Towards the cell-instructive bactericidal substrate: exploring the combination of nanotopographical features and integrin selective synthetic ligands

Fraioli, R. et al. (2017) Towards the cell-instructive bactericidal substrate: exploring the combination of nanotopographical features and integrin selective synthetic ligands. Scientific Reports, 7, 16363. (doi: 10.1038/s41598-017-16385-3) (PMID:29180787) (PMCID:PMC5703844)

[img]
Preview
Text
153302.pdf - Published Version
Available under License Creative Commons Attribution.

10MB

Abstract

Engineering the interface between biomaterials and tissues is important to increase implant lifetime and avoid failures and revision surgeries. Permanent devices should enhance attachment and differentiation of stem cells, responsible for injured tissue repair, and simultaneously discourage bacterial colonization; this represents a major challenge. To take first steps towards such a multifunctional surface we propose merging topographical and biochemical cues on the surface of a clinically relevant material such as titanium. In detail, our strategy combines antibacterial nanotopographical features with integrin selective synthetic ligands that can rescue the adhesive capacity of the surfaces and instruct mesenchymal stem cell (MSC) response. To this end, a smooth substrate and two different high aspect ratio topographies have been produced and coated either with an αvβ3-selective peptidomimetic, an α5β1-selective peptidomimetic, or an RGD/PHSRN peptidic molecule. Results showed that antibacterial effects of the substrates could be maintained when tested on pathogenic Pseudomonas aeruginosa. Further, functionalization increased MSC adhesion to the surfaces and the αvβ3-selective peptidomimetic-coated nanotopographies promoted osteogenesis. Such a dual physicochemical approach to achieve multifunctional surfaces represents a first step in the design of novel cell-instructive biomaterial surfaces.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Dalby, Professor Matthew and Tsimbouri, Dr Monica
Authors: Fraioli, R., Tsimbouri, P. M., Fisher, L. E., Nobbs, A. H., Su, B., Neubauer, S., Rechenmacher, F., Kessler, H., Ginebra, M.-P., Dalby, M. J., Manero, J. M., and Mas-Moruno, C.
College/School:College of Medical Veterinary and Life Sciences > School of Molecular Biosciences
Journal Name:Scientific Reports
Publisher:Nature Research
ISSN:2045-2322
ISSN (Online):2045-2322
Copyright Holders:Copyright © 2017 The Authors
First Published:First published in Scientific Reports 7(1):16363
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
615571Multiscale topographical modulation of cells and bacteria for next generation orthopaedic implantsMatthew DalbyEngineering and Physical Sciences Research Council (EPSRC)EP/K034898/1RI MOLECULAR CELL & SYSTEMS BIOLOGY