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Abstract. Phase only spatial light modulators (SLMs) have become the tool of

choice for shaped light generation, allowing the creation of arbitrary amplitude and

phase patterns. These patterns are generated using digital holograms and are useful

for a wide range of applications as well as for fundamental research. There have

been many proposed methods for optimal generation of the digital holograms, all of

which perform well under ideal conditions. Here we test a range of these methods

under specific experimental constraints, by varying grating period, filter size, hologram

resolution, number of phase levels, phase throw and phase nonlinearity. We model

beam generation accuracy and efficiency and show that our results are not limited to

the specific beam shapes, but should hold for general beam shaping. Our aim is to

demonstrate how to optimise and improve the performance of phase-only SLMs for

experimentally relevant implementations.

1. Introduction

Light is an essential tool in a wide array of modern day applications from microscopy

to laser machining. Manipulating and controlling light therefore has been the focus of

much attention over the last several hundred years. This control has traditionally been

achieved with lenses and other fixed optical components, however in the modern era, an

even greater level of control can be obtained using dynamic components such as spatial

light modulators (SLMs) [1] and digital micromirror devices (DMDs). These computer

controlled devices can be programmed to generate almost any beam imaginable and are

now essential in a wide array of applications [2] including optical tweezers [3, 4, 5],

microscopy [6, 7], nanofibre mode coupling,[8], quantum information and imaging

[9, 10, 11], coherence tuning [12], super-resolution imaging [13] and atom trapping and

memories [14, 15, 16].

Though a light field is characterized by its both amplitude and phase, several

techniques have been developed to control this field through a pure phase modulation.

Our recent paper [17] compared experimentally a number of these techniques, directly
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testing their ability to recreate the desired intensity distribution, and indirectly testing

their phase by monitoring propagation. While that work was performed under optimum

conditions for our SLM device, many experiments are performed under restraints

dictated by the available device and methodology. Here we use numerical simulations

to test a range of beam generation methods under several, experimentally relevant, non-

ideal circumstances. Furthermore the evaluation of a complex fidelity parameter allows

us to explicitly assess both the intensity and phase fidelity of each method.

There are many approaches to beam shaping using phase modulation, including

multiple phase-holograms [18], iterative techniques [19, 20, 21] and the use of DMDs

[22, 23], however here we concentrate on beam shaping using a single phase-only SLM,

using non-iterative hologram generation techniques.

This paper begins with a summary of the beam generation techniques, followed by

an overview of the numerical method and definition of our quality metrics. The main

section outlines each variable or limitation to be considered and then presents our results

for beam accuracy, efficiency and composite quality (the power in the desired mode),

before drawing conclusions.

2. Numerical methods

The phase-only digital hologram generation methods considered in this work are based

on single-pass digital holograms, using diffraction from phase gratings to allow amplitude

and phase control. The first six methods, labelled A-F, are outlined in detail in

[17], following the same labelling. Method A is a naive approach which simply uses

the amplitude of the desired beam to control the grating depth, and therefore shape

the diffracted light intensity [17]. Method B uses a method inspired by the original

holography work by Gabor et al. [24] which interferes the input and desired fields

and uses the phase of the resulting field as the hologram. Method C modulates the

grating depth, in a similar way to method A, however uses a more rigorous analysis

of the relationship between grating depth and field amplitude [25]. Method D is an

adjustment to method C, suggested by Bolduc et at. [26] to account for an extra phase

term. Methods E and F again use a more rigorous approach to link the grating depth

and the desired intensity but find solutions involving sine functions, details of which can

be found in [27]. In addition to these, we test a further method based on pseudo-random

encoding, which we label Method G, and was suggested in [28]. This method achieves

amplitude modulation by inducing a randomly sampled phase error whose variance is

related to the desired amplitude.

Our simulation methodology is outlined schematically in Figure 1. We begin with

an input beam Ein(x, y) = Ain(x, y) exp(iφin(x, y)), which we model as a Gaussian beam

with 1/e2 waist size of 4.65 mm, chosen to represent a realistic beam size for common

SLM sizes of around 10 mm. A hologram H(x, y) is then generated from the input beam

and our desired beam Edes(x, y) = Ades(x, y) exp(iφdes(x, y)) using one of the methods

A-G. In the main results we simulate the generation of four different desired beams;
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Figure 1. Summary of numerical method. The input beam and desired beam are

defined to generate the hologram H. This phase is added to the input beam and the

output beam is Fourier transformed and filtered. The beam undergoes an inverse

Fourier transform to produce the final beam which is then compared to the desired

beam. Distances and focal lengths are given in millimeters.

a fundamental Gaussian, a single Laguerre-Gaussian mode (LG10,0), a superposition

of LG modes known as an optical Ferris wheel [29] and a non-propagating field with

intensity shaped as a ‘Laser class’ sailboat, and phase in the shape of a dog. The three

laser modes all have a desired beam waist of 0.9 mm 1/e2 radius.

The effect of the hologram is to generate an output beam after the SLM of

Eout(x, y) = Ein(x, y)eiH(x,y). (1)

In an experiment, this beam would be passed through an aperture in the Fourier

plane of the SLM to remove unwanted diffraction orders. We model this by taking the

2D Fourier transform of Eout(x, y) and multiplying by a filtering function. We filter using

a binary circular mask, centred on the position of the first diffraction order. The inverse

2D Fourier transform then returns the final field Ef (x, y) = Af (x, y) exp(iφf (x, y)) at the

detection plane. This field includes the phase tilt imposed by the grating and therefore

we subtract this phase tilt for comparison with the desired beam, equivalent to tilting

our detection plane to be perpendicular to the propagation direction of the first order

diffracted beam.

To gauge the quality of Ef we use three metrics, the accuracy of Ef in comparison

to Edes, the conversion efficiency and the compound quality. The accuracy is determined

by the complex fidelity [30]

F =
∣∣∣ 1

N

∫
Edes(x, y)E∗

f (x, y)dxdy
∣∣∣2, (2)

where N =
√∫
|Edes(x, y)|2dxdy ×

∫
|Ef (x, y)|2dxdy is a normalisation function

and the limits of the integrals are given by the grid we choose to calculate on. We

simulate our beams on a dense grid of 2400×2400 points, representing a physical size of

12×12mm. To simulate the effect of the pixelated nature of the SLM the holograms are
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calcuated at the reduced resolution of 600 × 600 and upscaled to 2400 × 2400 without

interpolation, unless otherwise stated. In general F is very close to 1, and to improve

clarity we plot our data logarithmically as − log10(1− F ).

The efficiency Peff is calculated by comparing the power in Ef and Ein using

Peff =

∫
|Ef (x, y)|2dxdy∫
|Ein(x, y)|2dxdy

, (3)

and the compound quality is simply the product of the quality and efficiency,

which can be considered to be a measure of the amount of power in the desired mode.

The compound quality can be useful to gauge the relative performance of the different

methods, though depending on the chosen application, accuracy or efficiency alone may

be a better metric.

3. Results

In this work we are interested in how the accuracy and efficiency of the beam generation

methods vary with certain experimentally relevant parameters. We first test the

perfomance of the methods when generating beams of varying spatial complexity, in

order to be confident that the later results are not a special case for the chosen beam

shapes, and hold for any general beam. We then explore the role of the grating period

and Fourier filter size before considering further experimentally relevant constraints.

There are several different SLM models on the market with a range of technical

specifications, and we explore the effect of varying a number of these specifications:

pixel number, number of grey levels, phase throw and phase response. Unless otherwise

noted, the default values for the simulation are as follows: grating period 5 pixels (20

when upscaled to 2400×2400), aperture radius 300 µm, hologram resolution 600×600 px,

hologram size 12 mm× 12 mm, grid size 2400× 2400, grey levels 256, phase throw 2π

and ideal linear phase response.

3.1. Modal Dependence

The accuracy and efficiency of all methods may be dependent on the shape of the desired

field. In order to test all possible beam shapes, we can gauge the performance of each

method while generating all modes of a complete, orthogonal basis. We choose the

modes of the Hermite-Gaussian (HG) basis, which are parameterised by their mode

order numbers n and m. As n and m are increased, the modes become more intricate,

with higher spatial frequency components. By testing the performance of the generation

methods across a range of HG modes of increasing n and m we can therefore test the

performance of the methods for any general beam. To fully map this basis, an infinite

number of measurements are required, however here we chose a sub-set of m,n < 20 for

practical reasons.

The results are shown in Figure 2 and show some general trends: the accuracy

remains broadly the same for all values of m,n for all methods, except method D which
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Figure 2. Measurements in a modal basis. a) Beam generation accuracy, plotted on

a log scale, b) absolute efficiency and c) composite quality results of methods A-G

generating a range of Hermite-Gaussian modes. The main graphs are zooms to show

detail while the insets (if present) show the overall data.

seems to show some decrease in quality for higher m,n. The efficiency is increasing

slightly for higher values of m,n and this can be attributed to the increased spatial

overlap between the input beam (Gaussian with 4.65 mm beam waist) and the desired

modes (all with beam waist 400µm). The main result however is that there is very

little overlap of the results for separate methods, illustrating that there is no strong

spatial dependence on the relative performance of the methods. This shows that the

performance of the methods should not be strongly dependent on the exact form of the

desired beam, and therefore the results shown in later sections should hold for general

beams.

3.2. Grating Period

All tested methods rely on diffraction from a grating to provide amplitude shaping

and increased mode purity. When choosing the grating period there is a tradeoff;

short periods increase the separation between the desired mode and the background

light in the Fourier plane, improving the spatial filtering and therefore mode quality,

whereas long grating periods have more ideal phase profiles which improves efficiency.

For simplicity we test grating periods with integer numbers of pixels per period and the

results are shown in Figure 3.

From Figure 3 we can identify three distinct regions. In the first region below

grating periods of 5 pixels there are very few pixels to specify the phase ramp and this

discretisation results in a ’stair case’ phase, reducing the the efficiency of the grating.

Between 5 and 15 pixels there is very little change in accuracy or efficiency as the grating

period is sufficient to represent the desired phase with little losses while also providing

sufficient spatial separation of the far field orders. Above 15 pixels there is a sharp

fall-off in accuracy and rise in efficiency. Here, the far-field orders are too close so that

light from the zero and first orders begin to overlap and interfere, significantly reducing

beam accuracy and spuriously increasing efficiency. Therefore, for these parameters, the

data would suggest that the grating period should be chosen within the range of 5-15
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Figure 3. Grating period results. Grating periods are stated before hologram

upscaling to 2400 × 2400. a) Beam generation accuracy, plotted on a log scale, b)

absolute efficiency and c) composite quality results of methods A-G generating the

desired beam shown on left.

pixels to avoid stair-case imprefections while still providing effective Fourier filtering.

The methods perform broadly similarly, with only method E having greatly reduced

accuracy, in line with the previous findings of [17]. Of note for these results however is

that method G, based on pseudo-random encoding obtains very similar accuracy and

efficiency for all grating periods. This method does not direct the background light into

the zero order, but spreads it randomly across the whole far-field and therefore suffers

less from light leaking from the zero order when the grating period is long. This could

be beneficial for applications requiring a range of grating periods such as multiple beam

generation, beam combining or beam steering.
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Figure 4. Aperture size results. a) Beam generation accuracy, plotted on a log scale,

b) absolute efficiency and c) composite quality results of methods A-G generating the

desired beam shown on left. The main graphs are zooms to show detail while the insets

(if present) show the overall data.

3.3. Aperture Size

The effect of the grating is to separate the desired beam from the background light in

the far-field. An aperture, centred on the correct diffraction order, is used to remove all

unmodulated light contributions. In reality however the diffracted spots are spatially

extended with some overlap that depends on the spatial frequencies present in the desired

pattern. The ideal aperture will be small enough to block out all background light, and

yet large enough to avoid filtering of high spatial frequencies. This is demonstrated in

column a) of Fig. Figure 4 by the position of the peak for the different beam profiles.

The efficiency shown in columns b) and c) vary with beam shape because far-

field filtering is a low-pass spatial frequency filter. Hence beams with only low spatial

frequency components, such as the Gaussian, are relatively unaffected by filter size.
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The LG beam and the optical ferris wheel contain only a few higher spatial frequency

components which are blocked for the lowest filter sizes, and the more intricate spatial

structure of the sailboat results in the increase of performance with aperture size.

Ideally, each method would separate the desired field from the background field

perfectly. In reality each method separates the desired and background fields differently.

Methods A to F achieve this by concentrating the background light in the zero diffraction

order. Instead method G randomly distributes the background field. This random

spreading means that the background light increases proportional to the area of the

filter, leading to poor fidelity for large filter sizes compared to all of the other methods.

Interestingly, the compound efficiency shown in Figure 4(c) shows that each method

performs similarly, suggesting that one can trade beam accuracy for efficiency simply

by altering the filter size. This may be useful for applications requiring either maximum

accuracy or efficiency at the expense of the other.

3.4. SLM Resolution

A digital hologram is an approximate, pixelated version of a continuous phase hologram,

with greater pixel numbers leading to a better approximation. Pixel number is restricted

by the physical resolution of the SLM and here we test the accuracy and efficiency of each

method while varying the pixel resolution. Each hologram is a square n × n hologram

with n being the resolution, with the physical size of the hologram fixed at 12×12mm and

the grating pixel period altered to keep the physical grating period constant (600µm).

The results are shown in Figure 5 and as expected, holograms defined with fewer pixels

produce beams with lower accuracy and efficiency simply because the pixelated phase

is not a good representation of the ideal phase. The increase in accuracy and efficiency

however starts to level off at modest pixel numbers of around 200×200 pixels, suggesting

that large numbers of pixels may not readily translate to large performance increases.

Method G again shows noteworthy behaviour, with an accuracy that rises sharply

with hologram resolution. This can be attributed to the statistical nature of the method,

indeed the authors of [28] describe the method as the realisation of the ’rule of large

numbers’.

3.5. Grey levels

In addition to pixelation, a real SLM will also discretise the desired phase, with

modern SLMs typically having 256 or more distinct phase levels. Here we investigate

the importance of this fine control by adjusting the number of distinct phase levels

represented in the hologram. This is achieved by calculating the exact phase of the

ideal hologram (to 32bit computer precision) and digitising into a specific number of

phase (grey) levels. We characterise the phase resolution in terms of ’bit depth’, where

2b discrete phase levels have a bit depth of b. The data in Figure 6 shows that the result

of changing the bit depth varies strongly with each method. For bit depths below 3

methods D and G have the best accuracy, but performance does not increase beyond
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Figure 5. Pixel number results. a) Beam generation accuracy, plotted on a log scale,

b) absolute efficiency and c) composite quality results of methods A-G generating the

desired beam shown on left.

a bit depth of 3. Conversely, methods C and F have the best ultimate performance at

high bit depths, with performance only levelling off at a bit depth of 7. The results

therefore suggest that systems with low bit depths would benefit from methods D and

G, whereas systems capable of higher bit depths achieve best results using methods C

and F. The efficiency performance is more straight forward, with all methods achieving

near peak efficiency at a bit depth of 4.

3.6. Phase Throw

Ideally one would use an SLM capable of full 2π phase modulation at the desired

wavelength, however if using an SLM designed for a shorter wavelength, or a cheaper

model, this may not be possible. In Figure 7 we show the performance of the different

methods when the hologram has a limited phase range. The holograms are first
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Figure 6. Bit depth results. a) Beam generation accuracy, plotted on a log scale,

b) absolute efficiency and c) composite quality results of methods A-G generating the

desired beam shown on left.

generated with a full 2π phase range before reducing the phase range not by simply

scaling the phase uniformly down, but preserving the gradient of the phase as much

as possible using a method initially suggested in [31]. The results show the expected

general trend towards increasing efficiency and accuracy for increasing phase depth. The

accuracy results show that all methods except method E reach peak performance before

2π. Noteworthy is the performance of method F, which reaches peak accuracy with only

π phase modulation, making it ideal for use with devices with reduced phase throw.

The efficiency results demonstrate the real strength of method E, which is designed

to achieve peak performance at reduced phase throws. The peak should appear around

the first minimum of the Bessel function of the first kind at 1.16π and indeed the results

show that the method achieves peak efficiency at 1.2π. It is worth noting at this stage

that the accuracy of method E throughout our investigation is low for light beams that
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Figure 7. Phase throw results. a) Beam generation accuracy, plotted on a log scale,

b) absolute efficiency and c) composite quality results of methods A-G generating the

desired beam shown on left.

comprise few modal components, i.e. the fundamental Gaussian, LG beam and Ferris

wheel, but comparable to other methods for the more complicated image of the sailboat.

3.7. Nonlinear Phase Response

SLMs are typically controlled by displaying a greyscale image through a secondary

monitor interface. The SLM interprets these greyscale values as a phase and modulates

the liquid crystals accordingly. A perfect device would have a linear response from

greyscale to phase, however in reality each device has a nonlinear response, most

commonly resembling an s-shaped curve. With proper calibration, this can be corrected,

but to determine how important this calibration is, we investigate the effect of

nonlinearity on the accuracy and efficiency of the hologram generation methods. We

model the nonlinearity by warping the linear phase response; we start by plotting 5
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Figure 8. Phase response results. a) Beam generation accuracy, plotted on a log scale,

b) absolute efficiency and c) composite quality results of methods A-G generating the

desired beam shown on left. The main graphs are zooms to show detail while the insets

(if present) show the overall data.

evenly spaced points on a straight line in the range 0-1 on both axes. The second and

fourth points are then displaced down and up by the ’phase nonlinearity’ factor. For

each set of points, the phase repsonse is recovered by fitting a cubic function through

the points and multiplying both axes by 2π. These shapes were phenomenologically

chosen to match the typical phase responses we have measured for SLM devices from a

range of manufacturers.

The effect of this phase nonlinearity is shown in Figure 8. The accuracy results show

the expected decrease in performance for all methods as the nonlinearity is increased,

however the efficiency results are less clear. In some cases, the efficiency (and compound

quality) is actually increasing for greater nonlinearities. The reasons for this are not

clear but may be attributed to a change in effective grating constant. The warping of
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the phase induced by the nonlinearity means that the grating is no longer directing all

light with the same angle, but rather has a spread of angles. This can divert unwanted

background light through the aperture, increasing the apparent efficiency, at the loss of

some accuracy. In any case, this information could be used to maximise the power of a

desired mode, albeit at the expense of beam accuracy.

More generally, until now, the five previous test criteria (grating period, filter size,

resolution, grey levels, phase throw) have had minimal impact on the accuracy of the

beam, indicating that the grating itself is very robust against all sorts of restrictions and

it is only the efficiency which suffers due to limited overlap with the ideal phase. Here

however, we see that the accuracy is strongly affected because the grating has become

warped through the inaccurate phase mapping, and the efficiency remains high or even

increases, in stark contrast to the previous results.

4. Conclusions

We have shown how the performance of several digital hologram generation methods

compares when certain experimentally relevant parameters are varied. We find that

the methods are largely spatial mode invariant, and hold for general beams. We find

that for our experimentally realistic test parameters, grating periods between 5 and

15 pixels produce optimum results and that method G is only weakly dependent on

period. Altering the Fourier filter size was found to trade accuracy for efficiency, which

may prove useful in applications where either parameter needs to be maximised. The

number of unique phase levels present in the hologram was found to vary strongly

with each method, with ultimate performance of method G being reached for as few

as 8 levels. Furthermore, near peak efficiency is reached for all methods with only 16

phase levels. Our test parameters also reveal that for all but method G, large pixel

numbers have little impact on beam accuracy, with as few as 200× 200 pixels reaching

very high performance levels, however efficiency continues to increase for large pixel

numbers. Again, method G stands out, and as the manifestation of the rule of large

numbers, performs extremely well with large pixel numbers. The available phase throw

is optimally 2π and we find that efficiency is indeed maximised for 2π, but recognise

that method F provides excellent results with only π phase modulation. A reduction

in phase throw also emphasises the benefits of method E, where it achieves optimum

performance at 1.2π. The nonlinear phase response inherent in real SLM devices was

found to have a large effect on beam accuracy, in contrast to the previous 5 constraints,

which broadly only affect efficiency. These insights should allow experimentalists to

choose the best method for their particular application, improving performance of a

wide range of applications.
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