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Local immune response against larvae of the cattle tick (Rhipicephalus (Boophilus) microplus) in 57 

Santa Gertrudis cattle with low and high levels of tick resistance  58 

 59 

Abstract 60 

 61 

Aims 62 

This study investigated the local immune response at larval attachment sites in Santa Gertrudis cattle 63 

with low and high levels of tick resistance.  64 

Methods and results 65 

Skin samples with tick larvae attached were collected from Santa Gertrudis cattle at the end of a 66 

period of 25 weekly infestations, when the animals manifested highly divergent tick-resistant 67 

phenotypes. There was a tendency for more CD3+, CD4+, CD8+, CD25+, γδ T-cells and neutrophils to 68 

concentrate at larval tick attachment site in susceptible cattle than in resistant cattle but the differences 69 

were significant only for γδ T-cells and CD4+ cells. Most of the cattle developed intra-epidermal 70 

vesicles at the larval attachment site but the predominant cell within or around the vesicles was the 71 

neutrophil in susceptible animals and eosinophil in the resistant animals. The monoclonal antibodies 72 

(mAbs) specific for CD45 and CD45 RO antigens reacted with skin leukocytes from a higher number 73 

of susceptible cattle than resistant cattle.  74 

Conclusion 75 

Our data suggest that some of the cellular responses mounted at larval attachment site are not 76 

involved in tick protection. The mAbs specific for CD45 and CD45 RO directly, or a test for CD45 77 

genotype might be developed as markers of tick susceptibility or resistance. 78 

 79 

Key Words: Rhipicephalus microplus; immune response; cattle; Santa Gertrudis; immuno-80 

fluorescence; leukocytes; skin;  81 

 82 
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Introduction 84 

Cattle tick, Rhipicephalus (Boophilus) microplus is a species complex which currently includes 85 

several geographic clades including R. microplus in the Australasian region (1, 2). Although the 86 

Australasian R. microplus clade is now known as the subspecies R. australis, the remainder of this 87 

article will refer to it as R. microplus or ‘cattle tick’. R.microplus is an economically important tick 88 

for the cattle industry worldwide causing in the vicinity of $US22-30b in losses per annum (3).  In 89 

addition to the direct effects of feeding on blood, hypersensitivity reactions and damage to the hide, R. 90 

microplus is vector for significant pathogens including Babesia spp and Anaplasma spp. Infestations 91 

with this tick have been commonly controlled through frequent application of chemical acaricides and 92 

management (4). Widespread development of acaricide resistance, public concern with worker, 93 

environmental and food safety and the increasing costs associated with discovery of new acaricides 94 

stimulated interest in alternative methods to control R. microplus, including vaccination (5, 6). A 95 

thorough understanding of the molecular mechanisms underlying the tick-host relationship and the 96 

protective immune response mounted by the host will help design effective vaccines against the R. 97 

microplus species group.  98 

Bos indicus breeds are less susceptible to infestation with R. microplus than B. taurus breeds and 99 

develop a more effective resistance (7, 8). However, cattle from both species manifest considerable 100 

variation in resistance to R. microplus (8). In Australia, increasing pressure from domestic and 101 

overseas consumer markets is driving producers to introduce more B. taurus genetic content into their 102 

herds due to the European breeds’ superior productivity and meat quality (9). Composite breed 103 

animals such as the Santa Gertrudis (5/8 B. taurus and 3/8 B. indicus), present an attractive alternative 104 

to pure B. indicus cattle in tick-endemic regions of northern Australia due to their blend of good meat 105 

quality and reproductive traits, together with the ability to acquire high levels of tick-resistance (8). 106 

The resistance to R. microplus is heritable but the mechanisms of resistance in both B. indicus  and B. 107 

taurus cattle are not well understood despite intensive research (10). Resistant cattle impair the ability 108 

of ticks to attach and feed, resulting in a reduction of the proportion of female ticks that mature, a 109 

reduction in the weight of the engorged females and the number and the viability of the eggs laid by 110 

female ticks (11-13). Resistance to infestation is directed against all tick stages but it is manifested 111 
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primarily against the larval stage in the first 24 h of their parasitic life. In both B. indicus and B. 112 

taurus cattle with high levels of resistance, up to 90% of the larvae are lost within 24 h after 113 

infestation (11, 14).  114 

The mechanisms of protection and possible explanations for the differences in resistance to tick 115 

infestation between B. indicus and B. taurus include variation in the structure and physiology of the 116 

skin (15, 16), the density of arteriovenous anastomoses at the skin surface (17), histamine 117 

concentrations at the larval attachment site (18), self-grooming stimulated by and directed to larval 118 

stages (12), and histological features of the tongue (19). However, the immune response plays an 119 

important role in protection (10, 20). In cattle with natural infestations the contribution to host 120 

resistance of circulating IgG and IgM specific to tick antigens (Ag) is debatable (9, 21) but there is 121 

evidence that the cellular immune response is essential for tick resistance (10, 20, 22, 23). Resistance 122 

in B. taurus cattle was associated with a Type I hypersensitivity reaction to larval allergens and it was 123 

correlated with eosinophil concentration and degree of degranulation, mast cell disruption and number 124 

of intra-epidermal vesicles at the larval attachment site (20, 23, 24).  125 

There are differences in the local immune response mounted against larvae of R. microplus by B. 126 

taurus and B. indicus cattle (7, 25-27). In the early stages of the infestation, infiltrations with 127 

neutrophils predominate at larval attachment sites in B. taurus cattle, whereas infiltrations with T-cells 128 

predominate at larval attachment sites in B. indicus cattle (7, 25). Under similar experimental 129 

conditions more CD25+, γδ T-cells concentrated at the larval attachment sites in B. indicus cattle that 130 

developed high resistance to tick infestations than in B. taurus cattle that developed only low or 131 

moderate tick resistance, which suggested a protective role for these two cell phenotypes (25).  There 132 

was a tendency for the density of CD3+, CD4+, CD8+, cells to be higher in B. indicus cattle than in B. 133 

taurus cattle. Later in the infestation, massive infiltrations with neutrophils and development of intra-134 

epidermal vesicles filled with neutrophils at larval attachment sites in B. indicus cattle, together with  135 

massive infiltrations of T cells, suggested a role for neutrophils in tick rejection, apparently in contrast 136 

with the early response to infestation, in which neutrophils were prominent at the attachment sites in 137 

susceptible cattle (10). 138 
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The research on immune response mounted by composite breeds (Santa Gertrudis) against R. 139 

microplus is scarce. In Santa Gertrudis cattle infested with R. microplus there was no association of 140 

any peripheral blood leukocyte  phenotype  (CD3+, CD4+, CD8+, CD14+, CD25+, γδ T-cells, MHC 141 

class II antigen cells and WC3 cells) with resistance or susceptibility to tick infestation (9). As such 142 

there are no reports to phenotype and quantify the leukocyte populations infiltrating the larval 143 

attachment sites in composite breeds with different levels of tick resistance. Our aim was to compare 144 

the leukocyte subpopulations infiltrating the area around mouthparts of larvae of R. microplus, and 145 

therefore potentially involved in tick rejection, in resistant and susceptible Santa Gertrudis cattle and 146 

to identify cell phenotypes that might be associated with resistance in this composite breed.    147 

 148 

Materials and methods 149 

 150 

Animals 151 

The trial was conducted with the approval of the University of Queensland Animal Ethics Committee 152 

for Production and Companion animals (Approval number: SVS/864/06/CRC and SVS/872/07/CRC). 153 

Thirty-five Santa Gertrudis heifers aged 12 months, sourced from a tick-free area of Australia and 154 

therefore naïve to R. microplus were used in these trials. All animals had been vaccinated against 155 

Babesia bovis, B. bigemina and Anaplasma marginale, prior to the commencement of the trial, which 156 

took place in animal facilities near Brisbane (Pinjarra Hills, latitude 27.5° and longitude 152.9°), 157 

Queensland, Australia (the infested animals were kept in separate facilities from uninfested control 158 

animals). Thirty cattle were infested weekly for 25 weeks with 10,000 (0.5 g) larvae (see section 159 

below ‘ticks’) of R. microplus  that were applied to the neck and withers (9). The infestations occurred 160 

in two episodes: there were 13 initial, weekly infestations through winter from May through to July 161 

and then, after a one month break, there were 12 further weekly infestations from September through 162 

November. In addition to the artificial infestations, the cattle were exposed to ticks under natural 163 

conditions in the tick-infested pastures. Five cattle were not infested with ticks and were kept in areas 164 

that were ascertained to be free of ticks, and served as tick-free control animals. To prevent infestation 165 
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of the un-infested, control cattle, the infested and control animals were kept in different locations (6 166 

km apart) but under similar conditions. The level of host resistance to R. microplus was measured by 167 

counting the semi-engorged female ticks on day 21 following each larval infestation using the 168 

standard method (8). Six animals that were consistently identified as the most resistant animals during 169 

the trial were classified as ‘Resistant’, six animals consistently identified as being the least resistant 170 

animals during the same time period were classified as ‘Susceptible,’ and the rest were classified as 171 

‘Middle’ (18 animals). The final tick count suggested that on ‘Resistant’ cattle only 1.1% of the 172 

applied ticks matured (high resistant animals according to Utech et al., 1978) while on the 173 

‘susceptible’ animals 12% of the applied ticks matured (very low resistant animals according to Utech 174 

et a., 1978) (9). Because by the end of the study, the count of standard ticks included those arising 175 

from natural infestation, our results would be expected to underestimate the mortality of ticks and 176 

hence underestimate the host resistance of cattle. This was not considered to be a problem with 177 

respect to relative ranking of animals within the trial. Samples from ‘Susceptible’, ‘Resistant’ and 178 

uninfested animals were used in the present paper.  179 

 180 

Ticks 181 

The ticks used in this study were R. microplus of the Non-Resistant Field strain (NRFS) (28) that was 182 

maintained free of Babesia and Anaplasma organisms at the Queensland Department of Agriculture 183 

and Fisheries’ Biosecurity Science Laboratories. Larvae were maintained at 28°C and approximately 184 

95% humidity and applied to animals 7-14 days after hatching. Ticks were applied to the cattle in this 185 

study by carefully shaking over the dorsum of cattle, while cattle were restrained in a crush. 186 

 187 

Collection and processing of skin samples 188 

Tissue samples with tick larvae attached and feeding in the skin were collected from the perineal area 189 

of the cattle within 24 hours after infestation with 10,000 larvae of R. microplus. The cattle were 190 

restrained in a crush and given an epidural injection of 5 mL of lignocaine 20 mg/mL (Troy 191 

Laboratories Pty. Limited, Sydney, Australia) to desensitise the perineum. Skin biopsies were 192 

collected with 8 mm biopsy punches (Paramount Surgimed Ltd., New Delhi, India) and within 10 min 193 
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of collection were placed in Tissue-Tek O.C.T. compound (Sakura Finetechnical Co., Tokyo, Japan.) 194 

that was frozen in isopentane (Labscan Asia Co., Ltd., Bangkok, Thailand) cooled with liquid 195 

nitrogen.  Skin samples were similarly collected and processed from the perineum area of uninfested 196 

cattle.  197 

 198 

Immuno-fluorescence labeling of cells 199 

The phenotypes of the cells present in the skin of the cattle were identified by double immuno-200 

fluorescence labeling using the antibodies shown in table 1. Briefly, 6 µm thick cryosections were 201 

mounted on PolysineTM glass slides (Menzel-GmbH & Co KG, Braunschweig, Germany) and dried 202 

overnight at room temperature (RT) with a fan. Next the sections were fixed in cold ethanol (4 ºC) for 203 

8 min. Following fixation the background staining was blocked with Image-iT FX signal enhancer 204 

(Invitrogen, Carlsbad, California, USA) followed by 10% [v/v] goat serum in 1% [w/v] bovine serum 205 

albumin (BSA, Sigma, St Louis, USA), in phosphate buffered saline (PBS, 137 mM NaCl, 2.7 mM 206 

KCl, 8.1 mM Na2HPO4 and 1.4 mM KH2PO4). The cryosections were further incubated overnight at 4 207 

ºC in a humidified chamber with monoclonal antibodies (100 µL per section) for specific leukocyte 208 

receptors (Table 1) diluted in 1% [w/v] BSA/PBS. IgG1, IgG2a and IgM negative control mouse 209 

monoclonal antibodies (DakoCytomation, Carpinteria, California, USA) in similar concentrations to 210 

the receptor specific antibodies were used as negative controls. The cryosections were washed in PBS 211 

and incubated for 40 min at RT with goat anti-mouse isotype-specific antibodies (100 µL per section) 212 

conjugated with fluorescein isothiocyanate (FITC) or Texas Red (Invitrogen, Carlsbad, California, 213 

USA)  and diluted 1/400 [v/v] in 1% [w/v] BSA/PBS. After washing with PBS the nuclei were stained 214 

with DAPI dilactate (100 µL per section) (Invitrogen, Carlsbad, California, USA) and the slides were 215 

mounted with mounting medium (KPL, Gaithersburg, Maryland, USA). The slides were examined 216 

and photographed using an epifluorescent microscope, Olympus BX 51 (Olympus, Tokyo, Japan), 217 

equipped with a digital camera (Model DP 70, Olympus, Tokyo, Japan). The images to be published 218 

were imported into Microsoft Office Picture Manager and the contrast/brightness adjusted similarly 219 

for all. 220 

 221 
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Enumeration of the cells 222 

Enumeration of the cells was done as previously described (Constantinoiu et al., 2010). Briefly, the 223 

cells were counted in one slide (one tick attachment site) for each animal from the tick-infested 224 

groups. For all cell subpopulations except MHC class II-expressing cells, the labelled cells were 225 

manually counted in an area of 1.05 mm2 (12 adjacent, non-overlapping high power microscopic 226 

fields (40 × objective), three on each side of the tick mouthparts (1 mm from mouthparts in each 227 

direction) and two deep from the epidermis (0.5 mm deep in the skin from the level of superficial 228 

epidermis)) with image analysis software (NIS-Elements Advanced Research, Nikon, Japan). Cells 229 

were counted by a technician blinded to the group of cattle and infestation status of the samples. The 230 

pattern of staining by MHC class II antigen specific antibody did not allow us to count individual cells 231 

as reliably as other cell types because not all cells were well defined and there was some overlapping 232 

of cells. Cells were similarly counted in 12 microscopic fields in the skin of each of the five un-233 

infested cattle. 234 

 235 

Histological staining of the sections 236 

Cryosections cut and dried overnight  as described above were fixed in 10% Neutral Buffered 237 

Formalin (NBF) for 10 minutes at RT, washed three times in distilled water and stained by 238 

Haematoxilin & Eosin (H&E) and Giemsa. The eosinophils infiltrating the areas around the tick 239 

mouthparts were counted as described above. The epidermis and dermis were assessed for cellular, 240 

vascular and structural changes as previously described (16). Each of 15 parameters (Table 4) was 241 

scored on a scale of 0–5 as follows: 0 = within normal limits; 1 = minimal change; 2 = mild change; 3 242 

= moderate change; 4 = severe, focal change; 5 = severe, extensive change. 243 

 244 

Statistical Methods 245 

The counts of cell numbers on the skin were analysed using a generalised linear model (McCullagh 246 

and Nelder 1989) under a Poisson distribution with the logarithm link function, using GenStat (2016). 247 

The dispersion parameter was estimated and adopted for the residual, because the data tended to be 248 
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over-dispersed. Protected pairwise testing was used to test differences between the treatment group 249 

means. The probability level of 0.05 (5%) was used for all significance tests. 250 

 251 

Results 252 

 253 

1) Reactivity of the antibodies with cells from the skin of the cattle 254 

The mAb specific for CD45 antigen (leukocyte common antigen) labeled cells in the skin of only one 255 

animal among the six tick-resistant cattle (17%). However, the same antibody labeled cells in the skin 256 

of three out of the six susceptible cattle (50%). The antibody specific for CD45RO antigen (activated 257 

cells, memory T cells) reacted with cells from the skin of two out of the six tick resistant cattle (33%) 258 

and with cells of five out of the 6 susceptible cattle (83%) (Table 2). For the CD45 and CD45RO 259 

specific mAbs combined, the leukocytes of 67% of the susceptible cattle showed antibody reactivity, 260 

vs. 25% for the resistant cattle. This difference was significant (P = 0.041). These two mAbs were not 261 

probed with sections cut from the skin of naïve cattle and the observations described here included the 262 

two samples that were later excluded because ticks were assessed as having fed for more than 24 h. 263 

No obvious differences regarding the pattern or intensity of staining among the animals in this trial 264 

were observed for any of the other mAbs used in this trial (Table 1).  265 

 266 

2) Populations of the various cell types in the skin of resistant, susceptible and uninfested 267 

cattle 268 

The cells infiltrating an area around tick attachments were counted in 5 resistant animals and 5 269 

susceptible animals only because in two cattle the skin samples collected contained ticks that were 270 

evidently attached and had been feeding in the skin for more than 24 h (Fig. 10). Data showing the 271 

counts of the cell subpopulations in the three groups of cattle are presented in Fig. 1 and example 272 

micrographs are presented in Fig. 2-9. 273 

Both susceptible and resistant cattle had significantly more T cells (CD3+ receptor) (P<0.05) in the 274 

skin, at tick attachment sites than were counted in skin biopsies of the control, uninfested cattle. The 275 

number of T cells around the tick mouthparts was higher in susceptible cattle than in resistant cattle 276 
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but the differences were not significant (P<0.05) (Fig. 1a). The number of γδ T cells and CD4+ cells in 277 

the skin of infested animals (at tick attachment sites) from both groups (susceptible and resistant) of 278 

cattle was higher than in the skin of the cattle from the control group. For both γδ T cells and CD4+ 279 

cells the numbers in susceptible animals were significantly higher (P<0.05) than the number of cells 280 

in resistant and naive animals (Fig. 1b & c). The number of CD8+ cells at tick attachment sites in the 281 

skin of infested cattle from both groups was significantly higher (P<0.05) than in the skin of the 282 

control, uninfested, cattle. The number of CD8+ cells in the skin of susceptible cattle was similar to 283 

that in the skin of resistant cattle (Fig. 1d).  284 

The number of CD25+ cells at tick attachment site was significantly higher (P<0.05) only in infested, 285 

susceptible animals than uninfested controls (Fig. 1e). Extremely few B cells (less than one cell/field) 286 

were counted in the skin of animals from all groups. The number of neutrophils at tick attachment 287 

sites was significantly higher (P<0.05) in the infested animals from both groups than in the naïve 288 

animals, in which they were extremely rare (less than four cells per field and in 75% of fields zero 289 

cells). The number of neutrophils in the skin of susceptible cattle was similar to that in the skin of the 290 

resistant cattle (P>0.05) (Fig. 1f). The number of eosinophils at tick attachment sites in the skin of 291 

infested cattle from both groups (resistant and susceptible) was significantly higher (P<0.05) than in 292 

the skin of naïve animals. The numbers of eosinophils in the skin of resistant animals were similar to 293 

those in the skin of susceptible animals (P<0.05) (Fig. 1g).  294 

MHC class II-expressing cells could not be reliably quantified because the shape of the cells was not 295 

well defined and very often the cells overlapped. Infiltrations with MHC class II-expressing cells were 296 

apparent at the tick attachment sites of susceptible (Fig. 4c) and resistant cattle (Fig. 3c & 6d) and no 297 

obvious differences were observed between susceptible and resistant cattle.  298 

   299 

3) Type of reaction at tick attachment site  300 

The skin reaction at tick attachment sites varied from none (Fig. 2) to small, empty intra-epidermal 301 

vesicles with or without visible infiltrations in the adjacent skin (Fig. 3 & 4) and large epidermal 302 

vesicles filled mainly with neutrophils (Fig. 5) or eosinophils (Fig 6) or both types of cells. In both 303 
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resistant and susceptible animals most of the animals had intra-epidermal vesicles at the tick 304 

attachment site (66% in susceptible cattle and 80% in resistant cattle) but the predominant type of cell 305 

within or around the vesicles was the neutrophil in susceptible animals and the eosinophil in the 306 

resistant animals (Table 3, Fig. 5 and Fig. 6). MHC class II antigen cells consistently infiltrated the 307 

areas around vesicles in both susceptible and resistant cattle but could only be found in extremely 308 

small numbers, if any, within the intra-epidermal vesicles (Fig. 3c, 4c, 5d and 6d). 309 

Neutrophils (Fig. 4b), eosinophils (Fig. 3a) and MHC class II-expressing cells (Fig. 3c and 4c) 310 

infiltrated the areas closest to the tick mouth parts. In resistant animals neutrophils apparently did not 311 

infiltrate or accumulate in the tick feeding areas (Fig. 3b and 6b). In susceptible animals neutrophils 312 

infiltrated all tick attachment sites (Fig. 4b) but one (Fig. 2a). Furthermore, massive infiltrations with 313 

neutrophils that appeared as continuous bands in the dermis were seen in two susceptible cattle (Fig. 314 

7). Tissue lysis around clusters of neutrophils was observed in the epidermis of two susceptible cattle, 315 

suggesting that these cells are involved in the formation of vesicles (Fig. 4b, 8). Infiltrations with 316 

MHCII cells around tick attachment sites or vesicles were seen in most animals from both groups 317 

(Fig. 3c, 4c and 6c). 318 

  319 

4) Degree of inflammatory reaction in the skin 320 

Microscopic comparisons of standard, H&E stained skin biopsies from resistant and susceptible cattle 321 

to R. microplus had similar features (Table 4).  Dermal inflammation, primarily consisting of 322 

neutrophils, eosinophils, mast cells and plasma cells was noted in both groups and in some animals 323 

was extensive and of moderate to marked severity. Intra-epidermal vesicles were noted in both 324 

groups, were of varying size and depth within the epithelium, and the larger lesions more frequently 325 

were open, the attenuated, superficial tissue having torn secondary to mechanical trauma or because 326 

of the nature of the devitalized tissue. The predominant inflammatory cell type within the vesicles was 327 

split between neutrophilic and eosinophilic. Most often both cell types were present.   328 

 329 

Discussion 330 
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The mAbs specific for CD45 and CD45 RO antigens reacted with skin leukocytes from a larger 331 

number of susceptible cattle than resistant cattle but the differences were not significant for either of 332 

the two mAbs individually. However, when the reactivity of the two mAbs was combined the 333 

differences in the reaction of these mAbs with skin leukocytes from susceptible and resistant cattle 334 

were significant (P<0.05). A previous trial using a small number of cattle (three B. taurus and three B. 335 

indicus cattle) found obvious differences in the reactivity of the mAbs specific for CD45 and 336 

CD45RO between B. taurus and B. indicus cattle: both CD45 and CD45RO antibodies reacted with 337 

skin leukocytes from B. taurus but neither antibody reacted with skin leukocytes from B. indicus 338 

cattle (29).Thus, the epitopes recognized by these mAbs are likely to occur on leukocytes with CD45 339 

(protein tyrosine phosphatase, receptor type-C, or PTPRC) alleles inherited from B. taurus cattle 340 

while the absence of the epitopes is likely to occur on cells with PTPRC alleles inherited from B. 341 

indicus cattle. It is conceivable therefore that in composite breeds (Bos indicus × Bos taurus) these 342 

antibodies might be used as markers or indicators of tick susceptibility/resistance. Allelic 343 

polymorphism in PTPRC gene, associated with distinct evolutionary families of cattle has been 344 

described (30). The potential value of CD45 and CD45RO antibodies being useful as markers for tick 345 

susceptibility/resistance requires testing using larger numbers of animals, molecular genotyping, and 346 

possibly more mAbs specific to other epitopes of CD 45/CD45RO antigens.   347 

The cellular reaction at the tick attachment site varied very much, from no reaction (Fig. 2) to large 348 

vesicles with massive cellular infiltrations (Fig. 5). Substantial variation was noted even among larvae 349 

attached at different sites on a single animal. This variation in response shows clearly that the reaction 350 

to the attachment and feeding of ticks is dynamic and changes occur rapidly. The larvae of R. 351 

microplus attempt approximately five attachments in the first 24 hours of their parasitic life (31) and 352 

whether an attachment site is a successful, final attempt or an early, unsuccessful attempt might also 353 

influence the cellular infiltrations that we observed at larval attachment sites. Our sampling method 354 

(dependent on a tick being present and attached) precludes the examination of a site where an attempt 355 

to feed was unsuccessful and the tick had moved to try to feed elsewhere. Development of intra-356 

epidermal vesicles represents a quick (they form within 3-5 hours after larval attachment) and 357 

common host reaction at the larval attachment site  (10, 20, 25) (Figs. 3-6) and it was generally 358 
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associated with development of resistance in both B. indicus and B. taurus cattle as the larvae can no 359 

longer anchor and/or feed in the skin of the host and detach (Fig. 9) (10, 20). Our limited data show 360 

that intra-epidermal vesicles do not develop at the attachment sites of ticks that had successfully 361 

attached in the skin for longer than 24 hours although huge cellular infiltrations are sometimes present 362 

in the skin beneath the attachment (Fig. 10). Previous research revealed higher incidence of epidermal 363 

vesicles in the skin of B. taurus resistant animals than in the skin of B. taurus susceptible cattle (20), 364 

which concurs with our data. However, in the previous study it was found that only eosinophils 365 

infiltrated the epidermis and caused the intra-epidermal vesicles (20). In contrast we have found that 366 

both eosinophils and neutrophils infiltrated the epidermis and in intra-epidermal vesicles there was a 367 

tendency for eosinophils to be the dominant cell type in the resistant animals and neutrophils in the 368 

susceptible animals. Furthermore, our data show that neutrophils are involved in lysis of epidermis 369 

and formation of the intra-epidermal vesicles in susceptible cattle, consistent with  research 370 

undertaken on R. sanguineus in dogs (32). Formation of eosinophilic vesicles occurs more quickly in 371 

resistant B. taurus cattle than in susceptible B. taurus cattle (20) and eosinophils might be more 372 

effective than neutrophils in tick protection. Ingested eosinophils seem to have a deleterious effect on 373 

the gut of ticks (33) but ingested neutrophils seem not to have a damaging effect on ticks as larvae of 374 

R. microplus can feed on them without apparently being affected (25). On the other hand neutrophil-375 

filled intra-epidermal vesicles that prevented larvae from anchoring in the skin were observed in 376 

highly resistant B. indicus cattle (10).  377 

Many elements of the immune response, including dendritic cells, T and B-cells, NK cells, 378 

macrophages, eosinophils, neutrophils, basophils, mast cells, immunoglobulins, cytokines are 379 

involved in the development and expression of resistance to tick infestation (34). However, the 380 

particular elements involved depend on many factors, including the species and breed of the host as 381 

well as tick species and tick lifecycle stage (34, 35).  382 

In infestations with R. microplus the mechanisms of resistance are primarily manifest against larvae 383 

within 24 hours after finding a host and commencement of their parasitic phase (11, 14), which is the 384 

reason why larvae were the target of this study. The local immune response mounted at the larval 385 

attachment site is important in rejection of this lifecycle stage and tick protection (10, 20). Generally, 386 
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high infiltrations with particular leukocyte phenotypes at larval attachment sites were associated with 387 

development of an adaptive immune response and likely protection (10, 20, 25). In the present trial, 388 

for all the leukocyte phenotypes investigated, more cells were counted at larval attachment sites in 389 

infested animals from both groups of cattle than in the skin of control animals (Fig. 1), which is 390 

equally consistent with the development of an adaptive immune response and a pathological, non-391 

protective response. However, except for eosinophils, there was a tendency for more cells from all the 392 

cell phenotypes investigated (CD3+, γδ T cells, CD4+, CD8+, CD25+ cells and neutrophils) to be 393 

higher at larval attachment sites in susceptible cattle. This suggested that most of the cellular 394 

responses represent pathology rather than effective defense. Furthermore, while the apparent 395 

differences between naïve and susceptible cattle were significant (P<0.05) for all phenotypes 396 

investigated, the differences between naïve and resistant cattle were not significant (P>0.05) for γδ T 397 

cells, CD4+ cells and CD25+ cells. This contrasts with our previous study, in which resistant cattle (B. 398 

indicus) concentrated more CD3+, CD4+, CD8+ cells and neutrophils and significantly more γδ T cells 399 

and CD25+ at the larval attachment site than the low/moderate resistant cattle (B. taurus) (25). As a 400 

result, it was suggested that γδ T cells and CD25+ were important in cattle tick protection, CD25+ cells 401 

possibly through regulation of the intensity of the local effector responses and  γδ T-cells through 402 

their role in integrating the innate and adaptive immune responses and wound healing (36-38). CD4+ 403 

cells might be important for tick resistance, through their role in polarization of the immune response 404 

to a Th2 profile and regulation of the intensity of cell infiltrations, especially neutrophils and 405 

eosinophils, in the skin at tick attachment sites via the cytokines they secrete (39). The differences in 406 

(the size of) cellular infiltrations at larval attachment site between resistant and susceptible cattle are 407 

supported by the counts of peripheral CD3+, CD4+, CD8+, CD25+ and γδ T cells in the same animals: 408 

the numbers of cells from these phenotypes were similar or slightly higher in susceptible animals (9).  409 

In the current trial only the eosinophils were found in higher numbers at larval attachment sites in 410 

resistant cattle but the differences between resistant and susceptible cattle were not significant. In a 411 

previous trial, eosinophils infiltrated the larval attachment sites earliest after larvae successfully 412 

attached to  the skin of the host and they were more numerous in B. taurus than in B. indicus cattle 413 
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and in follow-up infestations compared with primary infestations (27). Furthermore, in B. taurus 414 

cattle the level of resistance to tick infestation correlated with eosinophil concentration and 415 

degranulation at larval attachment sites (20, 23). In our trial the number of eosinophils at larval 416 

attachment sites tended to be higher in resistant animals than in susceptible animals but it was not 417 

significantly higher. The difference between the results of Schleger et al (1976) and our results might 418 

be explained by the differences in the size of the area over which the eosinophils were counted at 419 

larval attachment sites, being smaller and located immediately under the larval mouthparts in study of 420 

Schleger et al (1976) versus larger and located around the tick mouthparts in our trial, the time of 421 

collection of skin samples (3 h post infestation in study of Schleger et al (1976 and 24 h post 422 

infestation in the present trial) and the genetic composition of the cattle (B. taurus in study of 423 

Schleger et al (1976) and a composite breed,  Santa Gertrudis: 5/8 B. taurus and 3/8 B. indicus, in the 424 

present trial). Taken together these results provide some support for the view that in B. taurus cattle 425 

eosinophil concentration at larval attachment sites is associated with larval rejection (20, 23). 426 

Tick saliva has proven immunomodulatory effects and can cause local immunosupression that helps 427 

the tick survive and feed on the host (39, 40). Salivary extracts from females of Dermacentor 428 

andersoni and Ixodes scapularis downregulated the expression of the adhesion molecules ICAM-1, 429 

VCAM-1 and P-selectin on the endothelial cells that is likely to interfere with leukocyte extravasation 430 

from the blood vessels and their migration to the tick attachment site (41). R. microplus can also 431 

modulate the expression of adhesion molecules (ICAM-1, VCAM-1, P-selectin and E-selectin) at 432 

adult tick attachment site but the effect at larval attachment site was not described (42). The immuno-433 

suppressive effects of saliva of R. microplus on certain components of the immune response are more 434 

intense in susceptible breeds of cattle than in resistant ones (42). The susceptible cattle in the present 435 

trial concentrated more leukocytes at the larval attachment site than the resistant cattle and two of 436 

them had huge infiltrations with neutrophils that formed continuous bands in the skin. This suggests 437 

that recruitment of leukocytes to the larval attachment site is not impaired in susceptible cattle any 438 

more than in the resistant cattle. This concurs with Piper et al (2009), who found that expression of 439 

genes coding for cytokines and complement factors with chemotactic properties (CXCL-8, CXCL-2, 440 

CXCL-5, CCL-2, CCL-8 and regakine-1) at the larval attachments sites was higher in tick-susceptible 441 
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cattle. The differences in the amount and composition of saliva secreted by larvae within 24 hours of 442 

their parasitic life and female ticks might explain the differences between research of Carvalho et al 443 

(2010) and the results of Piper et al (2009) and those of the present trial (43). This suggests that larvae 444 

might lack the protection afforded by the immunosuppressive effects of saliva to adult female ticks 445 

and are more susceptible to host rejection. 446 

B. indicus cattle have a long evolutionary association with R. microplus and it was suggested that this 447 

has resulted in an adaptive tolerance manifested by reduced inflammatory cellular reaction at tick 448 

attachment site (16, 27), which might explain the low cellular infiltrations in resistant animals in the 449 

present trial. This is consistent with our hypothesis that some of the results from the earlier study 450 

would have been a consequence of indicine v taurine difference, independent of the protective 451 

immune response mounted to tick infestation. It also suggests that R. microplus larvae do not impair 452 

the recruitment of cells to larval attachment sites but they affect the responsiveness and the 453 

polarization of the immune response towards a Th1 or Th2 response (39). Alternatively, the timing of 454 

sample collection (seven infestations carried out over two months in Constantinoiu et al. (2010) vs 455 

twenty-five artificial infestations carried out over more than seven months in the present trial) and the 456 

obviously higher antigenic stimulation of the susceptible animals than that of resistant cattle 457 

(generally 6 times more ticks matured on the body of susceptible cattle) might have affected the 458 

magnitude and composition of cellular infiltrations in the skin of the cattle in general and at the larval 459 

attachment site in particular. 460 

 461 
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Table 1 Monoclonal antibodies used to characterize cells infiltrating the skin areas around tick mouthparts 599 

Monoclonal 

antibody 

designation 

Source Antigen 

specificity 

Isotype Cellular 

expression 

Dilution 

used 

Reference 

CACTB51A VMRD CD45 IgG2a Leukocytes 1/800 (44, 45) 

Il-A116 VMRD CD45RO IgG3 Activated 

cells 

1/400 (46) 

MM1A VMRD CD3 IgG1 T cells 1/800 (47) 

CH138 VMRD Neutrophils IgM Neutrophils 1/400 (29, 45, 48) 

MCA837G AbD 

Serotec 

CD8 IgG2a T cytotoxic 

cells 

1/50 (49, 50) 

HM57 DakoCyto

mation 

CD79ά IgG1 B cells 1/100 (51) 

IL-A29a  ILRIb γδ form of IgG1 γδ T cells 1/25 (52) 
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 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

a Monoclonal antibodies from tissue culture supernatant 614 

b International Livestock Research Institute, Nairobi, Kenya 615 

 616 

 617 

the T cell 

receptor 

IL-A21a ILRIb MHC class 

II antigen 

IgG2a Macrophages

, dendritic 

cells, B cells, 

activated T 

cells 

1/200 (53) 

IL-A12a ILRIb CD4 IgG2a T helper cells 1/25 (54) 

IL-A111a ILRIb CD25 IgG1 Activated 

cells (IL2-R 

bearing cells) 

1/25 (55) 

Page 22 of 66Parasite Immunology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



23 
 

Table 2 The reactivity of the antibodies specific for CD45 and CD45RO epitopes with the skin leukocytes of cattle with different levels of tick 618 

resistance 619 

 620 

 621 

Cow tag CD45 CD45RO 

B907-S + + 

B797-S + + 

B639-S + + 

B629-S - + 

B615-S - + 

B607-S - - 

B809-R + + 

B825-R - - 

B821-R - - 

B783-R - - 

B679-R - - 

B501-R - +/- 

  622 
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Table 3 Type of reaction at tick attachment site in susceptible and resistant cattle 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

Type of reaction at tick attachment site Susceptible cattle (6 tick attachments) Resistant cattle (5 tick attachments) 

Absence of any cell infiltration/reaction  1  1  

Cellular infiltrations  1 (eosinophils, neutrophils & MHC class 

II antigen cells)  

0 

Empty intra-epidermal vesicle  with no 

visible/obvious infiltrations around 

vesicle 

0  1  

Empty intra-epidermal vesicle  with 

cellular infiltrations around vesicle 

2 (neutrophils & MHC class II antigen 

cells adjacent to the vesicle)  

2 (eosinophils & MHC class II antigen 

cells adjacent to the vesicle)  

 

Intra-epidermal vesicles filled with cells 1 (neutrophils within vesicle and 

neutrophils and MHC class II antigen 

cells adjacent to the vesicle) 

1 (neutrophils and eosinophils within 

vesicle)  

1 (eosinophils within vesicles and 

eosinophils and MHC class II antigen 

cells adjacent to the vesicle)  
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Table 4 Inflammatory reaction in the skin of the cattle: parameters assessed in the epidermis and dermis and their scores  641 
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Type Naive Susceptible Resistant 

Cow tag B407 B605 B573  B507  B857  B629 B639 B797 B615 B607 B821 B679 B783 B825 B501 

Epidermis                

Acanthosis 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Apoptosis/necrosis 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

Acantholysis 0 0 0 0 0 0 0 0 2 2 0 1 3 2 2 

Micro-abscess 2 0 0 0 0 2 2 2 2 1 0 2 3 2 2 

Subepidermal clefting 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

Transepithelial leukocyte migration 2 0 0 0 0 2 3 1 2 2 0 2 3 2 2 

Hyperkeratosis - ortho 0 0 0 0 0 2 2 1 1 1 0 1 0 1 1 

Hyperkeratosis - para 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dermis                

Oedema 0 0 0 0 0 1 2 1 1 2 1 2 2 2 2 

Collagen degeneration 0 0 0 0 0 2 2 1 1 1 1 2 2 2 2 

Vascular rexn/vasculitis 0 0 0 0 0 1 1 1 1 2 1 1 2 1 1 

Transendothelial leukocyte migration 0 0 0 0 0 3 2 1 1 2 1 1 2 1 1 

PMN/Eosinophil infiltrate 1 0 0 1 0 3 2 2 2 2 1 2 3 2 2 

Mononuclear cell infiltrate 0 0 0 0 0 3 2 2 1 2 1 1 3 1 1 
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 642 

  643 

 644 

Mast cell infiltrate 0 0 0 0 0 2 2 1 1 2 1 1 2 1 1 

Total 5 0 0 1 0 23 22 13 16 19 7 16 25 17 17 

Page 27 of 66 Parasite Immunology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



28 
 

Figure legends 645 

 646 

Fig. 1 Comparative counts of immune cells at the tick attachment areas in susceptible and resistant 647 

cattle. Fig. 1a: T cells, Fig. 1b: γδ T cells, Fig. 1c: CD4+ cells, Fig. 1d: CD8+ cells, Fig. 1e: CD25+ 648 

cells, Fig. 1f: neutrophils and Fig. 1g: eosinophils. Means of cells per field for each group of animals 649 

and standard error bars are shown. Different letters show significant differences (P < 0.05). 650 

 651 

Fig. 2. Lack of cellular reaction at larval attachment site in the skin of a susceptible cow. Fig. 2a: 652 

H&E staining, Fig. 2b: neutrophils (green), γδ T cells (red) and cell nuclei (blue), Fig. 2c: T cells 653 

(green), MHC class II antigen cells (red) and cell nuclei (blue) (E: epidermis; D: dermis; TM: tick 654 

mouthparts). 655 

 656 

Fig. 3 Empty intra-epidermal vesicle with adjacent eosinophil infiltrations in a resistant cow. Fig. 3a: 657 

H&E staining, Fig. 3b: neutrophils (green), γδ T cells (red) and cell nuclei (blue), Fig. 3c: T cells 658 

(green), MHC class II antigen cells (red) and cell nuclei (blue) (E: epidermis; D: dermis; V: vesicle). 659 

 660 

Fig. 4 Empty intra-epidermal vesicle with neutrophil infiltrations at tick attachment site in a 661 

susceptible cow. Fig. 4a: H&E staining, Fig. 4b: neutrophils (green), γδ T cells (red) and cell nuclei 662 

(blue), Fig. 4c: T cells (green), MHC class II antigen cells (red) and cell nuclei (blue) (E: epidermis; 663 

D: dermis; V: vesicle; TM: tick mouthparts). 664 

 665 

Fig. 5 Intra-epidermal vesicle filled mostly with neutrophils at the tick attachment site in a 666 

susceptible cow. Fig. 5a: H&E staining, Fig. 5b: neutrophils (green), γδ T cells (red) and cell nuclei 667 

(blue), Fig. 5c: T cells (green), MHC class II antigen cells (red) and cell nuclei (blue) (E: epidermis; 668 

D: dermis; V: vesicle; TC: tick cement). 669 

 670 
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Fig. 6 Intra-epidermal vesicle filled mostly with eosinophils at the tick attachment site in a resistant 671 

cow. Fig. 6a: H&E staining, Fig. 6b: neutrophils (green), γδ T cells (red) and cell nuclei (blue), Fig. 672 

6c: T cells (green), MHC class II antigen cells (red) and cell nuclei (blue) (E: epidermis; D: dermis; 673 

V: vesicle). 674 

 675 

Fig. 7 Infiltrations with neutrophils (green) forming a continuous band in the skin of a susceptible 676 

cow (E: epidermis; D: dermis). 677 

 678 

Fig. 8 Tissue lysis around clusters of neutrophils in the skin of a susceptible cow. Differential 679 

interference contrast (DIC) showing the areas of intra-epidermal lysis, neutrophils (green), γδ T cells 680 

(red) and cell nuclei (blue) (E: epidermis; D: dermis; FV: forming vesicle). 681 

 682 

Fig. 9 Tick fixed in a piece of superficial epidermis that detached from the skin. Fig. 9a: Tick and 683 

the superficial epidermis away from the skin spot the tick was fixed (H&E staining), Fig. 9b: The 684 

place of skin the tick was initially fixed and the skin damage (H&E staining), Fig. 9c: Tick and the 685 

superficial epidermis away from the skin spot the tick was fixed: T cells (green), MHC class II 686 

antigen cells (red) and cell nuclei (blue), Fig. 9d: The place of skin the tick was initially fixed: 687 

neutrophils (green), γδ T cells (red) and cell nuclei (blue). (E: epidermis; D: dermis; V: vesicle). 688 

 689 

Fig. 10 Massive cellular infiltrations at the tick attachment site of a tick fixed in the skin for more 690 

than 24 hours. Fig. 10a: H&E staining, Fig. 10b: neutrophils (green), γδ T cells (red) and cell nuclei 691 

(blue), Fig. 10c: T cells (green), MHC class II antigen cells (red) and cell nuclei (blue) (E: 692 

epidermis; D: dermis; TC: Tick cement; TM: tick mouthparts). 693 

 694 
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Table 1 Monoclonal antibodies used to characterize cells infiltrating the skin areas around tick mouthparts 

Monoclonal 

antibody 

designation 

Source Antigen 

specificity 

Isotype Cellular 

expression 

Dilution 

used 

Reference 

CACTB51A VMRD CD45 IgG2a Leukocytes 1/800 (45, 46) 

Il-A116 VMRD CD45RO IgG3 Activated 

cells 

1/400 (47) 

MM1A VMRD CD3 IgG1 T cells 1/800 (48) 

CH138 VMRD Neutrophils IgM Neutrophils 1/400 (29, 46, 49) 

MCA837G AbD 

Serotec 

CD8 IgG2a T cytotoxic 

cells 

1/50 (50, 51) 

HM57 DakoCyto

mation 

CD79ά IgG1 B cells 1/100 (52) 

IL-A29
a
  ILRI

b
 γδ form of 

the T cell 

receptor 

IgG1 γδ T cells 1/25 (53) 

IL-A21
a
 ILRI

b
 MHC class IgG2a Macrophages 1/200 (54) 
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a
 Monoclonal antibodies from tissue culture supernatant 

b International Livestock Research Institute, Nairobi, Kenya 

 

II antigen , dendritic 

cells, B cells, 

activated T 

cells 

IL-A12
a
 ILRI

b
 CD4 IgG2a T helper cells 1/25 (55) 

IL-A111
a
 ILRI

b
 CD25 IgG1 Activated 

cells (IL2-R 

bearing cells) 

1/25 (56) 
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Table 2 The reactivity of the antibodies specific for CD45 and CD45RO epitopes with the skin 

leukocytes of cattle with different levels of tick resistance 

 

Cow tag CD45 CD45RO 

B907-S + + 

B797-S + + 

B639-S + + 

B629-S - + 

B615-S - + 

B607-S - - 

B809-R + + 

B825-R - - 

B821-R - - 

B783-R - - 

B679-R - - 

B501-R - +/- 
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Table 3 Type of reaction at tick attachment site in susceptible and resistant cattle 

 
Type of reaction at tick attachment site Susceptible cattle (6 tick attachments) Resistant cattle (5 tick attachments) 

Absence of any cell infiltration/reaction  1  1  

Cellular infiltrations  1 (eosinophils, neutrophils & MHC class 

II antigen cells)  

0 

Empty intra-epidermal vesicle  with no 

visible/obvious infiltrations around 

vesicle 

0  1  

Empty intra-epidermal vesicle  with 

cellular infiltrations around vesicle 

2 (neutrophils & MHC class II antigen 

cells adjacent to the vesicle)  

2 (eosinophils & MHC class II antigen 

cells adjacent to the vesicle)  

 

Intra-epidermal vesicles filled with cells 1 (neutrophils within vesicle and 

neutrophils and MHC class II antigen 

cells adjacent to the vesicle) 

1 (neutrophils and eosinophils within 

vesicle)  

1 (eosinophils within vesicles and 

eosinophils and MHC class II antigen 

cells adjacent to the vesicle)  
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Table 4 Inflammatory reaction in the skin of the cattle: parameters assessed in the epidermis and dermis and their scores 

Type Naive Susceptible Resistant 

Cow tag B407 B605 B573  B507  B857  B629 B639 B797 B615 B607 B821 B679 B783 B825 B501 

Epidermis                

Acanthosis 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Apoptosis/necrosis 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

Acantholysis 0 0 0 0 0 0 0 0 2 2 0 1 3 2 2 

Micro-abscess 2 0 0 0 0 2 2 2 2 1 0 2 3 2 2 

Subepidermal clefting 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

Transepithelial leukocyte migration 2 0 0 0 0 2 3 1 2 2 0 2 3 2 2 

Hyperkeratosis - ortho 0 0 0 0 0 2 2 1 1 1 0 1 0 1 1 

Hyperkeratosis - para 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dermis                

Oedema 0 0 0 0 0 1 2 1 1 2 1 2 2 2 2 

Collagen degeneration 0 0 0 0 0 2 2 1 1 1 1 2 2 2 2 

Vascular rexn/vasculitis 0 0 0 0 0 1 1 1 1 2 1 1 2 1 1 

Transendothelial leukocyte migration 0 0 0 0 0 3 2 1 1 2 1 1 2 1 1 

PMN/Eosinophil infiltrate 1 0 0 1 0 3 2 2 2 2 1 2 3 2 2 
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Mononuclear cell infiltrate 0 0 0 0 0 3 2 2 1 2 1 1 3 1 1 

Mast cell infiltrate 0 0 0 0 0 2 2 1 1 2 1 1 2 1 1 

Total 5 0 0 1 0 23 22 13 16 19 7 16 25 17 17 

Page 66 of 66Parasite Immunology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


