assigned to one of four ranges (Under 588 

25%, 26-50%, 51-75%, and over 75%). This limits the power of the model to estimate impacts 589 

on coral cover, and a more accurate understanding would be achieved through detailed coral 590 

cover surveys. Additionally we have not considered factors influencing the reef on regional or 591 

global scales, such as lionfish abundance, or ocean temperatures. While it is unlikely that large 592 

variations in such occur at the small scale of Bonaire, the influence of regional and global factors 593 

should be accounted for when applying such models to management decisions.  594 

 595 

It is important to recognise when considering the relationships described within this thesis that 596 

though sediment run-off is found to have a negative impact on coral cover, this is expected to be 597 

small when compared to global factors, such as coral bleaching. At the local scale Bonaire’s 598 

shallow and deep corals are recognised as having undergone bleaching events, linked to 599 

changes in water temperature (Bak et al., 2005; Steneck et al., 2015; Stokes et al., 2010), though 600 

some recovery is suggested (Steneck et al., 2015). However though climate change may be a 601 

more significant threat than the local threat of sediment run-off, local managers have little 602 

power to tackle global climate change. Recognising actions which can be taken at the local level 603 

would therefore still be expected to improve reef health, and increase resilience of coral reefs to 604 

these global threats (Maina et al., 2013; Risk, 2014). Though the impact of vegetation cover is 605 

small across reef characteristics measured, it is within the capacity of reef managers to improve 606 

watershed ground cover through terrestrial restoration (for example, by reducing grazing 607 

pressures, or supplementary planting). It is also valuable to note that the terrestrial ecosystem 608 

on Bonaire has already undergone significant environmental damage, resulting in limited 609 

variation in vegetation. Modelling the effects of management using links established here can 610 

therefore help to target conservation efforts to achieve the highest impacts. Long-term 611 
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monitoring of both reef health and watershed vegetation would improve understanding of this 612 

relationship, and enable joint management of the terrestrial and marine ecosystems on Bonaire, 613 

and across the tropics. 614 

5. Conclusions 615 

The analysis presented in this paper illustrates, in situ, the relationship between watershed 616 

vegetation and coral reef health, in particular coral cover at depths below 10m. As coral reefs 617 

are in decline worldwide (Kennedy et al., 2013; Wilkinson, 1999), understanding the scope of 618 

threats is important for conservation management decisions. Whilst local managers are limited 619 

in their ability to address threats at the global and regional scales, reductions in local level 620 

threats can increase reef resilience to outside threats (Birrell et al., 2005; Maina et al., 2013; 621 

Risk, 2014). Our models show that where all other threats, such as recreation, fishing, or 622 

invasive species, are equal, improvements to watershed vegetation can lead to improvements to 623 

reef health. 624 

 625 

Bonaire’s economy is highly reliant on dive tourism, therefore reef protection is high on the 626 

agenda of Government and dive operators. However, until now, reef conservation has, excepting 627 

the creation of a sewage treatment plant, largely focused on only marine-based actions. Here we 628 

show that low ground cover decreases coral cover at depths below 10m, where the majority of 629 

recreational diving occurs. Reef managers may therefore expect to see improvements in coral 630 

cover following terrestrial conservation actions, which may include fencing of areas to exclude 631 

grazers, control or eradication programs for invasive grazing species, or replant of natural 632 

vegetation.  The models presented in this paper provide reef managers on Bonaire with tools to 633 

estimate impacts that actions to improve ground cover will have on coral cover. In utilising the 634 

models managers would therefore be better equipped to compare alternative management 635 

options for their effectiveness. Where these estimates were used alongside cost estimates in 636 

decision making cost-effectiveness of environmental management actions could also be 637 
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improved. These findings highlight the need for the island to integrate terrestrial and marine 638 

conservation to further preserve the island’s valuable coral reef.  639 

 640 
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Figure A1. Spatial variation in tree biomass index across Bonaire 867 
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Figure A2. Spatial variation in percentage ground cover across Bonaire. 871 
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Figure A3. Median coral cover recorded at Bonaire’s dive sites 874 
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Figure A4. Topographic map of Bonaire 877 

878 



 879 

9. Appendix B 880 
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 882 
Figure B.1 Impact of soil type on composite reef score, with standard error bars.  883 



 884 
Figure B.2. Change in composite reef score with saline presence. 885 
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 887 
Figure B.3 Impact of land use on watershed on coral cover at 5m. 888 
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 892 
Figure B.4 Impact of shore accessibility on coral cover at 10m. 893 

 894 



 895 
Figure B.5 Impact of distance from urban area on coral cover below 10m. Dotted lines upper and lower 896 
confidence intervals of impact of distance. Due to the unbounded nature of the model estimates exceed 897 
100%, but are not displayed here. 898 



 899 
Figure B.6 Impact of salina presence on percentage coral cover below 10m 900 
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Figure B.7 Impact of land use on percentage coral cover below 10m 903 
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 905 
Figure B.8 Impacts of shore accessibility on fish community. 906 
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 923 
Figure B.9 Impacts of soil type on fish score 924 
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 927 
Figure B.10. Change in fish score with increasing distance from town. 928 



 929 
Figure B.11 Impact of shore accessibility on visibility at 18m depth. Outlying point (visibility <35m) 930 
removed. 931 



 932 
Figure B.12 Impact of watershed slope on visibility at 18m. Outlier at 45m removed from model estimate. 933 
Dotted lines upper and lower confidence intervals of impact of slope 934 
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