

Constantinoiu, C., Lew-Tabor, A., Jackson, L., Jorgensen, W., Piper, E., Mayer, D., Johnson, L., Venus, B. and Jonsson, N. (2018) Local immune response to larvae of Rhipicephalus microplus in Santa Gertrudis cattle. *Parasite Immunology*, 40(4), e12515.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

Constantinoiu, C., Lew-Tabor, A., Jackson, L., Jorgensen, W., Piper, E., Mayer, D., Johnson, L., Venus, B. and Jonsson, N. (2018) Local immune response to larvae of Rhipicephalus microplus in Santa Gertrudis cattle. *Parasite Immunology*, 40(4), e12515. (doi:<u>10.1111/pim.12515</u>)

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

http://eprints.gla.ac.uk/153575/

Deposited on: 14 December 2017

Parasite Immunology

Local immune response against larvae of Rhipicephalus microplus

Journal:	Parasite Immunology
Manuscript ID	PIM-2017-0109.R1
Manuscript Type:	Original Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Constantinoiu, Constantin; James Cook University, School of Veterinary and Biomedical Sciences Lew-Tabor, Alicja; The University of Queensland, QAAFI Jackson, Louise; Queensland Department of Agriculture and Fisheries, Biosecurity Science Laboratories Jorgensen, Wayne; Queensland Department of Agriculture and Fisheries, Agriculture and Fisheries Piper, Emily; Zoetis Genetics, Genetics Mayer, David; Queensland Department of Agriculture and Fisheries, Agriculture and Fisheries Johnson, Linda; University of Colorado Hospital, Cancer center Venus, Bronwyn; University of Queensland, Queensland Alliance for Agriculture & Food Innovation Jonsson, Nicholas; University of Glasgow, College of Medical, Veterinary and Life Sciences
Key Words:	Cell mediated immunity < Immunological terms, IFAT < Tools and techniques

SCHOLARONE[™] Manuscripts

2 3	1	Local immune response against larvae of the cattle tick (Rhipicephalus (Boophilus) microplus) in		
4 5	2	Santa Gertrudis cattle with low and high levels of tick resistance		
6	3			
7 8	3			
9	4			
10 11	5	Immune response against Rhipicephalus microplus		
12 13	6			
14				
15 16	7			
17	8	Constantinoiu, Constantin ^{1,2,3} *, Lew-Tabor, Ala ^{1,2,4} , Jackson, Louise ^{1,2} , Jorgensen, Wayne ^{1,2,3} , Piper,		
18 19	9	Emily ^{1,3} , Mayer, David ² , Johnson, Linda ⁵ , Venus, Bronwyn. ^{2,3} , Jonsson, Nicholas ^{1,3}		
20 21	10			
22				
23 24	11			
25	12	¹ Cooperative Research Centre for Beef Genetic Technologies, Armidale, Australia, 2351		
26 27	13	² Department of Primary Industries and Fisheries, GPO Box 46, Brisbane, Queensland, Australia,		
28 29	14	4001		
30 31	15	³ The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia, 4343		
32 33	16	⁴ Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia, 6150		
34 35	17	⁵ James Cook University, College of Public Health, Biomedical and Veterinary Sciences, 1 Solander		
36 37	18	Drive, Townsville, Queensland, Australia, 4811		
38 39	19			
40 41	20	* Corresponding author.		
42 43	21			
44 45	22	Present address		
46 47	23	Constantinoiu, Constantin: College of Public Health, Biomedical and Veterinary Sciences, James		
48 49	24	Cook University, 1 Solander Drive, Townsville, Queensland, Australia, 4811		
50 51	25	Lew-Tabor, Ala: Queensland Alliance for Agriculture & Food Innovation, The University of		
52 53	26	Queensland, 306 Carmody Rd., Blg 80, St. Lucia, Queensland, Australia 4067		
54 55	27	Jackson, Louise: Queensland Department of Agriculture and Fisheries, Biosecurity Sciences		
56 57	28	Laboratory, Coopers Plains, Queensland, Australia 4108		
58 59 60		1		

29	Jorgensen, Wayne: Queensland Department of Agriculture and Fisheries, Ecosciences Precinct
30	2.A.West, 41 Boggo Road, Dutton Park, Queensland, Australia 4102
31	Piper, Emily: Zoetis Inc., 333 Portage St, Kalamazoo MI 49007, USA
32	Mayer, David: Queensland Department of Agriculture and Fisheries, Ecosciences Precinct 2.A.West,
33	41 Boggo Road, Dutton Park, Queensland, Australia 4102
34	Johnson, Linda: University of Colorado, Anschutz Medical Campus, Mail Stop 8104; 12800 E. 19th
35	Ave, Room 5114, Aurora, CO 80045 USA
36	Venus, Bronwyn: Queensland Alliance for Agriculture & Food Innovation, The University of
37	Queensland, 306 Carmody Rd., Blg 80, St. Lucia, Queensland, Australia 4067
38	Jonsson, Nicholas: The University of Glasgow, Institute of Biodiversity, Animal Health and
39	Comparative Medicine, Glasgow, Scotland, UK.
40	
41	Disclosures: none
42	
43	
44	Acknowledgments
45	
46	Thanks to Tom Connolly and Matt Verri for assistance with animal trials, to Ralph Stutchbury for the
47	provision of ticks, to Laercio Porto for carrying out the biopsies, special thanks to John Molloy
48	for review of the manuscript and Mohamed Amigh for staining the sections by H&E and Giemsa.
49	This work was funded by Cooperative Research Centres (CRC) for Beef Genetic Technologies,
50	Australia.
51	
52	
53	
54	
55	
56	
	2

3	57	Local immune response against larvae of the cattle tick (Rhipicephalus (Boophilus) microplus) in		
5	58	Santa Gertrudis cattle with low and high levels of tick resistance		
6 7	59			
8 9 10	60	Abstract		
11 12	61			
13 14	62	Aims		
15	63	This study investigated the local immune response at larval attachment sites in Santa Gertrudis cattle		
16 17	64	with low and high levels of tick resistance.		
18 19 20	65	Methods and results		
20 21	66	Skin samples with tick larvae attached were collected from Santa Gertrudis cattle at the end of a		
22 23	67	period of 25 weekly infestations, when the animals manifested highly divergent tick-resistant		
24 25	68	phenotypes. There was a tendency for more $CD3^+$, $CD4^+$, $CD8^+$, $CD25^+$, $\gamma\delta$ T-cells and neutrophils to		
26 27	69	concentrate at larval tick attachment site in susceptible cattle than in resistant cattle but the differences		
28 29	70	were significant only for $\gamma\delta$ T-cells and CD4 ⁺ cells. Most of the cattle developed intra-epidermal		
30 31 32	71	vesicles at the larval attachment site but the predominant cell within or around the vesicles was the		
33 34	72	neutrophil in susceptible animals and eosinophil in the resistant animals. The monoclonal antibodies		
35 36	73	(mAbs) specific for CD45 and CD45 RO antigens reacted with skin leukocytes from a higher number		
37 38	74	of susceptible cattle than resistant cattle.		
39 40	75	Conclusion		
41	76	Our data suggest that some of the cellular responses mounted at larval attachment site are not		
42 43	77	involved in tick protection. The mAbs specific for CD45 and CD45 RO directly, or a test for CD45		
44 45	78	genotype might be developed as markers of tick susceptibility or resistance.		
46 47	79			
48 49	80	Key Words: Rhipicephalus microplus; immune response; cattle; Santa Gertrudis; immuno-		
50 51	81	fluorescence; leukocytes; skin;		
52 53	82			
54 55 56 57 58	83			
59		3		

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
зо 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
59 60	

1 2

84 Introduction

85 Cattle tick, Rhipicephalus (Boophilus) microplus is a species complex which currently includes 86 several geographic clades including R. microplus in the Australasian region (1, 2). Although the 87 Australasian *R. microplus* clade is now known as the subspecies *R. australis*, the remainder of this 88 article will refer to it as R. microplus or 'cattle tick'. R.microplus is an economically important tick 89 for the cattle industry worldwide causing in the vicinity of \$US22-30b in losses per annum (3). In 90 addition to the direct effects of feeding on blood, hypersensitivity reactions and damage to the hide, R. 91 microplus is vector for significant pathogens including Babesia spp and Anaplasma spp. Infestations 92 with this tick have been commonly controlled through frequent application of chemical acaricides and 93 management (4). Widespread development of acaricide resistance, public concern with worker, 94 environmental and food safety and the increasing costs associated with discovery of new acaricides 95 stimulated interest in alternative methods to control R. microplus, including vaccination (5, 6). A 96 thorough understanding of the molecular mechanisms underlying the tick-host relationship and the 97 protective immune response mounted by the host will help design effective vaccines against the R. 98 microplus species group. 99 Bos indicus breeds are less susceptible to infestation with R. microplus than B. taurus breeds and 100 develop a more effective resistance (7, 8). However, cattle from both species manifest considerable 101 variation in resistance to *R. microplus* (8). In Australia, increasing pressure from domestic and 102 overseas consumer markets is driving producers to introduce more *B. taurus* genetic content into their 103 herds due to the European breeds' superior productivity and meat quality (9). Composite breed 104 animals such as the Santa Gertrudis (5/8 B. taurus and 3/8 B. indicus), present an attractive alternative 105 to pure *B. indicus* cattle in tick-endemic regions of northern Australia due to their blend of good meat 106 quality and reproductive traits, together with the ability to acquire high levels of tick-resistance (8). 107 The resistance to *R. microplus* is heritable but the mechanisms of resistance in both *B. indicus* and *B.* 108 *taurus* cattle are not well understood despite intensive research (10). Resistant cattle impair the ability 109 of ticks to attach and feed, resulting in a reduction of the proportion of female ticks that mature, a 110 reduction in the weight of the engorged females and the number and the viability of the eggs laid by 111 female ticks (11-13). Resistance to infestation is directed against all tick stages but it is manifested

Page 5 of 66

1

Parasite Immunology

2	
3	
1	
- -	
ر	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	
22	
23	
24	
25	
26	
20	
26 27 28 29	
28	
29	
30	
31	
32	
33	
32 33 34	
24	
35	
36 37 38	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

112	primarily against the larval stage in the first 24 h of their parasitic life. In both <i>B. indicus</i> and <i>B.</i>
113	taurus cattle with high levels of resistance, up to 90% of the larvae are lost within 24 h after
114	infestation (11, 14).
115	The mechanisms of protection and possible explanations for the differences in resistance to tick
116	infestation between B. indicus and B. taurus include variation in the structure and physiology of the
117	skin (15, 16), the density of arteriovenous anastomoses at the skin surface (17), histamine
118	concentrations at the larval attachment site (18), self-grooming stimulated by and directed to larval
119	stages (12), and histological features of the tongue (19). However, the immune response plays an
120	important role in protection (10, 20). In cattle with natural infestations the contribution to host
121	resistance of circulating IgG and IgM specific to tick <u>antigens (Ag)</u> is debatable (9, 21) but there is
122	evidence that the cellular immune response is essential for tick resistance (10, 20, 22, 23). Resistance
123	in B. taurus cattle was associated with a Type I hypersensitivity reaction to larval allergens and it was
124	correlated with eosinophil concentration and degree of degranulation, mast cell disruption and number
125	of intra-epidermal vesicles at the larval attachment site (20, 23, 24).
126	There are differences in the local immune response mounted against larvae of <i>R. microplus</i> by <i>B</i> .
127	taurus and B. indicus cattle (7, 25-27). In the early stages of the infestation, infiltrations with
128	neutrophils predominate at larval attachment sites in <i>B. taurus</i> cattle, whereas infiltrations with T-cells
129	predominate at larval attachment sites in <i>B. indicus</i> cattle (7, 25). Under similar experimental
130	conditions more CD25 ⁺ , $\gamma\delta$ T-cells concentrated at the larval attachment sites in <i>B. indicus</i> cattle that
131	developed high resistance to tick infestations than in <i>B. taurus</i> cattle that developed only low or
132	moderate tick resistance, which suggested a protective role for these two cell phenotypes (25). There
133	was a tendency for the density of $CD3^+$, $CD4^+$, $CD8^+$, cells to be higher in <i>B</i> . <i>indicus</i> cattle than in <i>B</i> .
134	taurus cattle. Later in the infestation, massive infiltrations with neutrophils and development of intra-
135	epidermal vesicles filled with neutrophils at larval attachment sites in B. indicus cattle, together with
136	massive infiltrations of T cells, suggested a role for neutrophils in tick rejection, apparently in contrast
137	with the early response to infestation, in which neutrophils were prominent at the attachment sites in
138	susceptible cattle (10).

Parasite Immunology

1		
2 3	139	The research on immune response mounted by composite breeds (Santa Gertrudis) against R.
4 5	140	microplus is scarce. In Santa Gertrudis cattle infested with R. microplus there was no association of
6 7	141	any peripheral blood leukocyte phenotype (CD3 ⁺ , CD4 ⁺ , CD8 ⁺ , CD14 ⁺ , CD25 ⁺ , γδ T-cells, MHC
8 9	142	class II antigen cells and WC3 cells) with resistance or susceptibility to tick infestation (9). As such
10 11	143	there are no reports to phenotype and quantify the leukocyte populations infiltrating the larval
12 13	144	attachment sites in composite breeds with different levels of tick resistance. Our aim was to compare
14 15	145	the leukocyte subpopulations infiltrating the area around mouthparts of larvae of R. microplus, and
16 17	146	therefore potentially involved in tick rejection, in resistant and susceptible Santa Gertrudis cattle and
18 19	147	to identify cell phenotypes that might be associated with resistance in this composite breed.
20 21	148	
22 23	149	Materials and methods
24 25	150	
26 27	151	Animals
28 29	152	The trial was conducted with the approval of the University of Queensland Animal Ethics Committee
30 31	153	for Production and Companion animals (Approval number: SVS/864/06/CRC and SVS/872/07/CRC).
32 33	154	Thirty-five Santa Gertrudis heifers aged 12 months, sourced from a tick-free area of Australia and
34 35	155	therefore naïve to R. microplus were used in these trials. All animals had been vaccinated against
36 37	156	Babesia bovis, B. bigemina and Anaplasma marginale, prior to the commencement of the trial, which
38 39	157	took place in animal facilities near Brisbane (Pinjarra Hills, latitude 27.5° and longitude 152.9°),
40 41	158	Queensland, Australia (the infested animals were kept in separate facilities from uninfested control
42 43	159	animals). Thirty cattle were infested weekly for 25 weeks with 10,000 (0.5 g) larvae (see section
44 45	160	below 'ticks') of <i>R. microplus</i> that were applied to the neck and withers (9). The infestations occurred
46 47	161	in two episodes: there were 13 initial, weekly infestations through winter from May through to July
48 49	162	and then, after a one month break, there were 12 further weekly infestations from September through
50 51	163	November. In addition to the artificial infestations, the cattle were exposed to ticks under natural
52 53	164	conditions in the tick-infested pastures. Five cattle were not infested with ticks and were kept in areas
54 55	165	that were ascertained to be free of ticks, and served as tick-free control animals. To prevent infestation
56 57		
58		

Parasite Immunology

2	
3	
4	
5	
6	
_	
8	
9	
10	
11	
12	,
13	
14	
15	
16	;
17	,
18	
19	
נו הר	,
20 21)
21	
22	2
23	
24	Ļ
25	
26	
27	
28	
29)
30)
31	
32	,
33	
34	
35	;
36	,
37	
38	
40	
41	
42	2
43	
44	Ļ
45	
46	
	,
47	
48	
49	
50)
51	
52	,
ッ2 Γ ~	
53	
54	ł
55	;
56	;
57	,
58	2
59	, ,
55	
- n	

166	of the un-infested, control cattle, the infested and control animals were kept in different locations (6
167	km apart) but under similar conditions. The level of host resistance to R. microplus was measured by
168	counting the semi-engorged female ticks on day 21 following each larval infestation using the
169	standard method (8). Six animals that were consistently identified as the most resistant animals during
170	the trial were classified as 'Resistant', six animals consistently identified as being the least resistant
171	animals during the same time period were classified as 'Susceptible,' and the rest were classified as
172	'Middle' (18 animals). The final tick count suggested that on 'Resistant' cattle only 1.1% of the
173	applied ticks matured (high resistant animals according to Utech et al., 1978) while on the
174	'susceptible' animals 12% of the applied ticks matured (very low resistant animals according to Utech
175	et a., 1978) (9). Because by the end of the study, the count of standard ticks included those arising
176	from natural infestation, our results would be expected to underestimate the mortality of ticks and
177	hence underestimate the host resistance of cattle. This was not considered to be a problem with
178	respect to relative ranking of animals within the trial. Samples from 'Susceptible', 'Resistant' and
179	uninfested animals were used in the present paper.

180

181 Ticks

The ticks used in this study were *R. microplus* of the Non-Resistant Field strain (NRFS) (28) that was maintained free of *Babesia* and *Anaplasma* organisms at the Queensland Department of Agriculture and Fisheries' Biosecurity Science Laboratories. Larvae were maintained at 28°C and approximately 95% humidity and applied to animals 7-14 days after hatching. Ticks were applied to the cattle in this study by carefully shaking over the dorsum of cattle, while cattle were restrained in a crush.

- 187
- 188

Collection and processing of skin samples

Tissue samples with tick larvae attached and feeding in the skin were collected from the perineal area of the cattle within 24 hours after infestation with 10,000 larvae of *R. microplus*. The cattle were restrained in a crush and given an epidural injection of 5 mL of lignocaine 20 mg/mL (Troy Laboratories Pty. Limited, Sydney, Australia) to desensitise the perineum. Skin biopsies were collected with 8 mm biopsy punches (Paramount Surgimed Ltd., New Delhi, India) and within 10 min of collection were placed in Tissue-Tek O.C.T. compound (Sakura Finetechnical Co., Tokyo, Japan.)
that was frozen in isopentane (Labscan Asia Co., Ltd., Bangkok, Thailand) cooled with liquid
nitrogen. Skin samples were similarly collected and processed from the perineum area of uninfested
cattle.

Hommuno-fluorescence labeling of cells

The phenotypes of the cells present in the skin of the cattle were identified by double immuno-fluorescence labeling using the antibodies shown in table 1. Briefly, 6 µm thick cryosections were mounted on PolysineTM glass slides (Menzel-GmbH & Co KG, Braunschweig, Germany) and dried overnight at room temperature (RT) with a fan. Next the sections were fixed in cold ethanol (4 °C) for 8 min. Following fixation the background staining was blocked with Image-iT FX signal enhancer (Invitrogen, Carlsbad, California, USA) followed by 10% [v/v] goat serum in 1% [w/v] bovine serum albumin (BSA, Sigma, St Louis, USA), in phosphate buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl, 8.1 mM Na₂HPO₄ and 1.4 mM KH₂PO₄). The cryosections were further incubated overnight at 4 °C in a humidified chamber with monoclonal antibodies (100 μ L per section) for specific leukocyte receptors (Table 1) diluted in 1% [w/v] BSA/PBS. IgG1, IgG2a and IgM negative control mouse monoclonal antibodies (DakoCytomation, Carpinteria, California, USA) in similar concentrations to the receptor specific antibodies were used as negative controls. The cryosections were washed in PBS and incubated for 40 min at RT with goat anti-mouse isotype-specific antibodies (100 µL per section) conjugated with fluorescein isothiocyanate (FITC) or Texas Red (Invitrogen, Carlsbad, California, USA) and diluted 1/400 [v/v] in 1% [w/v] BSA/PBS. After washing with PBS the nuclei were stained with DAPI dilactate (100 µL per section) (Invitrogen, Carlsbad, California, USA) and the slides were mounted with mounting medium (KPL, Gaithersburg, Maryland, USA). The slides were examined and photographed using an epifluorescent microscope, Olympus BX 51 (Olympus, Tokyo, Japan), equipped with a digital camera (Model DP 70, Olympus, Tokyo, Japan). The images to be published were imported into Microsoft Office Picture Manager and the contrast/brightness adjusted similarly for all.

Page 9 of 66

1 2

Parasite Immunology

2 3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17 18	
19 20	
20 21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 35 36	
35	
36 37	
37 38	
30 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52 53	
53 54	
54 55	
55 56	
57	
58	
59	
60	
-	

cells
C

223 Enumeration of the cells was done as previously described (Constantinoiu et al., 2010). Briefly, the 224 cells were counted in one slide (one tick attachment site) for each animal from the tick-infested 225 groups. For all cell subpopulations except MHC class II-expressing cells, the labelled cells were 226 manually counted in an area of 1.05 mm² (12 adjacent, non-overlapping high power microscopic 227 fields (40 \times objective), three on each side of the tick mouthparts (1 mm from mouthparts in each 228 direction) and two deep from the epidermis (0.5 mm deep in the skin from the level of superficial 229 epidermis)) with image analysis software (NIS-Elements Advanced Research, Nikon, Japan). Cells 230 were counted by a technician blinded to the group of cattle and infestation status of the samples. The 231 pattern of staining by MHC class II antigen specific antibody did not allow us to count individual cells 232 as reliably as other cell types because not all cells were well defined and there was some overlapping 233 of cells. Cells were similarly counted in 12 microscopic fields in the skin of each of the five un-234 infested cattle.

235

236 Histological staining of the sections

Cryosections cut and dried overnight as described above were fixed in 10% Neutral Buffered
Formalin (NBF) for 10 minutes at RT, washed three times in distilled water and stained by
Haematoxilin & Eosin (H&E) and Giemsa. The eosinophils infiltrating the areas around the tick
mouthparts were counted as described above. The epidermis and dermis were assessed for cellular,
vascular and structural changes as previously described (16). Each of 15 parameters (Table 4) was
scored on a scale of 0–5 as follows: 0 = within normal limits; 1 = minimal change; 2 = mild change; 3
= moderate change; 4 = severe, focal change; 5 = severe, extensive change.

244

245 Statistical Methods

The counts of cell numbers on the skin were analysed using a generalised linear model (McCullagh
and Nelder 1989) under a Poisson distribution with the logarithm link function, using GenStat (2016).
The dispersion parameter was estimated and adopted for the residual, because the data tended to be

249	over-dispersed. Protected pairwise testing was used to test differences between the treatment group
250	means. The probability level of 0.05 (5%) was used for all significance tests.
251	
252	Results
253	
254	1) Reactivity of the antibodies with cells from the skin of the cattle
255	The mAb specific for CD45 antigen (leukocyte common antigen) labeled cells in the skin of only one
256	animal among the six tick-resistant cattle (17%). However, the same antibody labeled cells in the skin
257	of three out of the six susceptible cattle (50%). The antibody specific for CD45RO antigen (activated
258	<u>cells, memory T cells</u>) reacted with cells from the skin of two out of the six tick resistant cattle (33%)
259	and with cells of five out of the 6 susceptible cattle (83%) (Table 2). For the CD45 and CD45RO
260	specific mAbs combined, the leukocytes of 67% of the susceptible cattle showed antibody reactivity,
261	vs. 25% for the resistant cattle. This difference was significant ($P = 0.041$). These two mAbs were not
262	probed with sections cut from the skin of naïve cattle and the observations described here included the
263	two samples that were later excluded because ticks were assessed as having fed for more than 24 h.
264	No obvious differences regarding the pattern or intensity of staining among the animals in this trial
265	were observed for any of the other mAbs used in this trial (Table 1).
266	
267	2) Populations of the various cell types in the skin of resistant, susceptible and uninfested
268	cattle
269	The cells infiltrating an area around tick attachments were counted in 5 resistant animals and 5
270	susceptible animals only because in two cattle the skin samples collected contained ticks that were
271	evidently attached and had been feeding in the skin for more than 24 h (Fig. 10). Data showing the
272	counts of the cell subpopulations in the three groups of cattle are presented in Fig. 1 and example
273	micrographs are presented in Fig. 2-9.
274	Both susceptible and resistant cattle had significantly more T cells (CD3 ⁺ receptor) (P<0.05) in the
275	skin, at tick attachment sites than were counted in skin biopsies of the control, uninfested cattle. The
276	number of T cells around the tick mouthparts was higher in susceptible cattle than in resistant cattle
	10

Parasite Immunology

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
11 12 13 14 15 16	
14	
15	
16	
17	
18	
10	
19 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
29 30	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

290

277 but the differences were not significant (P<0.05) (Fig. 1a). The number of $\gamma\delta$ T cells and CD4⁺ cells in 278 the skin of infested animals (at tick attachment sites) from both groups (susceptible and resistant) of 279 cattle was higher than in the skin of the cattle from the control group. For both $\gamma\delta$ T cells and CD4⁺ 280 cells the numbers in susceptible animals were significantly higher (P<0.05) than the number of cells 281 in resistant and naive animals (Fig. 1b & c). The number of $CD8^+$ cells at tick attachment sites in the 282 skin of infested cattle from both groups was significantly higher (P < 0.05) than in the skin of the 283 control, uninfested, cattle. The number of $CD8^+$ cells in the skin of susceptible cattle was similar to 284 that in the skin of resistant cattle (Fig. 1d). 285 The number of $CD25^+$ cells at tick attachment site was significantly higher (P<0.05) only in infested, 286 susceptible animals than uninfested controls (Fig. 1e). Extremely few B cells (less than one cell/field) 287 were counted in the skin of animals from all groups. The number of neutrophils at tick attachment 288 sites was significantly higher (P<0.05) in the infested animals from both groups than in the naïve 289 animals, in which they were extremely rare (less than four cells per field and in 75% of fields zero

resistant cattle (P>0.05) (Fig. 1f). The number of eosinophils at tick attachment sites in the skin of
infested cattle from both groups (resistant and susceptible) was significantly higher (P<0.05) than in
the skin of naïve animals. The numbers of eosinophils in the skin of resistant animals were similar to
those in the skin of susceptible animals (P<0.05) (Fig. 1g).
MHC class II-expressing cells could not be reliably quantified because the shape of the cells was not

cells). The number of neutrophils in the skin of susceptible cattle was similar to that in the skin of the

295 will defined and very often the cells overlapped. Infiltrations with MHC class II-expressing cells were 297 apparent at the tick attachment sites of susceptible (Fig. 4c) and resistant cattle (Fig. 3c & 6d) and no 298 obvious differences were observed between susceptible and resistant cattle.

299

300

60

3) Type of reaction at tick attachment site

The skin reaction at tick attachment sites varied from none (Fig. 2) to small, empty intra-epidermal vesicles with or without visible infiltrations in the adjacent skin (Fig. 3 & 4) and large epidermal vesicles filled mainly with neutrophils (Fig. 5) or eosinophils (Fig 6) or both types of cells. In both

Parasite Immunology

2 3	
3 4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	
47	
48	
49	
50 51	
51 52	
52 53	
54	
55	
56	
57	
58	
59	
60	

1 2

304	resistant and susceptible animals most of the animals had intra-epidermal vesicles at the tick
305	attachment site (66% in susceptible cattle and 80% in resistant cattle) but the predominant type of cell
306	within or around the vesicles was the neutrophil in susceptible animals and the eosinophil in the
307	resistant animals (Table 3, Fig. 5 and Fig. 6). MHC class II antigen cells consistently infiltrated the
308	areas around vesicles in both susceptible and resistant cattle but could only be found in extremely
309	small numbers, if any, within the intra-epidermal vesicles (Fig. 3c, 4c, 5d and 6d).
310	Neutrophils (Fig. 4b), eosinophils (Fig. 3a) and MHC class II-expressing cells (Fig. 3c and 4c)
311	infiltrated the areas closest to the tick mouth parts. In resistant animals neutrophils apparently did not
312	infiltrate or accumulate in the tick feeding areas (Fig. 3b and 6b). In susceptible animals neutrophils
313	infiltrated all tick attachment sites (Fig. 4b) but one (Fig. 2a). Furthermore, massive infiltrations with
314	neutrophils that appeared as continuous bands in the dermis were seen in two susceptible cattle (Fig.
315	7). Tissue lysis around clusters of neutrophils was observed in the epidermis of two susceptible cattle,
316	suggesting that these cells are involved in the formation of vesicles (Fig. 4b, 8). Infiltrations with
317	MHCII cells around tick attachment sites or vesicles were seen in most animals from both groups
318	(Fig. 3c, 4c and 6c).

319

320

4) Degree of inflammatory reaction in the skin

321 Microscopic comparisons of standard, H&E stained skin biopsies from resistant and susceptible cattle 322 to R. microplus had similar features (Table 4). Dermal inflammation, primarily consisting of 323 neutrophils, eosinophils, mast cells and plasma cells was noted in both groups and in some animals 324 was extensive and of moderate to marked severity. Intra-epidermal vesicles were noted in both 325 groups, were of varying size and depth within the epithelium, and the larger lesions more frequently 326 were open, the attenuated, superficial tissue having torn secondary to mechanical trauma or because 327 of the nature of the devitalized tissue. The predominant inflammatory cell type within the vesicles was 328 split between neutrophilic and eosinophilic. Most often both cell types were present. 329

330 Discussion

Page 13 of 66

2 3	331	The mAbs specific for CD45 and CD45 RO antigens reacted with skin leukocytes from a larger
4 5	332	number of susceptible cattle than resistant cattle but the differences were not significant for either of
6 7	333	the two mAbs individually. However, when the reactivity of the two mAbs was combined the
8 9	334	differences in the reaction of these mAbs with skin leukocytes from susceptible and resistant cattle
10 11	335	were significant (P<0.05). A previous trial using a small number of cattle (three <i>B</i> . <i>taurus</i> and three <i>B</i> .
12 13	336	indicus cattle) found obvious differences in the reactivity of the mAbs specific for CD45 and
14 15	337	CD45RO between B. taurus and B. indicus cattle: both CD45 and CD45RO antibodies reacted with
16 17	338	skin leukocytes from B. taurus but neither antibody reacted with skin leukocytes from B. indicus
18 19	339	cattle (29). Thus, the epitopes recognized by these mAbs are likely to occur on leukocytes with CD45
20 21	340	(protein tyrosine phosphatase, receptor type-C, or PTPRC) alleles inherited from B. taurus cattle
22 23	341	while the absence of the epitopes is likely to occur on cells with <i>PTPRC</i> alleles inherited from <i>B</i> .
24 25	342	<i>indicus</i> cattle. It is conceivable therefore that in composite breeds (<i>Bos indicus</i> \times <i>Bos taurus</i>) these
26 27	343	antibodies might be used as markers or indicators of tick susceptibility/resistance. Allelic
28 29	344	polymorphism in PTPRC gene, associated with distinct evolutionary families of cattle has been
30 31	345	described (30). The potential value of CD45 and CD45RO antibodies being useful as markers for tick
32 33	346	susceptibility/resistance requires testing using larger numbers of animals, molecular genotyping, and
34 35	347	possibly more mAbs specific to other epitopes of CD 45/CD45RO antigens.
36 37	348	The cellular reaction at the tick attachment site varied very much, from no reaction (Fig. 2) to large
38 39	349	vesicles with massive cellular infiltrations (Fig. 5). Substantial variation was noted even among larvae
40 41	350	attached at different sites on a single animal. This variation in response shows clearly that the reaction
42 43	351	to the attachment and feeding of ticks is dynamic and changes occur rapidly. The larvae of R.
44 45	352	microplus attempt approximately five attachments in the first 24 hours of their parasitic life (31) and
46 47	353	whether an attachment site is a successful, final attempt or an early, unsuccessful attempt might also
48 49	354	influence the cellular infiltrations that we observed at larval attachment sites. Our sampling method
50 51	355	(dependent on a tick being present and attached) precludes the examination of a site where an attempt
52 53	356	to feed was unsuccessful and the tick had moved to try to feed elsewhere. Development of intra-
55 54 55	357	epidermal vesicles represents a quick (they form within 3-5 hours after larval attachment) and
55 56 57	358	common host reaction at the larval attachment site (10, 20, 25) (Figs. 3-6) and it was generally
58		13
59		

Parasite Immunology

2	
3	
4 5	
6	
7	
8	
9 10	
11	
12	
13	
14	
16	
17	
18 10	
20	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	
22 23	
23 24	
25	
26	
27	
22 23 24 25 26 27 28 29 30	
30	
31 22	
32 33	
34	
34 35 36 37 38	
30 37	
38	
39	
40 41	
42	
43	
44 45	
46	
47	
48 49	
50	
51	
52 53	
55 54	
55	
56 57	
57 58	
59	
60	

359	associated with development of resistance in both B. indicus and B. taurus cattle as the larvae can no
360	longer anchor and/or feed in the skin of the host and detach (Fig. 9) (10, 20). Our limited data show
361	that intra-epidermal vesicles do not develop at the attachment sites of ticks that had successfully
362	attached in the skin for longer than 24 hours although huge cellular infiltrations are sometimes present
363	in the skin beneath the attachment (Fig. 10). Previous research revealed higher incidence of epidermal
364	vesicles in the skin of <i>B. taurus</i> resistant animals than in the skin of <i>B. taurus</i> susceptible cattle (20),
365	which concurs with our data. However, in the previous study it was found that only eosinophils
366	infiltrated the epidermis and caused the intra-epidermal vesicles (20). In contrast we have found that
367	both eosinophils and neutrophils infiltrated the epidermis and in intra-epidermal vesicles there was a
368	tendency for eosinophils to be the dominant cell type in the resistant animals and neutrophils in the
369	susceptible animals. Furthermore, our data show that neutrophils are involved in lysis of epidermis
370	and formation of the intra-epidermal vesicles in susceptible cattle, consistent with research
371	undertaken on R. sanguineus in dogs (32). Formation of eosinophilic vesicles occurs more quickly in
372	resistant B. taurus cattle than in susceptible B. taurus cattle (20) and eosinophils might be more
373	effective than neutrophils in tick protection. Ingested eosinophils seem to have a deleterious effect on
374	the gut of ticks (33) but ingested neutrophils seem not to have a damaging effect on ticks as larvae of
375	R. microplus can feed on them without apparently being affected (25). On the other hand neutrophil-
376	filled intra-epidermal vesicles that prevented larvae from anchoring in the skin were observed in
377	highly resistant B. indicus cattle (10).
378	Many elements of the immune response, including dendritic cells, T and B-cells, NK cells,
379	macrophages, eosinophils, neutrophils, basophils, mast cells, immunoglobulins, cytokines are
380	involved in the development and expression of resistance to tick infestation (34). However, the
381	particular elements involved depend on many factors, including the species and breed of the host as
382	well as tick species and tick lifecycle stage (34, 35).
383	In infestations with <i>R. microplus</i> the mechanisms of resistance are primarily manifest against larvae
384	within 24 hours after finding a host and commencement of their parasitic phase (11, 14), which is the
385	reason why larvae were the target of this study. The local immune response mounted at the larval
286	attachment site is important in rejection of this lifeavely stage and tick protection $(10, 20)$. Generally

- 386 attachment site is important in rejection of this lifecycle stage and tick protection (10, 20). Generally,
 - 14

Page 15 of 66

Parasite Immunology

1 2 3	
4 5 6 7	
8 9 10 11	
12 13 14 15	
16 17 18	
19 20 21 22	
23 24 25 26	
27 28 29 30	
31 32 33 34	
35 36 37	
38 39 40 41	
42 43 44 45	
46 47 48 49	
50 51 52 53	
53 54 55 56 57	
57 58 59 60	

387	high infiltrations with particular leukocyte phenotypes at larval attachment sites were associated with
388	development of an adaptive immune response and likely protection (10, 20, 25). In the present trial,
389	for all the leukocyte phenotypes investigated, more cells were counted at larval attachment sites in
390	infested animals from both groups of cattle than in the skin of control animals (Fig. 1), which is
391	equally consistent with the development of an adaptive immune response and a pathological, non-
392	protective response. However, except for eosinophils, there was a tendency for more cells from all the
393	cell phenotypes investigated (CD3 ⁺ , $\gamma\delta$ T cells, CD4 ⁺ , CD8 ⁺ , CD25 ⁺ cells and neutrophils) to be
394	higher at larval attachment sites in susceptible cattle. This suggested that most of the cellular
395	responses represent pathology rather than effective defense. Furthermore, while the apparent
396	differences between naïve and susceptible cattle were significant (P<0.05) for all phenotypes
397	investigated, the differences between naïve and resistant cattle were not significant (P>0.05) for $\gamma\delta$ T
398	cells, $CD4^+$ cells and $CD25^+$ cells. This contrasts with our previous study, in which resistant cattle (<i>B</i> .
399	<i>indicus</i>) concentrated more CD3 ⁺ , CD4 ⁺ , CD8 ⁺ cells and neutrophils and significantly more $\gamma\delta$ T cells
400	and $CD25^+$ at the larval attachment site than the low/moderate resistant cattle (<i>B. taurus</i>) (25). As a
401	result, it was suggested that $\gamma\delta$ T cells and CD25 ⁺ were important in cattle tick protection, CD25 ⁺ cells
402	<u>possibly</u> through regulation of the intensity of the local effector responses and $\gamma\delta$ T-cells through
403	their role in integrating the innate and adaptive immune responses and wound healing (36-38). CD4 ⁺
404	cells might be important for tick resistance, through their role in polarization of the immune response
405	to a Th2 profile and regulation of the intensity of cell infiltrations, especially neutrophils and
406	eosinophils, in the skin at tick attachment sites via the cytokines they secrete (39). The differences in
407	(the size of) cellular infiltrations at larval attachment site between resistant and susceptible cattle are
408	supported by the counts of peripheral CD3 ⁺ , CD4 ⁺ , CD8 ⁺ , CD25 ⁺ and $\gamma\delta$ T cells in the same animals:
409	the numbers of cells from these phenotypes were similar or slightly higher in susceptible animals (9).
410	In the current trial only the eosinophils were found in higher numbers at larval attachment sites in
411	resistant cattle but the differences between resistant and susceptible cattle were not significant. In a
412	previous trial, eosinophils infiltrated the larval attachment sites earliest after larvae successfully
413	attached to the skin of the host and they were more numerous in <i>B. taurus</i> than in <i>B. indicus</i> cattle

Parasite Immunology

414	and in follow-up infestations compared with primary infestations (27). Furthermore, in B. taurus
415	cattle the level of resistance to tick infestation correlated with eosinophil concentration and
416	degranulation at larval attachment sites (20, 23). In our trial the number of eosinophils at larval
417	attachment sites tended to be higher in resistant animals than in susceptible animals but it was not
418	significantly higher. The difference between the results of Schleger et al (1976) and our results might
419	be explained by the differences in the size of the area over which the eosinophils were counted at
420	larval attachment sites, being smaller and located immediately under the larval mouthparts in study of
421	Schleger et al (1976) versus larger and located around the tick mouthparts in our trial, the time of
422	collection of skin samples (3 h post infestation in study of Schleger et al (1976 and 24 h post
423	infestation in the present trial) and the genetic composition of the cattle (B. taurus in study of
424	Schleger et al (1976) and a composite breed, Santa Gertrudis: 5/8 B. taurus and 3/8 B. indicus, in the
425	present trial). Taken together these results provide some support for the view that in <i>B. taurus</i> cattle
426	eosinophil concentration at larval attachment sites is associated with larval rejection (20, 23).
427	Tick saliva has proven immunomodulatory effects and can cause local immunosupression that helps
428	the tick survive and feed on the host (39, 40). Salivary extracts from females of Dermacentor
429	andersoni and Ixodes scapularis downregulated the expression of the adhesion molecules ICAM-1,
430	VCAM-1 and P-selectin on the endothelial cells that is likely to interfere with leukocyte extravasation
431	from the blood vessels and their migration to the tick attachment site (41). R. microplus can also
432	modulate the expression of adhesion molecules (ICAM-1, VCAM-1, P-selectin and E-selectin) at
433	adult tick attachment site but the effect at larval attachment site was not described (42). The immuno-
434	suppressive effects of saliva of R. microplus on certain components of the immune response are more
435	intense in susceptible breeds of cattle than in resistant ones (42). The susceptible cattle in the present
436	trial concentrated more leukocytes at the larval attachment site than the resistant cattle and two of
437	them had huge infiltrations with neutrophils that formed continuous bands in the skin. This suggests
438	that recruitment of leukocytes to the larval attachment site is not impaired in susceptible cattle any
439	more than in the resistant cattle. This concurs with Piper et al (2009), who found that expression of
440	genes coding for cytokines and complement factors with chemotactic properties (CXCL-8, CXCL-2,
441	CXCL-5, CCL-2, CCL-8 and regakine-1) at the larval attachments sites was higher in tick-susceptible
	16

1 2 3	
4 5 6	
7 8 9	
10 11 12 13	
14 15 16	
17 18 19	
20 21 22	
23 24 25 26	
27 28 29	
30 31 32	
33 34 35 36	
37 38 39	
40 41 42	
43 44 45 46	
47 48 49	
50 51 52	
53 54 55 56	
50 57 58 59	
60	

442	cattle. The differences in the amount and composition of saliva secreted by larvae within 24 hours of
443	their parasitic life and female ticks might explain the differences between research of Carvalho et al
444	(2010) and the results of Piper et al (2009) and those of the present trial (43). This suggests that larvae
445	might lack the protection afforded by the immunosuppressive effects of saliva to adult female ticks
446	and are more susceptible to host rejection.
447	B. indicus cattle have a long evolutionary association with R. microplus and it was suggested that this
448	has resulted in an adaptive tolerance manifested by reduced inflammatory cellular reaction at tick
449	attachment site (16, 27), which might explain the low cellular infiltrations in resistant animals in the
450	present trial. This is consistent with our hypothesis that some of the results from the earlier study
451	would have been a consequence of indicine v taurine difference, independent of the protective
452	immune response mounted to tick infestation. It also suggests that R. microplus larvae do not impair
453	the recruitment of cells to larval attachment sites but they affect the responsiveness and the
454	polarization of the immune response towards a Th1 or Th2 response (39). Alternatively, the timing of
455	sample collection (seven infestations carried out over two months in Constantinoiu et al. (2010) vs
456	twenty-five artificial infestations carried out over more than seven months in the present trial) and the
457	obviously higher antigenic stimulation of the susceptible animals than that of resistant cattle
458	(generally 6 times more ticks matured on the body of susceptible cattle) might have affected the
459	magnitude and composition of cellular infiltrations in the skin of the cattle in general and at the larval
460	attachment site in particular.
461	

3	462	References
4		
5 6	463	
7		
8	464	1. Burger TD, Shao R, Barker SC. Phylogenetic analysis of mitochondrial genome sequences
9	465	indicates that the cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species. Mol
10	466	Phylogenet Evol. 2014;76:241-53.
11	467	2. Low VL, Tay ST, Kho KL, Koh FX, Tan TK, Lim YA, et al. Molecular characterisation of the
12	468	tick Rhipicephalus microplus in Malaysia: new insights into the cryptic diversity and distinct genetic
13	469	assemblages throughout the world. Parasit Vectors. 2015;8:341.
14	470	3. Lew-Tabor AE, Rodriguez Valle M. A review of reverse vaccinology approaches for the
15	471	development of vaccines against ticks and tick borne diseases. Ticks Tick Borne Dis. 2016;7(4):573-85.
16	472	4. Jonsson NN. Control of cattle ticks (Boophilus microplus) on Queensland dairy farms. Aust Vet
17	473	J. 1997;75(11):802-7.
18	474	5. Guerrero FD, Miller RJ, Perez de Leon AA. Cattle tick vaccines: many candidate antigens, but
19	475	will a commercially viable product emerge? Int J Parasitol. 2012;42(5):421-7.
20	476	6. George JE, Pound JM, Davey RB. Chemical control of ticks on cattle and the resistance of these
21	477	parasites to acaricides. Parasitology. 2004;129 Suppl:S353-66.
22	478	7. Piper EK, Jackson LA, Bagnall NH, Kongsuwan KK, Lew AE, Jonsson NN. Gene expression in
23	479	the skin of Bos taurus and Bos indicus cattle infested with the cattle tick, Rhipicephalus (Boophilus)
24 25	480	microplus. Vet Immunol Immunopathol. 2008;126(1-2):110-9.
25 26	481	8. Utech KB, Wharton RH, Kerr JD. Resistance to Boophils microplus (Canestrini) in different
20	482	breeds of cattle. Aust J Agric Res. 1978;29:885-95.
28	483	9. Piper EK, Jonsson NN, Gondro C, Vance ME, Lew-Tabor A, Jackson LA. Peripheral cellular
29	484	and humoral responses to infestation with the cattle tick Rhipicephalus microplus in Santa Gertrudis
30	485	cattle. Parasite Immunol. 2017;39(1).
31	486	10. Jonsson NN, Piper EK, Constantinoiu CC. Host resistance in cattle to infestation with the cattle
32	487	tick Rhipicephalus microplus. Parasite Immunol. 2014;36(11):553-9.
33	488	11. Roberts JA. Resistance of cattle to the tick boophilus microplus (canestrini). II. Stages of the life
34	489	cycle of the parasite against which resistance is manifest. J Parasitol. 1968;54(4):667-73.
35	490	12. Koudstaal D, Kemp DH, Kerr JD. Boophilus microplus: rejection of larvae from British breed
36	491	cattle. Parasitology. 1978;76(3):379-86.
37	492	13. Willadsen P. Immunity to ticks. Adv Parasitol. 1980;18:293-311.
38	493	14. Wagland BM. Host resistance to cattle tick (Boophilus microplus) in Brahman (Bos indicus)
39	494	cattle. IV Ages of ticks rejected. Aust J Agric Res. 1979;30:211-8.
40	495	15. Kongsuwan K, Josh P, Colgrave ML, Bagnall NH, Gough J, Burns B, et al. Activation of
41 42	496	several key components of the epidermal differentiation pathway in cattle following infestation with the
42	497	cattle tick, Rhipicephalus (Boophilus) microplus. Int J Parasitol. 2010;40(4):499-507.
44	498	16. Piper EK, Jackson LA, Bielefeldt-Ohmann H, Gondro C, Lew-Tabor AE, Jonsson NN. Tick-
45	499	susceptible Bos taurus cattle display an increased cellular response at the site of larval Rhipicephalus
46	500	(Boophilus)microplus attachment, compared with tick-resistant Bos indicus cattle. Int J Parasitol. 2009.
47	501	17. Schleger AV, Lincoln DT, Bourne AS. Arteriovenous anastomoses in the dermal vasculature of
48	502	the skin of Bos taurus cattle, and their relationship with resistance to the tick, Boophilus microplus. Aust
49	503	J Biol Sci. 1981;34(1):27-35.
50	504	18. Kemp DH, Bourne A. Boophilus microplus: the effect of histamine on the attachment of cattle-
51	505	tick larvaestudies in vivo and in vitro. Parasitology. 1980;80(3):487-96.
52	506	19. Verissimo CJ, D'Agostino SM, Pessoa FF, de Toledo LM, Santos IK. Length and density of
53	507	filiform tongue papillae: differences between tick-susceptible and resistant cattle may affect tick loads.
54	508	Parasit Vectors. 2015;8:594.
55		
56		
57 58		10
58 59		18
~ ~		

1		
2		
3	509	20. Schleger AV, Lincoln DT, McKenna RV, Kemp DH, Roberts JA. Boophilus microplus: cellular
4	510	responses to larval attachment and their relationship to host resistance. Aust J Biol Sci. 1976;29(5-
5	511	6):499-512.
6 7	512	21. Kashino SS, Resende J, Sacco AM, Rocha C, Proenca L, Carvalho WA, et al. Boophilus
8	513	microplus: the pattern of bovine immunoglobulin isotype responses to high and low tick infestations.
9	514	Exp Parasitol. 2005;110(1):12-21.
10	515	22. Riek RF. Factors influencing the susceptibility of cattle to tick infestation. Aust Vet J.
11	516	1956;32:204-8.
12	517	23. Schleger AV, Lincoln DT, Kemp DH. A putative role for eosinophils in tick rejection.
13	518	Experientia. 1981;37(1):49-50.
14	519	24. Willadsen P, Williams PG, Roberts JA, Kerr JD. Responses of cattle to allergens from
15	520	Boophilus microplus. Int J Parasitol. 1978;8(2):89-95.
16	521	25. Constantinoiu CC, Jackson LA, Jorgensen WK, Lew-Tabor AE, Piper EK, Mayer DG, et al.
17	522	Local immune response against larvae of Rhipicephalus (Boophilus) microplus in Bos taurus indicus
18	523	and Bos taurus taurus cattle. Int J Parasitol. 2010;40(7):865-75.
19	524	26. Tatchell RJ, Moorhouse DE. The feeding processes of the cattle tick Boophilus microplus
20	525	(Canestrini). II. The sequence of host-tissue changes. Parasitology. 1968;58(2):441-59.
21	526	27. Moorhouse DE, Tatchell RJ. Histological responses of cattle and other ruminants to the recent
22	527	attachment of ixodid larvae. J Med Entomol. 1969;6(4):419-22.
23	528	28. Stewart NP, Callow LL, Duncalfe F. Biological comparisons between a laboratory-maintained
24	529	and a recently isolated field strain of Boophilus microplus. J Parasitol. 1982;68(4):691-4.
25	530	29. Constantinoiu CC, Jonsson NN, Jorgensen WK, Jackson LA, Piper EK, Lew-Tabor AE.
26	531	Immuno-fluorescence staining patterns of leukocyte subsets in the skin of taurine and indicine cattle.
27	532	Res Vet Sci. 2013;95(3):854-60.
28	533	30. Ballingall KT, Waibochi L, Holmes EC, Woelk CH, MacHugh ND, Lutje V, et al. The CD45
29	534	locus in cattle: allelic polymorphism and evidence for exceptional positive natural selection.
30	535	Immunogenetics. 2001;52(3-4):276-83.
31 32	536	31. Roberts JA. Behavior of larvae of the cattle tick, Boophilus microplus (Canestrini), on cattle of
32 33	537	differing degrees of resistance. J Parasitol. 1971;57(3):651-6.
33 34	538	32. Tatchell RJ, Moorhouse DE. Neutrophils: their role in the formation of a tick feeding lesion.
35	539	Science. 1970;167(920):1002-3.
36	540	33. Wikel S. Immunology of the Tick-Host Interface. In: Wikel S, editor. The Immunology of Host-
37	541	Ectoparasitic Arthropod Relationships. Walingford: CAB INTERNATIONAL; 1996.
38	542	34. Brossard M, Wikel SK. Tick immunobiology. Parasitology. 2004;129 Suppl:S161-76.
39	543	35. Piper EK, Jonsson NN, Gondro C, Lew-Tabor AE, Moolhuijzen P, Vance ME, et al.
40	544	Immunological profiles of Bos taurus and Bos indicus cattle infested with the cattle tick, Rhipicephalus
41	545	(Boophilus) microplus. Clin Vaccine Immunol. 2009;16(7):1074-86.
42	546	36. Born WK, Reardon C, O'Brien RL. The function of $\gamma\delta$ T cells in innate immunity. Curr Opin
43	547	Immunol. 2006;18:31-8.
44	548	37. Lahmers KK, Hedges JF, Jutila MA, Deng M, Abrahamsen MS, Brown WC. Comparative gene
45	549	expression by WC1 ⁺ $\gamma\delta$ and CD4 ⁺ $\alpha\beta$ T lymphocytes, which respond to Anaplasma marginale,
46		
47	550	demonstrates higher expression of chemokines and other myeloid cell-associated genes by WC1 ⁺ $\gamma\delta T$
48	551	cells. J Leukoc Biol. 2006;80:939-51.
49	552	38. Belkaid Y. Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol.
50	553	2007;7(11):875-88.
51	554	39. Brake DK, Wikel SK, Tidwell JP, Perez de Leon AA. Rhipicephalus microplus salivary gland
52	555	molecules induce differential CD86 expression in murine macrophages. Parasit Vectors. 2010;3:103.
53	556	40. Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick
54 57	557	countermeasures, and a suitable environment for pathogen establishment. Front Microbiol. 2013;4:337.
55		
56 57		
57 58		10
58 59		19
~ ~		

41. Maxwell SS, Stoklasek TA, Dash Y, Macaluso KR, Wikel SK. Tick modulation of the in-vitro expression of adhesion molecules by skin-derived endothelial cells. Ann Trop Med Parasitol. 2005;99(7):661-72. 42. Carvalho WA, Franzin AM, Abatepaulo AR, de Oliveira CJ, More DD, da Silva JS, et al. Modulation of cutaneous inflammation induced by ticks in contrasting phenotypes of infestation in bovines. Vet Parasitol. 2010;167(2-4):260-73. 43. Binnington KC. Sequential changes in salivary gland structure during attachment and feeding of the cattle tick, Boophilus microplus. Int J Parasitol. 1978;8(2):97-115. 44. Niku M, Ekman A, Pessa-Morikawa T, Iivanainen A. Identification of major cell types in paraffin sections of bovine tissues. BMC Veterinary Research. 2006;2:5. Keresztes G, Takacs L, Vilmos P, Kurucz E, Ando I. Monoclonal antibodies detecting 45. components of the bovine immune system in formaldehyde-fixed paraffin-embedded tissue specimens. Veterinary Immunology and Immunopathology. 1996;52(4):383-92. Bembridge GP, MacHugh ND, McKeever D, Awino E, Sopp P, Collins RA, et al. CD45RO 46. expression on bovine T cells: relation to biological function. Immunology. 1995;86(4):537-44. 47. Davis WC, MacHugh ND, Park YH, Hamilton MJ, Wyatt CR. Identification of a monoclonal antibody reactive with the bovine orthologue of CD3 (BoCD3). Veterinary Immunology and Immunopathology. 1993;39(1-3):85-91. Naessens J, Nthale JM, Muiya P. Biochemical analysis of preliminary clusters in the non-48. lineage panel. Vet Immunol Immunopathol. 1996;52(4):347-56. Gutierrez M, Forster FI, McConnell SA, Cassidy JP, Pollock JM, Bryson DG. The detection of 49. CD2+, CD4+, CD8+, and WC1+ T lymphocytes, B cells and macrophages in fixed and paraffin embedded bovine tissue using a range of antigen recovery and signal amplification techniques. Veterinary Immunology and Immunopathology. 1999;71(3-4):321-34. Liebana E, Marsh S, Gough J, Nunez A, Vordermeier HM, Whelan A, et al. Distribution and 50. activation of T-lymphocyte subsets in tuberculous bovine lymph-node granulomas. Vet Pathol. 2007;44(3):366-72. 51. Jones M, Cordell JL, Bevers AD, Tse AG, Mason DY. Detection of T and B cells in many animal species using cross-reactive anti-peptide antibodies. Journal of Immunology. 1993;150(12):5429-35. 52. Morrison WI, Davis WC. Individual antigens of cattle. Differentiation antigens expressed predominantly on CD4- CD8- T lymphocytes (WC1, WC2). Vet Immunol Immunopathol. 1991;27(1-3):71-6. Taylor BC, Choi KY, Scibienski RJ, Moore PF, Stott JL. Differential expression of bovine 53. MHC class II antigens identified by monoclonal antibodies. Journal of Leukocyte Biology 1993;53(5):479-89. 54. Bensaid A, Hadam M. Individual antigens of cattle. Bovine CD4 (BoCD4). Veterinary immunology and immunopathology. 1991;27(1-3):51-4. Collins RA, Werling D, Duggan SE, Bland AP, Parsons KR, Howard CJ. Gammadelta T cells 55. present antigen to CD4+ alphabeta T cells. J Leukoc Biol. 1998;63(6):707-14.

Monoclonal	Source	Antigen	Isotype	Cellular	Dilution	Reference
antibody		specificity		expression	used	
designation						
CACTB51A	VMRD	CD45	IgG2a	Leukocytes	1/800	(44, 45)
Il-A116	VMRD	CD45RO	IgG3	Activated	1/400	(46)
				cells		
MM1A	VMRD	CD3	IgG1	T cells	1/800	(47)
CH138	VMRD	Neutrophils	IgM	Neutrophils	1/400	(29, 45, 48)
MCA837G	AbD	CD8	IgG2a	T cytotoxic	1/50	(49, 50)
	Serotec			cells		
HM57	DakoCyto	CD79ά	IgG1	B cells	1/100	(51)
	mation					
IL-A29 ^a	ILRI ^b	γδ form of	IgG1	γδ T cells	1/25	(52)

		the T cell					60
		receptor					60
IL-A21 ^a	ILRI ^b	MHC class	IgG2a	Macrophages	1/200	(53)	60
		II antigen		, dendritic			60
				cells, B cells,			60
				activated T			60
				cells			60
IL-A12 ^a	ILRI ^b	CD4	IgG2a	T helper cells	1/25	(54)	60
IL-A111 ^a	ILRI ^b	CD25	IgG1	Activated	1/25	(55)	60
				cells (IL2-R			60
				bearing cells)			61
							61
^a Monoclonal	antibodies fro	om tissue culture	supernatan	ıt			
^b Internationa	l Livestock R	esearch Institute,	Nairobi, K	lenya			
					22		

(10	• .			
519	resistance			
520				
521				
				_
	Cow tag	CD45	CD45RO	
	B907-S	+	+	_
	B797-S	+	+	_
	B639-S	+	+	_
	B629-S	-	+	_
	B615-S	-	+	_
	B607-S	-	-	_
	B809-R	+	+	_
	B825-R	-	-	_
	B821-R	-	-	_
	B783-R	-	-	_
	B679-R	-	-	_
	B501-R	-	+/-	_
522				_

623 Table 3 Type of reaction at tick attachment site in susceptible and resistant cattle

Type of reaction at tick attachment site	Susceptible cattle (6 tick attachments)	Resistant cattle (5 tick attachments)	(
Absence of any cell infiltration/reaction	1	1	
Cellular infiltrations	1 (eosinophils, neutrophils & MHC class	0	
	II antigen cells)		
Empty intra-epidermal vesicle with no	0	1	
visible/obvious infiltrations around			
vesicle			
Empty intra-epidermal vesicle with	2 (neutrophils & MHC class II antigen	2 (eosinophils & MHC class II antig	er
cellular infiltrations around vesicle	cells adjacent to the vesicle)	cells adjacent to the vesicle)	
Intra-epidermal vesicles filled with cells	1 (neutrophils within vesicle and	1 (eosinophils within vesicles and	
	neutrophils and MHC class II antigen	eosinophils and MHC class II antige	en
	cells adjacent to the vesicle)	cells adjacent to the vesicle)	
	1 (neutrophils and eosinophils within		
	vesicle)		
	24		

1		
2		
3 4		
4	641	Table 4 Inflammatory reaction in the skin of the cattle: parameters assessed in the epidermis and dermis and their scores
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		25
44		
45		
46		

Туре			Naive				S	usceptil	ble			ł	Resistar	nt	
Cow tag	B407	B605	B573	B507	B857	B629	B639	B797	B615	B607	B821	B679	B783	B825	B50
Epidermis															
Acanthosis	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Apoptosis/necrosis	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
Acantholysis	0	0	0	0	0	0	0	0	2	2	0	1	3	2	2
Micro-abscess	2	0	0	0	0	2	2	2	2	1	0	2	3	2	2
Subepidermal clefting	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
Transepithelial leukocyte migration	2	0	0	0	0	2	3	1	2	2	0	2	3	2	2
Hyperkeratosis - ortho	0	0	0	0	0	2	2	1	1	1	0	1	0	1	1
Hyperkeratosis - para	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dermis															
Oedema	0	0	0	0	0	1	2	1	1	2	1	2	2	2	2
Collagen degeneration	0	0	0	0	0	2	2	1	1	1	1	2	2	2	2
Vascular rexn/vasculitis	0	0	0	0	0	1	1	1	1	2	1	1	2	1	1
Transendothelial leukocyte migration	0	0	0	0	0	3	2	1	1	2	1	1	2	1	1
PMN/Eosinophil infiltrate	1	0	0	1	0	3	2	2	2	2	1	2	3	2	2
Mononuclear cell infiltrate	0	0	0	0	0 26	3	2	2	1	2	1	1	3	1	1

Page	27	of	66
------	----	----	----

2 3																
4 5	Mast cell infiltrate	0	0	0	0	0	2	2	1	1	2	1	1	2	1	1
6 7	Total	5	0	0	1	0	23	22	13	16	19	7	16	25	17	17
8 642																
9 10 643																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						27										

1 2	
3	
4	
5 6	
7	
8	
9	
10 11	
12	
13	
14 15	
16	
17	
18 19	
20	
21	
22 23	
23 24	
25	
26 27	
27	
29	
30	
31 32	
33	
34	
35 36	
37	
38	
39 40	
40 41	
42	
43 44	
44 45	
46	
47 48	
40 49	
50	
51	
52 53	
54	
55	
56 57	
58	
59	
60	

645	Figure legends
646	
647	Fig. 1 Comparative counts of immune cells at the tick attachment areas in susceptible and resistant
648	cattle. Fig. 1a: T cells, Fig. 1b: $\gamma\delta$ T cells, Fig. 1c: CD4 ⁺ cells, Fig. 1d: CD8 ⁺ cells, Fig. 1e: CD25 ⁺
649	cells, Fig. 1f: neutrophils and Fig. 1g: eosinophils. Means of cells per field for each group of animals
650	and standard error bars are shown. Different letters show significant differences ($P < 0.05$).
651	
652	Fig. 2. Lack of cellular reaction at larval attachment site in the skin of a susceptible cow. Fig. 2a:
653	H&E staining, Fig. 2b: neutrophils (green), γδ T cells (red) and cell nuclei (blue), Fig. 2c: T cells
654	(green), MHC class II antigen cells (red) and cell nuclei (blue) (E: epidermis; D: dermis; TM: tick
655	mouthparts).
656	
657	Fig. 3 Empty intra-epidermal vesicle with adjacent eosinophil infiltrations in a resistant cow. Fig. 3a:
658	H&E staining, Fig. 3b: neutrophils (green), γδ T cells (red) and cell nuclei (blue), Fig. 3c: T cells
659	(green), MHC class II antigen cells (red) and cell nuclei (blue) (E: epidermis; D: dermis; V: vesicle).
660	
661	Fig. 4 Empty intra-epidermal vesicle with neutrophil infiltrations at tick attachment site in a
662	susceptible cow. Fig. 4a: H&E staining, Fig. 4b: neutrophils (green), γδ T cells (red) and cell nuclei
663	(blue), Fig. 4c: T cells (green), MHC class II antigen cells (red) and cell nuclei (blue) (E: epidermis;
664	D: dermis; V: vesicle; TM: tick mouthparts).
665	
666	Fig. 5 Intra-epidermal vesicle filled mostly with neutrophils at the tick attachment site in a
667	susceptible cow. Fig. 5a: H&E staining, Fig. 5b: neutrophils (green), $\gamma\delta$ T cells (red) and cell nuclei
668	(blue), Fig. 5c: T cells (green), MHC class II antigen cells (red) and cell nuclei (blue) (E: epidermis;
669	D: dermis; V: vesicle; TC: tick cement).
670	

671	Fig. 6 Intra-epidermal vesicle filled mostly with eosinophils at the tick attachment site in a resistant
672	cow. Fig. 6a: H&E staining, Fig. 6b: neutrophils (green), γδ T cells (red) and cell nuclei (blue), Fig.
673	6c: T cells (green), MHC class II antigen cells (red) and cell nuclei (blue) (E: epidermis; D: dermis;
674	V: vesicle).
675	
676	Fig. 7 Infiltrations with neutrophils (green) forming a continuous band in the skin of a susceptible
677	cow (E: epidermis; D: dermis).
678	
679	Fig. 8 Tissue lysis around clusters of neutrophils in the skin of a susceptible cow. Differential
680	interference contrast (DIC) showing the areas of intra-epidermal lysis, neutrophils (green), $\gamma\delta$ T cells
681	(red) and cell nuclei (blue) (E: epidermis; D: dermis; FV: forming vesicle).
682	
683	Fig. 9 Tick fixed in a piece of superficial epidermis that detached from the skin. Fig. 9a: Tick and
684	the superficial epidermis away from the skin spot the tick was fixed (H&E staining), Fig. 9b: The
685	place of skin the tick was initially fixed and the skin damage (H&E staining), Fig. 9c: Tick and the
686	superficial epidermis away from the skin spot the tick was fixed: T cells (green), MHC class II
687	antigen cells (red) and cell nuclei (blue), Fig. 9d: The place of skin the tick was initially fixed:
688	neutrophils (green), $\gamma\delta$ T cells (red) and cell nuclei (blue). (E: epidermis; D: dermis; V: vesicle).
689	
690	Fig. 10 Massive cellular infiltrations at the tick attachment site of a tick fixed in the skin for more
691	than 24 hours. Fig. 10a: H&E staining, Fig. 10b: neutrophils (green), γδ T cells (red) and cell nuclei
692	(blue), Fig. 10c: T cells (green), MHC class II antigen cells (red) and cell nuclei (blue) (E:
693	epidermis; D: dermis; TC: Tick cement; TM: tick mouthparts).
694	

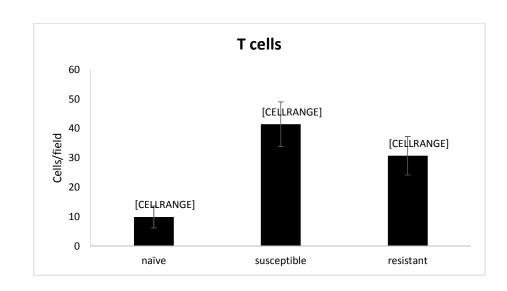
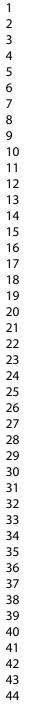



Fig. 1a

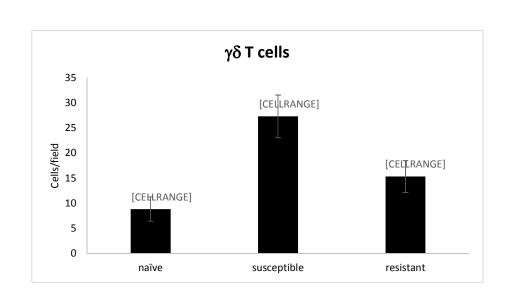


Fig. 1b

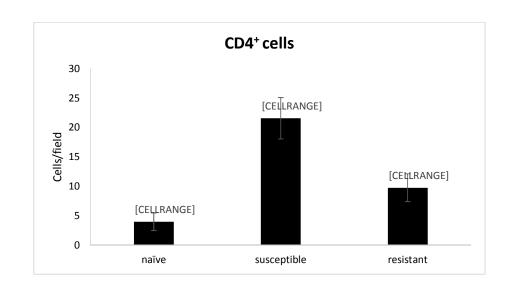


Fig. 1c

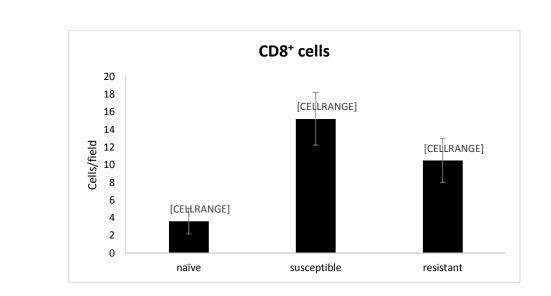


Fig. 1d

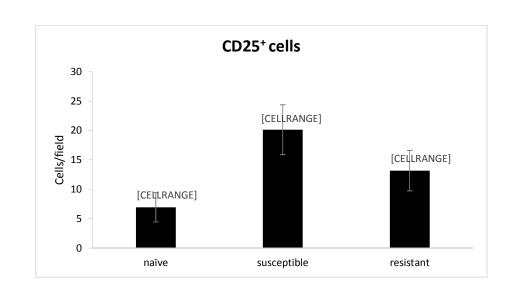


Fig. 1e

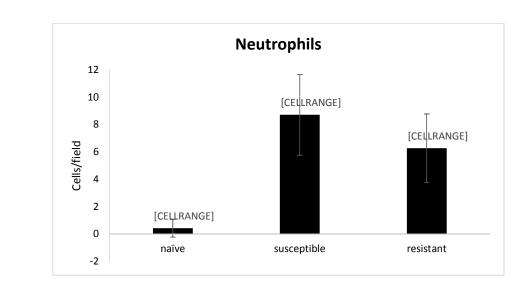


Fig. 1f

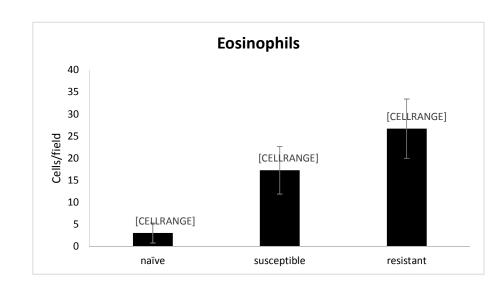
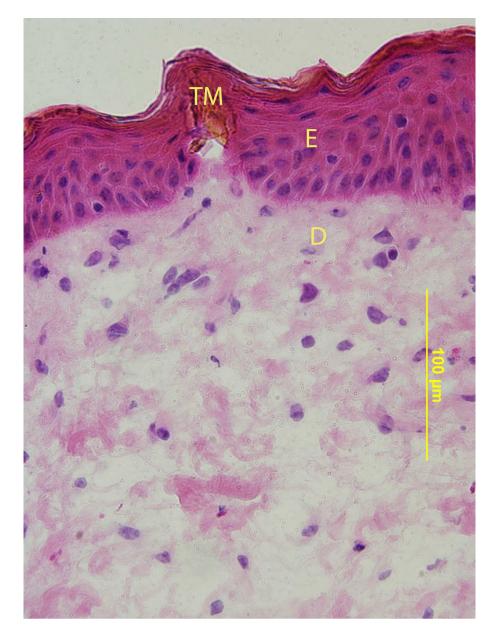
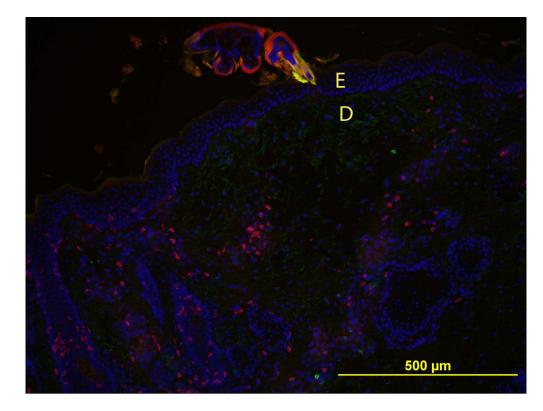
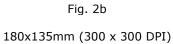
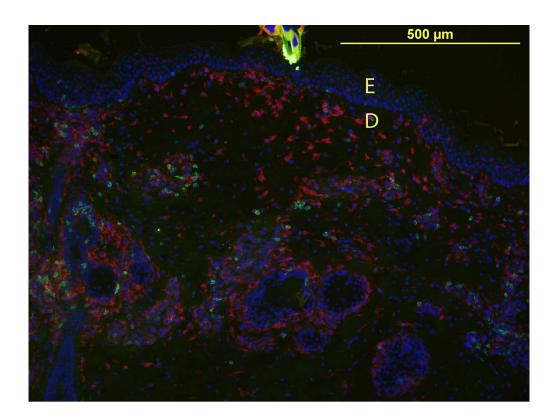
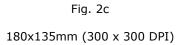
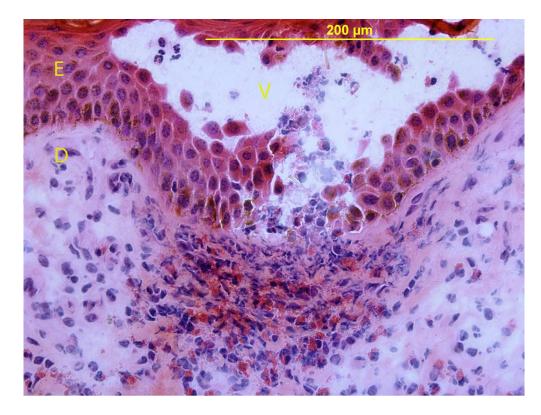
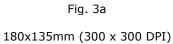
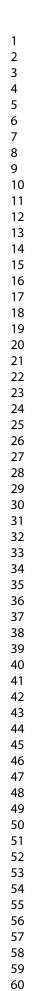


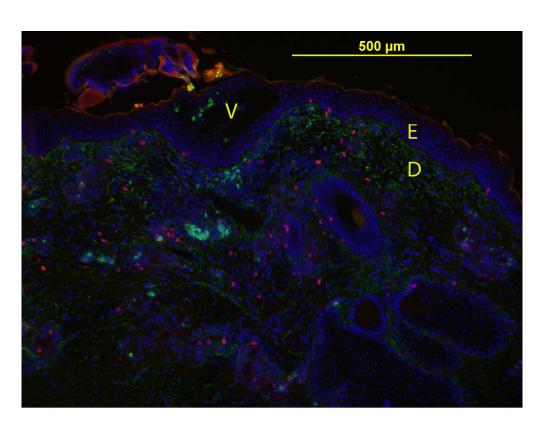
Fig. 1g

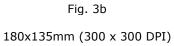






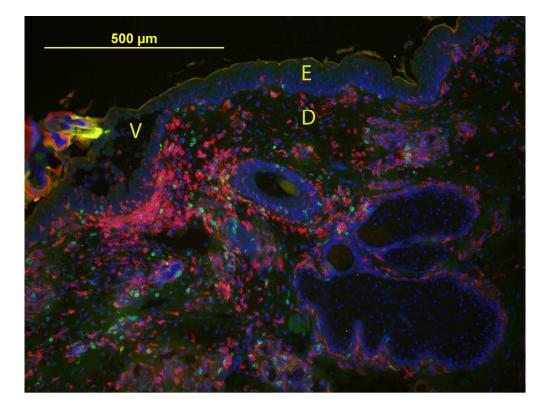

Fig. 2a 239x318mm (300 x 300 DPI)

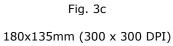


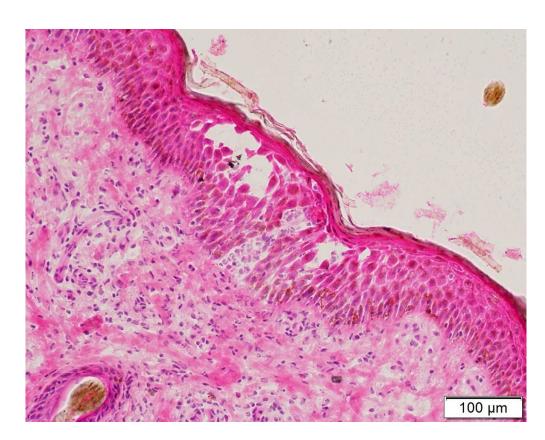


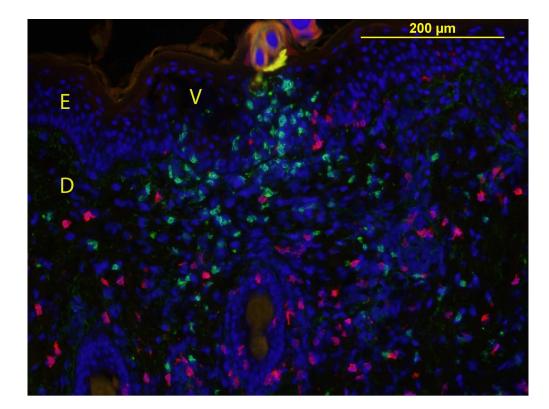


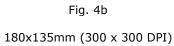


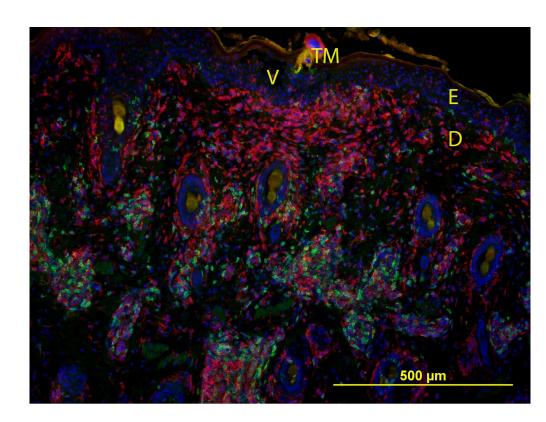


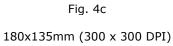




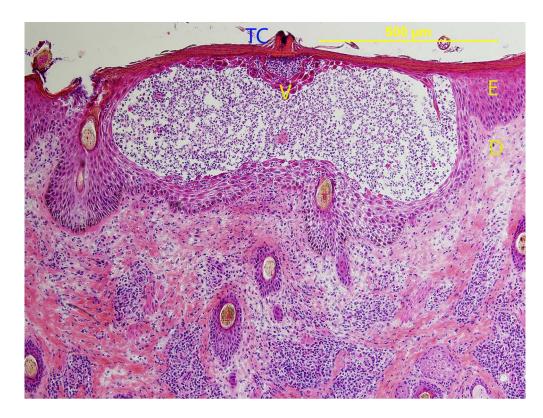
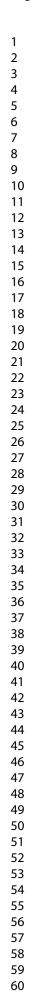
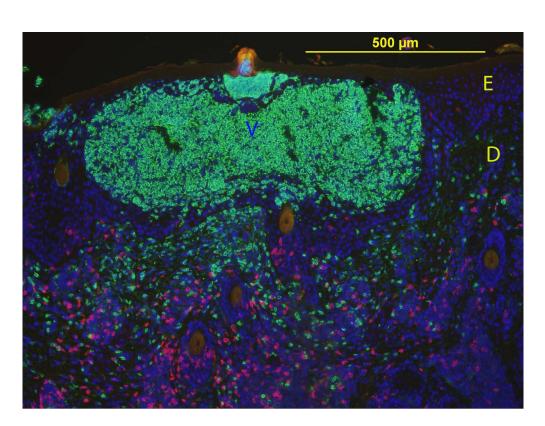
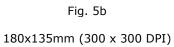
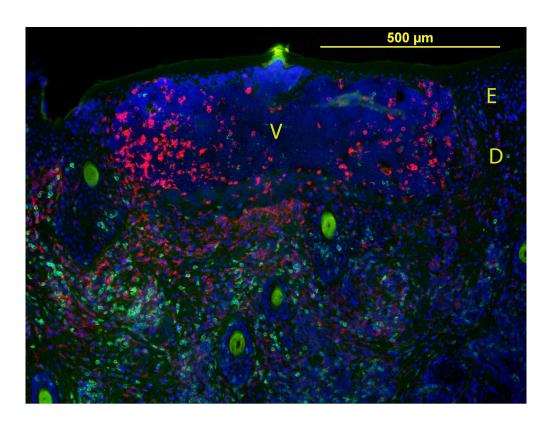


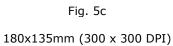


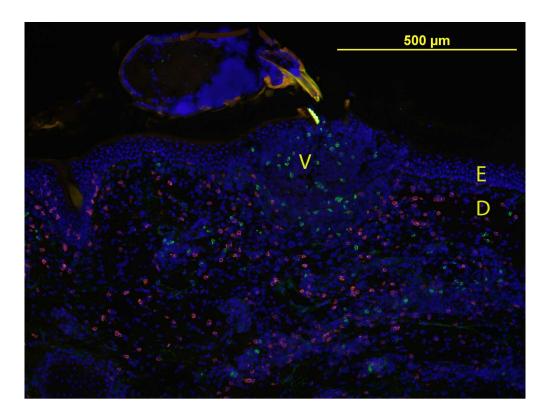
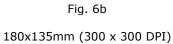
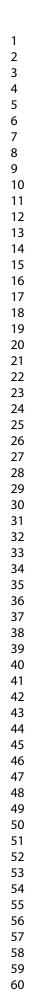
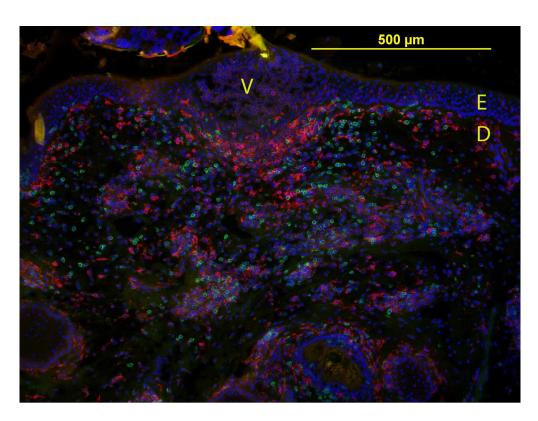


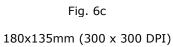


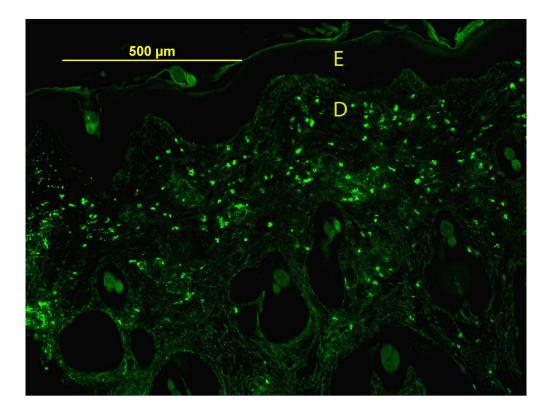
431x338mm (72 x 72 DPI)

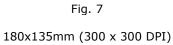






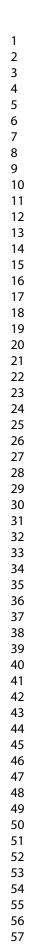

Fig. 5a 180x135mm (300 x 300 DPI)

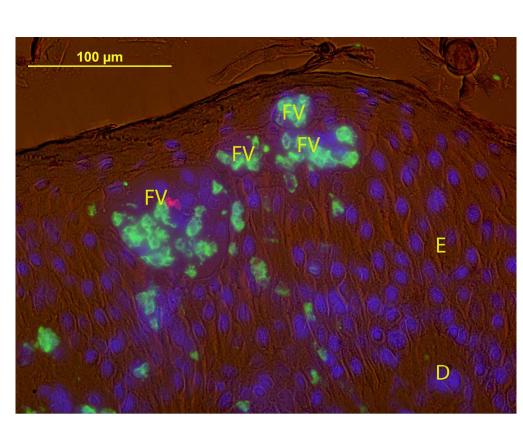






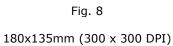

Fig. 6a 180x135mm (300 x 300 DPI)



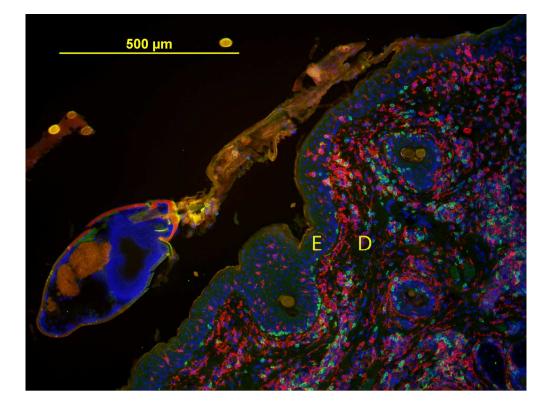


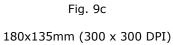


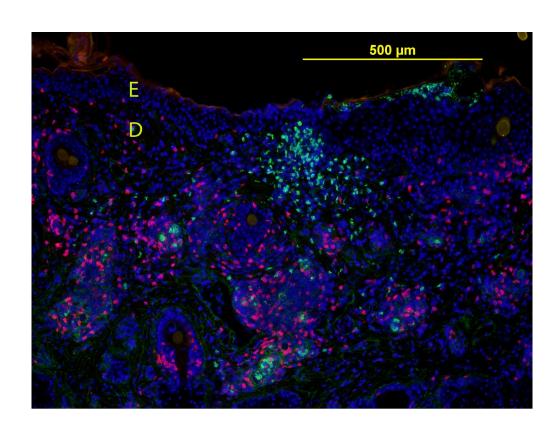




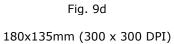
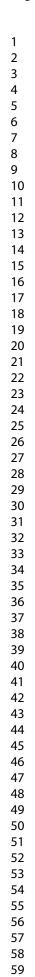
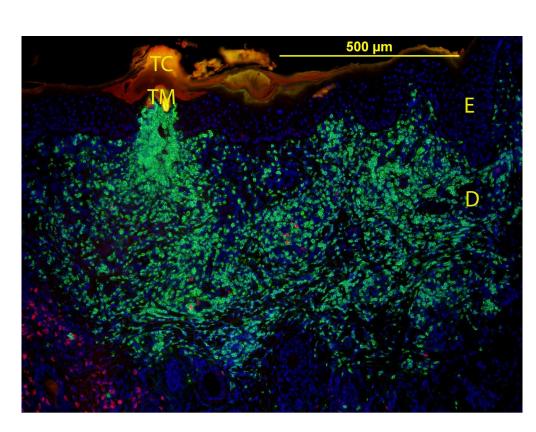
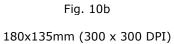


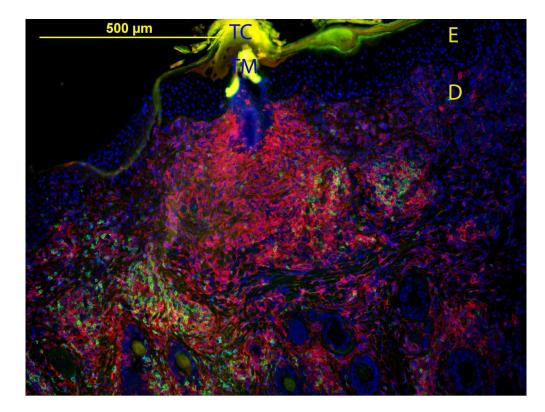

Fig. 9a

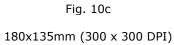

431x338mm (72 x 72 DPI)



431x338mm (72 x 72 DPI)




Fig. 10a 180x135mm (300 x 300 DPI)

Parasite Immunology

Table 1 Monoclonal antibodies used to characterize cells infiltrating the skin areas around tick mouthparts

Monoclonal	Source	Antigen	Isotype	Cellular	Dilution	Reference
antibody		specificity		expression	used	
designation						
CACTB51A	VMRD	CD45	IgG2a	Leukocytes	1/800	(45, 46)
Il-A116	VMRD	CD45RO	IgG3	Activated	1/400	(47)
				cells		
MM1A	VMRD	CD3	IgG1	T cells	1/800	(48)
CH138	VMRD	Neutrophils	IgM	Neutrophils	1/400	(29, 46, 49)
MCA837G	AbD	CD8	IgG2a	T cytotoxic	1/50	(50, 51)
	Serotec			cells		
HM57	DakoCyto	CD79ά	IgG1	B cells	1/100	(52)
	mation					
IL-A29 ^a	ILRI ^b	γδ form of	IgG1	γδ T cells	1/25	(53)
		the T cell				
		receptor				
IL-A21 ^a	ILRI ^b	MHC class	IgG2a	Macrophages	1/200	(54)

		II antigen		, dendritic	
				cells, B cells,	
				activated T	
				cells	
IL-A12 ^a	ILRI ^b	CD4	IgG2a	T helper cells 1/25	(55)
IL-A111 ^a	ILRI ^b	CD25	IgG1	Activated 1/25	(56)
				cells (IL2-R	
				bearing cells)	

^a Monoclonal antibodies from tissue culture supernatant

^b International Livestock Research Institute, Nairobi, Kenya

Parasite Immunology

Table 2 The reactivity of the antibodies specific for CD45 and CD45RO epitopes with the skin leukocytes of cattle with different levels of tick resistance

Cow tag	CD45	CD45RO
B907-S	+	+
B797-S	+	+
B639-S	+	+
B629-S	-	+
B615-S	-	+
B607-S	-	-
B809-R	+	+
B825-R	-	-
B821-R	-	-
B783-R	-	-
B679-R	-	-
B501-R	-	+/-

1	1
1 (eosinophils, neutrophils & MHC class	0
II antigen cells)	
0	1
2 (neutrophils & MHC class II antigen	2 (eosinophils & MHC class II antige
cells adjacent to the vesicle)	cells adjacent to the vesicle)
1 (neutrophils within vesicle and	1 (eosinophils within vesicles and
neutrophils and MHC class II antigen	eosinophils and MHC class II antigen
cells adjacent to the vesicle)	cells adjacent to the vesicle)
1 (neutrophils and eosinophils within	
vesicle)	
	1 (eosinophils, neutrophils & MHC class II antigen cells) 0 2 (neutrophils & MHC class II antigen cells adjacent to the vesicle) 1 (neutrophils within vesicle and neutrophils and MHC class II antigen cells adjacent to the vesicle) 1 (neutrophils and MHC class II antigen cells adjacent to the vesicle) 1 (neutrophils and eosinophils within

Parasite Immunology

Table 4 Inflammatory reaction in the skin of the cattle: parameters assessed in the epidermis and dermis and their scores

Туре			Naive			Susceptible Res							Resistan	sistant		
Cow tag	B407	B605	B573	B507	B857	B629	B639	B797	B615	B607	B821	B679	B783	B825	B50	
Epidermis																
Acanthosis	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
Apoptosis/necrosis	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	
Acantholysis	0	0	0	0	0	0	0	0	2	2	0	1	3	2	2	
Micro-abscess	2	0	0	0	0	2	2	2	2	1	0	2	3	2	2	
Subepidermal clefting	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	
Transepithelial leukocyte migration	2	0	0	0	0	2	3	1	2	2	0	2	3	2	2	
Hyperkeratosis - ortho	0	0	0	0	0	2	2	1	1	1	0	1	0	1	1	
Hyperkeratosis - para	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Dermis																
Oedema	0	0	0	0	0	1	2	1	1	2	1	2	2	2	2	
Collagen degeneration	0	0	0	0	0	2	2	1	1	1	1	2	2	2	2	
Vascular rexn/vasculitis	0	0	0	0	0	1	1	1	1	2	1	1	2	1	1	
Transendothelial leukocyte migration	0	0	0	0	0	3	2	1	1	2	1	1	2	1	1	
PMN/Eosinophil infiltrate	1	0	0	1	0	3	2	2	2	2	1	2	3	2	2	

Mononuclear cell infiltrate	0	0	0	0	0	3	2	2	1	2	1	1	3	1	1
Mast cell infiltrate	0	0	0	0	0	2	2	1	1	2	1	1	2	1	1
Total	5	0	0	1	0	23	22	13	16	19	7	16	25	17	17