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Abstract 

Multifactorial Disease Risk Calculator is a web tool automating construction of multifactorial disease 

models from epidemiological findings. It provides a user friendly interface for doing this, extending a 

reported methodology based on a liability-threshold model in several ways. Multifactorial disease 

models incorporating all the following features in combination are handled: quantitative risk factors 

(including polygenic scores), categorical risk factors (including major genetic risk loci), stratified age of 

onset curves, and the partition of the population variance in disease liability into genetic, shared and 

unique environment effects. It allows the application of such models to disease pedigrees. Pedigree 

related outputs are (i) the disease pedigree liability distribution, (ii) individual disease risk for pedigree 

members, and (iii) n year disease risk for pedigree members. Risk prediction for each pedigree member 

is based on using the disease model to appropriately weigh evidence on disease risk available from 

personal attributes and family history. Evidence is used to construct the disease pedigree liability 

distribution. From this predictions of lifetime and n year risk can be calculated. Example disease models 

and pedigrees are provided at the website and are used in accompanying tutorials to illustrate the 

features available.  A command line version is available. Website: 

http://grass.cgs.hku.hk:3838/mdrc/current 
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Introduction 

Individual risk prediction for multifactorial disease is an important goal. Several websites addressing this, 

based on family history, have been developed (Facio et al. 2010; Yoon et al. 2009). Combining family 

history with known risk factors can improve risk prediction, and family history and polygenic score have 

been found to contribute to risk prediction in a complimentary manner (Do et al. 2012). Several similar 

risk prediction methodologies that combine family history with known risk factors have been developed 

(Campbell et al. 2010; Ruderfer, Korn, and Purcell 2010; So et al. 2011). Here we describe a web tool 

based on one of these. Although predictive power for multifactorial diseases will probably remain 

modest, decreasing assay costs and improvements in polygenic score accuracy, along with more 

accurate disease models, will increase the relevance of such predictions for health related decision 

making. Sources of bias and inaccuracy in such predictions are reviewed in (Do et al. 2012). By 

combining all available evidence risk predictions may be regarded as a data reduction step and in this 

regard may have utility in medical research (we do not develop that idea here).  

For many multifactorial diseases, a model can be specified based on existing research findings. Estimates 

for the relative contributions of genetic, shared environmental and unique environmental effects are 

often available from twin and adoption studies. Lifetime risk estimates are available from family and 

epidemiology studies. Lifetime risk often differs across population strata, the variable defining the strata 

(e.g. sex) being a risk factor for the disease. Many multifactorial diseases are not congenital. How onset 

relates to age is a disease characteristic, and is often described by an age of onset curve. Age of onset 

curves may also vary across population strata. Personal attributes such as age, sex, and polygenic score, 

along with family history for the disease, can be combined with a disease model developed from 

previous research findings, to predict individual risk. A method for doing this, based on a liability 

threshold model for multifactorial disease, has been developed and implemented in software (Campbell 

et al. 2010). This builds a prior disease liability distribution for the pedigree based on the pedigree 
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structure. From this, a posterior distribution is generated, by conditioning on pedigree members’ 

personal attributes including affection status. Pedigree member risks are predicted from this posterior 

liability distribution.  

Features 

The web tool extends the (Campbell et al. 2010) methodology in several ways: 

1. Derivation of the appropriate disease model from epidemiological findings is difficult when 

categorical risk factors are involved. A worked example is given in (Campbell et al. 2010), where a 

disease model is derived that accounts for Depression being twice as prevalent in females as males 

but this is a simple case. The web tool automates model derivation. How that is done is described 

below. 

2. Quantitative risk factors (e.g. BMI and polygenic score) can now be incorporated into the disease 

model. The risk factor’s impact on disease liability and how that is partitioned across genetic and 

environmental components has to be specified. 

3. Multiple categorical and/or quantitative risk factors can be modelled, and these can be correlated. 

How risk factors covary, for each genetic and environmental component of liability, must be 

specified. 

4. Shared environmental effect can now be modelled (in addition to additive genetics and non-shared 

environment). 

5. Expressed proportion of lifetime risk is a personal attribute of relevance for non-congenital diseases. 

It is the probability of a person having already manifested the disease (given their age etc.) given 

that they would ultimately do so if they lived long enough, and is a measure of the right censoring of 

affection status information. For each person, expressed proportion of lifetime risk is interpolated 

from their age and their age of onset curve. Previously it was assigned by age category.  
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6. Pedigree members’ n year risks can now be predicted. Inclusion criteria for several public screening 

programs are based on this. 

7. Pedigrees containing twin relationships can now be specified 

8. The web tool also performs more rigorous checks of the pedigree’s and the disease model’s validity. 

 

Categorical risk factors are incorporated into a multifactorial disease model as follows. For each risk 

factor category, the user specifies its population frequency, and relative risk (relative to an arbitrarily 

chosen reference category). How the liability explained by the risk factor is split up over the genetic and 

environmental components of liability must also be specified. The disease is modelled using a liability 

threshold model in which the population liability distribution is a mixture distribution of risk factor strata 

liability distributions. The mixture proportions are the frequencies of the risk factor strata. The liability 

distribution within each stratum is assumed to be Gaussian. The means of these liability distributions are 

allowed to differ across strata, but their variances are constrained to be equal. The population liability 

distribution is further constrained to have a mean of 0 and variance of 1. The per strata means, the 

within-stratum variance, and the appropriate critical threshold can then be found by solving a set of 

non-linear simultaneous equations.  

 

To allow an n category risk factor to be incorporated into the disease model, the user must supply 

 K = Disease lifetime risk 

 𝑚𝑖 = the relative risk for 𝑖th non-reference stratum (of which there are 𝑛 − 1).These 𝑚𝑖 being 

the risks relative to an arbitrarily chosen reference stratum 

 𝑓𝑖 = the frequency of the 𝑖th non-reference stratum 
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Given these inputs, the frequency and lifetime risk for all strata can be directly calculated. It is then 

possible to specify n simultaneous equations in n unknowns (for the purposes of this exposition the 

reference stratum is the nth stratum). These equations are 

∫ 𝜑(𝜇𝑖 , 𝜎2)

∞

𝑇

𝑑𝑥 = 𝑚𝑖 ∫ 𝜑(𝜇𝑛, 𝜎2)

∞

𝑇

𝑑𝑥 

𝑟𝑛 = ∫ 𝜑(𝜇𝑛, 𝜎2)
∞

𝑇

𝑑𝑥 

where 

 𝜑 is the Gaussian probability density function 

 𝜎2 = 1 − ∑ (𝑓𝑖𝜇𝑖
2)𝑛

𝑖=1   is the intra stratum liability variance 

the n unknowns being 

 T = critical threshold of liability 

 𝜇𝑖= liability mean for 𝑖th non-reference stratum 

These simultaneous equations are solved iteratively. Based on experimentation, we settled on using 

different optimisation methods depending on the number of risk factor categories  

 n=2 – BFGS (Broyden et al. 1970) 

 n>2 – Nelder-Mead (Nelder and Mead 1965) 

The optimisation algorithms iteratively improve their guess of the unknown parameters’ values by 

measuring the discrepancy between the target strata risks (previously calculated), and the strata risks 

that would follow given the current guess. The discrepancy function used is 
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𝑑 =
𝒇′[(𝒓 − �̃�)𝟐] + (

1

𝑛
) 𝟏′[(𝒓 − �̃�)𝟐] , 𝑖𝑓 𝜎2 ≥ 0

2 − 𝜎2 , 𝑖𝑓 𝜎2 < 0
 

where 

 𝒓 = the target per strata lifetime risks  

 �̃� = the per strata lifetime risks according to the current guess 

Considering this function when 𝜎2 ≥ 0, the idea here is that if one of the two terms is satisfied then the 

other term will dominate. The first term is the population average of the squared Euclidean distance of �̃� 

from the target.  Optimisation using this term alone as the discrepancy performed poorly for risk factors 

that contained one or more rare categories. The extra term up-weighs rare categories guarding against 

the possibility of a good population fit coming at the price of a disastrous fit for rare strata. 

It is possible for the unknowns to take values that imply the liability variance explained by the risk factor 

strata exceeds 1. This is invalid given that the population liability variance constraint, and manifests as 

𝜎2 being negative. This scenario must be handled as there is nothing preventing such guesses being 

made during optimisation. The rationale in this scenario is as follows. When 𝜎2 ≥ 0 then 𝑑 < 2, 

whereas when 𝜎2 < 0 then 𝑑 > 2. Consequently 𝑑 for an invalid guess is guaranteed to be worse than 

𝑑 for any valid guess. Also the more negative 𝜎2 is, the worse 𝑑 is. Thus the discrepancy function 

gradient points in the direction of the valid parameter space. 

Example disease models and pedigrees are available via the website. These are used in accompanying 

tutorials to explain the features available. Disease models have been pre-specified for several common 

multifactorial diseases. Text specifying the disease model can be uploaded, edited and saved via the 

web interface. The text is monitored, and in response to edits, an attempt is made to build the disease 

model. If successful the constructed disease model is reported, otherwise an appropriate error is 
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reported. Pedigree information can be uploaded, edited and saved via the web interface. The pedigree 

information is monitored, and in response to edits, the validity of pedigree information is checked, and 

detected errors reported. If valid then the corresponding pedigree diagram is generated and displayed. 

Pedigree information is specified in the most commonly used ped/linkage format. This is a flat file 

format with one line per pedigree member. The first four variables of each line (pedigree id, person id, 

father id and mother id) define pedigree structure. These along with the following two variables (sex 

and affection status) allow classic disease pedigree diagrams to be constructed. Further variables are 

optional, although in the context of this website several such have special meanings (e.g. age is relevant 

for non-congenital disease models). Pedigrees are modified by editing ped-formatted text. Some 

pedigree software allows graphical editing of pedigrees. We don’t find this a great advantage; pedigree 

diagram generation mitigates against the difficulty of visualising the pedigree information, and the 

website’s main purpose is risk prediction not pedigree specification. Comment lines are supported. This 

allows persons to be quickly removed from and restored to the pedigree. Once a valid disease model 

and pedigree have been specified, individual risk for the pedigree members can be calculated.  

A command line version of the risk prediction program is available that provides some extra 

functionality. In particular it writes to file a sample dataset drawn from the disease pedigree’s posterior 

liability distribution. An idea of risk prediction precision can be obtained by running the risk prediction 

repeatedly. The command line program allows a more formal estimation of risk prediction precision. 

Also downloadable is documentation, in particular regarding how categorical risk factors are handled, 

and the testing done to validate the software.  

Implementation 

The program is written in R (Team 2016) and C++. The website was built using R package shiny (Chang et 

al. 2015). R package kinship2 is responsible for much of the pedigree related functionality (Sinnwell, 
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Therneau, and Schaid 2014). A Gibbs sampler (written in C++ for speed) is incorporated using R package 

Rcpp (Eddelbuettel and François 2011). 

Conclusion 

Multifactorial Disease Risk Calculator is a web tool automating construction of multifactorial disease 

models from epidemiological findings. It allows the application of such models to disease pedigrees. 

Pedigree related outputs are (i) the disease pedigree liability distribution, (ii) individual disease risk for 

pedigree members, and (iii) n year disease risk for pedigree members. Availability: 

http://grass.cgs.hku.hk:3838/mdrc/current 
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