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Abstract

In the present work a novel multiple scales asymptotic homogenization approach is proposed

to study the effective properties of hierarchical composites with periodic structure at different

length scales. The method is exemplified by solving a linear elastic problem for a composite

material with layered hierarchical structure. We recover classical results of two-scale and reiter-

ated homogenization as particular cases of our formulation. The analytical effective coefficients

for two phase layered composites with two structural levels of hierarchy are also derived. The

method is finally applied to investigate the effective mechanical properties of a single osteon,

revealing its practical applicability in the context of biomechanical and engineering applications.

Keywords: Multiple scales, homogenization, hierarchical composite.

1. Introduction

Several biological and man-made materials exhibit a hierarchical structure at more than

two length scales. The fascinating properties of biological composites are largely due to their

unique structures, which are thought to be intimately related to the hierarchical and functional

relationships between each of the scales ([1]). There exist several hierarchical materials in

nature, including lotus leaves, kidney’s glomerules, bones, etc. Applications of hierarchical

composites include, but are not limited to, tissue engineering of biomimetic artificial tissues,

drug delivery in healthy and malignant tissues, structural design ([1, 2, 3, 4]).

Modeling is a useful tool for predicting the effective behavior of heterogeneous media with

periodic structure. Several analytical and computational models have been proposed to cal-
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culate the mechanical properties of hierarchical structures, such as those characterizing bones.

Asymptotic homogenization, continuum micromechanics methods, composite materials lami-

nate theory and finite-element methods have been used in the analysis of their mechanical

properties ([5, 6, 7, 8, 9, 10, 11]). The method of reiterated homogenization ([12, 13, 14, 15])

has been also considered in the study of hierarchical heterogeneous composites. For instance,

under the assumption that y = x/ε and z = x/ε2, rigorous results concerning to multiscale

convergence were obtain in [12]. The authors computed the homogenized coefficients by means

of a regular power series expansion uε(x,y, z) = u0(x,y, z) +u1(x,y, z)ε+u2(x,y, z)ε2 + . . .

in terms of a smallness parameter ε. Furthermore, [16] generalized the theory described in

[12] to elasticity via Γ-convergence, and showed that the technique can be in principle applied

to compact bone and for several structural levels of organization. The authors assumed the

elasticity tensor as a function of multiple scales y1, ...,yn, provided that y1 = x/ε,...,yn = x/εn.

A method to determinate the effective elastic properties of composites with a multiscale hier-

archical structure is also suggested in [17], wherein power series expansions for each level are

introduced. Using this method recurrent sequences of local and averaged elasticity problems

are stated for the different structural levels. In [13] the authors gave rigorous results concerning

reiterated homogenization (applied to the heat equation for composites) assuming the existence

of various scales x/εk(ε), k = 1, ..., n with limε→0 εk = 0 for k = 1, ..., n and limε→0 εi+1/εi = 0

for i = 1, ..., n− 1.

In [18], a further generalization of reiterated homogenization is introduced via a three-scale

convergence approach which provides a topological framework where the two arising asymptotic

parameters independently approach zero. Here we do not deal with a rigorous multiscale

convergence setting, as our chief motivation resides in the direct application of asymptotic

homogenization to actual composites of practical interest. Hence, we follow a formal approach,

by accounting for a novel series expansion in terms of two distinct scaling parameters ε1 and ε2

(following the ideas reported in [18]) such that ε2 is not a function depending on ε1, as is the

case in [13]. The approach proposed in the present work is exploited to investigate the effective

properties of hierarchical composites at each structural level. In particular, this new approach is

applied to a linear elastic composite with a hierarchical structure where the effective properties

at the lower structural level become the inputs for the problems arising at the higher one. We

note that the present technique recovers the results from reiterated homogenization and classical

two scales homogenization (assuming only one structural level) as particular cases. Moreover,

analytical expressions for the effective coefficients of a two phase hierarchical layered composite

are derived. Finally, the method is applied to investigate the effective mechanical properties

of a single osteon and the results are successfully compared with numerical and experimental
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data.

2. The linear elastic problem for a three-scales composite

Let us denote by Ω ⊂ R3 a periodic composite material possessing two hierarchical levels of

organization characterized by the small parameters ε1 and ε2 and where the inclusions do not

intersect the boundaries (Figure 1).

ε1-structural level

At the ε1-structural level, the domain Ω is occupied by a two-phase periodic composite

such that Ω = Ω
ε1
1 ∪ Ω

ε1
2 , Ωε1

1 ∩ Ωε1
2 = ∅. In particular, we assume that Ωε1

1 = ∪Nα=1 αΩε1
1

and the interface between Ωε1
1 and Ωε1

2 is denoted by Γε1 .

ε2-structural level

At the ε2-structural level, we consider that for each α = 1, . . . , N , αΩε1
1 is a two-phase

periodic composite material. Then, we define αΩ
ε1
1 = Ω

ε2
1 ∪ Ω

ε2
2 , Ωε2

1 ∩ Ωε2
2 = ∅ and the

interface between Ωε2
1 and Ωε2

2 is denoted by Γε2 .

¶W

1
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Figure 1: Zooming around a point x of the domain. (i) Composite periodic material. (ii) Periodic cell at the

ε1-structural level. (iii) Periodic cell at the ε2-structural level. Asymptotic homogenization is acceptable in the

interior of the domain Ω, where periodicity at each structural level can be assumed.

We assume that all constituents of the hierarchical composite behave as linear elastic materials

with constitutive relationship for the stress tensor given by,

σ = Cξ(u),

where

ξ(u) =
∇u+∇uT

2
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is the elastic strain tensor and u = u(x) = (u1(x), u2(x), u3(x)) is the elastic displacement with

x = (x1, x2, x3). The fourth rank tensor C with components Cijkl (i, j, k, l = 1, 2, 3) denotes the

stiffness tensor, which is assumed to be smooth and satisfies the standard (minor and major)

symmetries and positive definiteness, i.e., component-wise

Cijkl = Cjikl = Cijlk = Cklij and Cijklηijηkl ≥ κηijηij,

respectively, where η is a second order symmetric tensor and κ > 0 is a constant. Then,

ignoring inertia and volume forces, the problem in Ω reads

(P ε)


∇ · [Cεξ (uε)] = 0 in Ω \ (Γε1 ∪ Γε2),

uε = ū on ∂Ωd,

Cεξ (uε) · n = S̄ on ∂Ωn,

(1)

where ū and S̄ are the prescribed displacement and traction on the boundary ∂Ω = ∂Ωd∪ ∂Ωn

with ∂Ωd ∩ ∂Ωn = ∅ and n is the outward unit vector normal to the surface ∂Ω. Moreover,

continuity conditions for displacement and traction are imposed on both Γε1 and Γε2 , i.e.

JuεK = 0,
r
Cεξ (uε) · nj

z
= 0 (j = y, z), (2)

where ny = (ny1, n
y
2, n

y
3) and nz = (nz1, n

z
2, n

z
3) represent the outward unit vectors to the surfaces

Γε1 and Γε2 , respectively. The operator J•K denotes the jump across the interface between the

two constituents.

Table 1 lists the symbols used in this work.

Symbol Description

Ω Three-dimensional domain.

εk Small parameters (k = 1, 2).

Ωεk
1 Collection of N disjoints inclusions at the εk-structural level.

Ωεk
2 Matrix (or host) domain at the εk-structural level.

Γεk Interface between Ωεk
1 and Ωεk

2 at the εk-structural level.

Y Unit cell at the ε1-structural level.

Z Unit cell at the ε2-structural level.

Γy Restriction of the Γε1 on its periodic cell.

Γz Restriction of the Γε2 on its periodic cell.

C Stiffness tensor.

u Elastic displacement.

n Outward unit vector normal to the surface ∂Ω.
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ny ny = (ny1, n
y
2, n

y
3) represents the outward unit vector to the surface Γε1 .

nz nz = (nz1, n
z
2, n

z
3) represents the outward unit vector to the surface Γε2 .

∇j Nabla operator with respect to j = x,y, z.

ξj(u) Elastic strain tensor defined by
(
∇ju+∇ju

T
)
/2.

〈•〉y Volume average over the periodic cell Y .

〈•〉z Volume average over the periodic cell Z.

| • | Volume fraction of •.
J•K Jump across the interface taken from the matrix to the inclusions.

Table 1: Nomenclature.

3. Three scales asymptotic homogenization technique

We consider three different scales, namely d1, d2 and L, which characterize the different

structural sizes and assume that they are well-separated, i.e.

ε1 =
d1
L
� 1 and ε2 =

d2
d1
� ε1. (3)

Using relation (3), two formally independent variables are introduced, namely

y =
x

ε1
and z =

x

ε2
. (4)

Moreover, we assume that each field and material property is y- and z-periodic. As a conse-

quence of the performed spatial scale decoupling (4) and using the chain rule, we obtain,

∇x → ∇x + ε−11 ∇y + ε−12 ∇z . (5)

We now assume that the elastic displacement uε can be represented as a power series in terms

of the small parameters ε1 and ε2, namely

u(x,y, z) = ũ(x,y, z) +
∞∑
i=1

ui(x,y, z)εi1 +
∞∑
i=1

u∗i (x,y, z)εi2

= u(0)(x,y, z) +
∞∑
i=1

u∗i (x,y, z)εi2, (6)

where we have defined u(0) as

u(0)(x,y, z) = ũ(x,y, z) +
∞∑
i=1

ui(x,y, z)εi1. (7)
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Since the quantities involved vary on the y and z scales, the following cell average operators

are defined

〈•〉y =
1

|Y |

∫
Y

• dy and 〈•〉z =
1

|Z|

∫
Z

• dz,

where |Y | and |Z| represent periodic cell volumes. Here and subsequently (unless necessary),

the variable dependence is dropped out for convenience.

3.1. Homogenization procedure

Given a power series representation of the type (6), it is not necessary to assume that every

asymptotic parameter is a function of only one of them as done in other works ([12, 13, 15]).

In particular, here ε2 is not a function of ε1 and vice versa. However, it is clear that such a

procedure can be reasonably carried out only when ε2 � ε1.

The proposed homogenization technique is applied as follows. First, we substitute expansion

(6) into (1) and (2), use the chain rule (5) and equate in powers of ε2 “freezing” the small

parameter ε1. This procedure allows to find the effective elastic properties at the ε2-structural

level and use the results as the inputs for the problems arising at the ε1-structural level when

equating in powers of ε1. Then, we suggest three main steps in order to find the effective

coefficients.

Step 1: Substitute expansion (6) into (1); use result (5) and multiply by ε22,

ε22∇x ·

[
Cεξx

(
u(0) +

∞∑
i=1

u∗i ε
i
2

)]
+

+ε22ε
−1
1

{
∇x ·

[
Cεξy

(
u(0) +

∞∑
i=1

u∗i ε
i
2

)]
+∇y ·

[
Cεξx

(
u(0) +

∞∑
i=1

u∗i ε
i
2

)]}

+ε2

{
∇x ·

[
Cεξz

(
u(0) +

∞∑
i=1

u∗i ε
i
2

)]
+∇z ·

[
Cεξx

(
u(0) +

∞∑
i=1

u∗i ε
i
2

)]}

+ε22ε
−2
1 ∇y ·

[
Cεξy

(
u(0) +

∞∑
i=1

u∗i ε
i
2

)]
+

+ε2ε
−1
1

{
∇y ·

[
Cεξz

(
u(0) +

∞∑
i=1

u∗i ε
i
2

)]
+∇z ·

[
Cεξy

(
u(0) +

∞∑
i=1

u∗i ε
i
2

)]}
+

+∇z ·

[
Cεξz

(
u(0) +

∞∑
i=1

u∗i ε
i
2

)]
= 0. (8)

In (8), ξj denotes the elastic strain tensor and the sub-index j indicates that the derivative
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is applied with respect to j, where j = x,y, z. Analogously, interface conditions (2) read,

q
u(0) + u∗1ε2 + . . .

y
= 0, (9)

r
Cε
[
ξz
(
u(0)

)
+ ε2

(
ε−11 ξy

(
u(0)

)
+ ξx

(
u(0)

)
+ ξz (u∗1)

)]
· nz + . . .

z
= 0, (10)

r
Cε
[
ξy
(
u(0)

)
+ ε1

(
ε−12 ξz

(
u(0)

)
+ ξx

(
u(0)

)
+ ξz (u∗1)

)]
· ny + . . .

z
= 0. (11)

Step 2: Equate in powers of ε2 in (8), (9) and (10).

(i) To O(ε02)

∇z ·
[
Cεξz

(
u(0)

)]
= 0 in Z \ Γz, (12)

q
u(0)

y
= 0 on Γz, (13)

q
Cεξz

(
u(0)

)
· nz

y
= 0 on Γz. (14)

Since the right hand side of the first equation (12) is zero, the solvability condition

is satisfied ([19]). Then, it is deduced that,

u(0) = u(0)(x,y)⇔

ũ = ũ(x,y),

ui = ui(x,y),

i.e. the homogeneity of (12)-(14) leads to a periodic z-constant solution.

(ii) To O(ε2)

∇z · [Cεξz (u∗1)] = −∇z ·
{
Cε
[
ξx
(
u(0)

)
+ ε−11 ξy

(
u(0)

)]}
in Z \ Γz. (15)

Using the fact that ξz
(
u(0)

)
= 0,

Ju∗1K = 0, JCεξz(u∗1) · nzK = −
r
Cε
[
ξx(u(0)) + ε−11 ξy(u(0))

]
· nz

z
on Γz. (16)

Then, by the z-periodicity of Cε and the solvability condition, equation (15) has a

z-periodic solution which is unique up to an additive constant. In particular, since

the problem is linear and u(0) does not depend on z, u∗1 can be written as

u∗1(x,y, z) = χ∗(x,y, z)U (0)(x,y), (17)

where χ∗ is a y- and z-periodic function and

U (0)(x,y) = ξx
(
u(0)(x,y)

)
+ ε−11 ξy

(
u(0)(x,y)

)
.
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Substituting (17) in (15) and (16), we find that χ∗ satisfies the local problem

∇z · [Cε +Cεξz (χ∗)] = 0 in Z \ Γz, (18)

Jχ∗K = 0 on Γz, (19)

J(Cε +Cεξz (χ∗)) · nzK = 0 on Γz. (20)

Equations (18)-(20) represent the ε2-cell problem. The condition 〈χ∗〉z = 0 is im-

posed in order to guarantee uniqueness.

(iii) To O(ε22) and using (17),(
∇x + ε−11 ∇y

)
·
[
CεU (0) +Cεξz (χ∗)U (0)

]
+∇z ·

[
Cεξx

(
χ∗U (0)

)
+ ε−11 C

εξy

(
χ∗U (0)

)]
+∇z · [Cεξz (u∗2)] = 0 in Z \ Γz. (21)

The application of the average operator 〈•〉z to (21) and taking into account the

z-periodicity of the involved functions, gives(
∇x + ε−11 ∇y

)
Č
ε
U (0) = 0 in Ωε1

1 , (22)

where

Č
ε

= 〈Cε +Cεξz (χ∗)〉z (23)

is the effective coefficient at the ε1-structural level. Note that: (i) the derivative in

(22) depends on the small parameter ε1 and (ii) Č
ε

= Č
ε
(x,y).

At this point we remark that equation (23) allows to obtain the effective properties of the

material at the ε1-structural level and which become the input values in order to find the

effective behavior of the hierarchical composite. Now, using representation (7) in equation (22)

and multiplying the result by ε21, we have

ε21∇x ·

[
Č
ε
ξx

(
ũ+

∞∑
i=1

uiε
i
1

)]

+ε1

{
∇x ·

[
Č
ε
ξy

(
ũ+

∞∑
i=1

uiε
i
1

)]
+∇y ·

[
Č
ε
ξx

(
ũ+

∞∑
i=1

uiε
i
1

)]}

+∇y ·

[
Č
ε
ξy

(
ũ+

∞∑
i=1

uiε
i
1

)]
= 0 in Y \ Γy. (24)

Besides, from (13),

q
ũ+ u1ε1 + u2ε

2
1 + . . .

y
= 0 on Γy (25)
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Now, substituting (17) in (11) and taking into account that u(0) is z-constant,

t

ε1Č
ε
ξx

(
ũ+

∞∑
i=1

uiε
i
1

)
· ny + Č

ε
ξy

(
ũ+

∞∑
i=1

uiε
i
1

)
· ny

+ε1Č
ε
ξz (χ∗) ξx

(
ũ+

∞∑
i=1

uiε
i
1

)
· ny + Č

ε
ξz (χ∗) ξy

(
ũ+

∞∑
i=1

uiε
i
1

)
· ny + . . .

|

= 0. (26)

Note that the continuity interface condition for the traction (2) on the surface Γε2 is written

in terms of Cε. However, that relationship holds in the physical domain, whereas we are

now tackling the homogenization process at the higher (ε1) structural level, whose effective

mechanical response is indeed given by the elasticity tensor Č
ε
(x,y) provided by (23).

Step 3: Equating in powers of ε1.

(i) To O(ε01) in (24), we have

∇y ·
[
Č
ε
ξy (ũ)

]
= 0 in Y \ Γy (27)

and using the solvability condition,

ũ = ũ(x).

Moreover, from (25) and (26), and applying the cell average operator over Z,

JũK = 0 and
r
Č
ε
ξy(ũ) · ny

z
= 0 on Γy.

(ii) To O(ε1) in (24)-(26), using the fact that ξy (ũ) = 0 and applying the cell average

operator over Z,

∇y ·
[
Č
ε
ξy (u1)

]
= −∇y ·

[
Č
ε
ξx (ũ)

]
in Y \ Γy, (28)

and

Ju1K = 0 and
r
Čεξy (u1) · ny

z
= −

q
Čεξx (ũ) · ny

y
on Γy. (29)

By the y-periodicity of Č
ε

and the solvability condition, equation (28) has a y-

periodic solution which is unique up to an additive constant. In particular, since the

problem is linear and ũ does not depend on y, u1 can be written as

u1(x,y) = χ(x,y)ξx (ũ(x)) , (30)
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where χ is a y-periodic function. Substituting (30) in (28) and (29), we get that χ

is the solution of,

∇y ·
[
Č
ε

+ Č
ε
ξy (χ)

]
= 0 in Y \ Γy, (31)

JχK = 0 on Γy, (32)
r(
Č
ε

+ Č
ε
ξy (χ)

)
· ny

z
= 0 on Γy. (33)

Equations (31)-(33) represent the ε1-cell problem. The condition 〈χ〉y = 0 is imposed

to guarantee uniqueness.

(iii) To O(ε21) in (24) and using (30)

∇x ·
[
Č
ε
ξx (ũ)

]
+∇x ·

[
Č
ε
ξy (χ) ξx (ũ)

]
+∇y ·

[
Č
ε
ξx (χξx(ũ))

]
+∇y ·

[
Č
ε
ξy (u2)

]
= 0 in Y \ Γy. (34)

Applying the average operator 〈•〉y to equation (34) and taking into account the

y-periodicity of the functions involved, it rewrites as

∇x ·
[〈
Č
ε

+ Č
ε
ξy (χ)

〉
y
ξx (ũ)

]
= 0 in Ω (35)

Analogously, boundary conditions for (35) are

ũ = ū, (36)

[Cε +Cεξz (χ∗)]
(
ξx (ũ) + ξy (χ) ξx (ũ)

)
· n = S̄ on ∂Ω. (37)

By applying the cell average operators over Z and Y , the boundary condition (37) rewrites

Ĉξx (ũ) · n = S̄.

Finally, the homogenized problem is

(P h)


∇x ·

[
Ĉξx (ũ)

]
= 0 in Ω,

ũ = ū on ∂Ωd,

Ĉξx (ũ) · n = S̄ on ∂Ωn,

where

Ĉ =
〈
Č
ε

+ Č
ε
ξy (χ)

〉
y

(38)

is the effective stiffness tensor of the hierarchical composite material.
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Remark 1. Applying the same procedure to the heat equation the same results in [15] are
obtained, in such a case ε1 = ε and ε2 = ε2. Furthermore, the classical results from the two
scales asymptotic homogenization approach are attained assuming that ε1 = ε and ε2 = 0, see
for example [19, 20].

Remark 2. The series expansion in (6) can be generalized when more length scales are con-
sidered, namely ε1, ε2, . . . , εN with N ∈ N. In such a case,

u(x,y1,y2, . . . ,yN) = ũ(x,y1,y2, . . . ,yN) +
N∑
k=1

∞∑
i=1

ui(x,y1,y2, . . . ,yN)εik,

with yk = x/εk.

4. Effective coefficients for hierarchical layered materials with two structural levels

Consider a hierarchical layered composite where the laminates at both structural levels are

oriented along the x3 axis and thus, the properties only change in the x3 direction (Fig. 2).

Moreover, we assume that Cε is a piece-wise constant tensor. In this sense, the parametric

3

2
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x

3
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x

x

1

1

1
L

2
L

1
l

2
l

1

2

2

1

2

2

Figure 2: Two level hierarchical layered composite where the laminates are oriented along the x3 axis.

dependence of the ε2-cell problem on the variables y and x is lost given that χ∗ depends only

on z and Č, which is averaged on z, will be piece-wise constant. Therefore, χ depends only

on y and Ĉ will be also piece-wise constant. Finally, both, the ε1 (equations (18)-(20)) and ε2

(equations (31)-(33)) cell problems reduce to ordinary differential equations in the variable z3

and y3, respectively,

d

dz

[
Cε
i3kl(z) + Cε

i3p3(z)
d
(∗χklp (z)

)
dz

]
= 0 in Z \ Γz, (39)

d

dy

[
Čε
i3kl(y) + Čε

i3p3(y)
d
(
χklp (y)

)
dy

]
= 0 in Y \ Γy, (40)

where the notation z3 := z and y3 := y has been adopted. Equations (39)-(40) are to be

supplemented by the one dimensional counterparts of (19)-(20) and (32)-(33), respectively,

which are the continuity and jump conditions of the auxiliary variables.
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From equation (39),

Cε
i3p3

d
(∗χklp )
dz

= A∗i3kl − Cε
i3kl

where A∗i3kl are constants. Multiplying by
(
Cε
p3i3

)−1
,

d
(∗χklp )
dz

=
(
Cε
p3i3

)−1
A∗i3kl −

(
Cε
p3i3

)−1
Cε
i3kl. (41)

and averaging the last equation over Z〈(
Cε
p3i3

)−1〉
z
A∗i3kl =

〈(
Cε
p3i3

)−1
Cε
i3kl

〉
z
,

where was taken into account the z-periodicity of ∗χklp . Then,

A∗i3kl =
〈(
Cε
i3p3

)−1〉−1
z

〈(
Cε
p3s3

)−1
Cε
s3kl

〉
z
. (42)

Now, substituting (42) in (41),

d
(∗χklp )
dz

=
(
Cε
p3i3

)−1 〈
(Cε

i3s3)
−1〉−1
z
〈
(Cε

s3t3)
−1Cε

t3kl

〉
z −

(
Cε
p3i3

)−1
Cε
i3kl (43)

and (43) in (23),

Čε
ijkl =

〈
Cε
ijkl + Cε

ijp3

[(
Cε
p3s3

)−1 〈
(Cε

s3t3)
−1〉−1
z
〈
(Cε

t3m3)
−1Cε

m3kl

〉
z −

(
Cε
p3s3

)−1
Cε
s3kl

]〉
z
.

Then, the expression for the effective coefficients at the ε1-structural level is

Čε
ijkl =

〈
Cε
ijkl

〉
z +

〈
Cε
ijp3

(
Cε
p3s3

)−1〉
z

〈
(Cε

s3t3)
−1〉−1
z
〈
(Cε

t3m3)
−1Cε

m3kl

〉
z

−
〈
Cε
ijp3

(
Cε
p3s3

)−1
Cε
s3kl

〉
z
.

Equation (40) is handled in much the same way. Then,

d
(
χklp
)

dy
=
(
Čε
p3i3

)−1 〈(
Čε
i3p3

)−1〉−1
y

〈(
Čε
p3s3

)−1
Čε
s3kl

〉
y
−
(
Čε
p3i3

)−1
Čε
i3kl (44)

and substituting (44) into (38) gives

Ĉijkl =

〈
Čε
ijkl + Čε

ijp3

[(
Čε
p3s3

)−1 〈(
Čε
s3t3

)−1〉−1
y

〈(
Čε
t3m3

)−1
Čε
m3kl

〉
y
−
(
Čε
p3s3

)−1
Čε
s3kl

]〉
y
.

Finally, the expression for the effective coefficients of the hierarchical layered composite is

Ĉijkl =
〈
Čε
ijkl

〉
y +

〈
Čε
ijp3

(
Čε
p3s3

)−1〉
y

〈(
Čε
s3t3

)−1〉−1
y

〈(
Čε
t3m3

)−1
Čε
m3kl

〉
y

−
〈
Čε
ijp3

(
Čε
p3s3

)−1
Čε
s3kl

〉
y
. (45)
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Remark 3. In order to compute the effective coefficients for different orientations it is suffi-
cient to make a rotation of the stiffness tensor. In this sense, the following transformation is
useful ([21])

R =


R2

11 R2
12 R2

13 2R12R13 2R13R11 2R11R12

R2
21 R2

22 R2
23 2R22R23 2R23R21 2R21R22

R2
31 R2

32 R2
33 2R32R33 2R33R31 2R31R32

R21R31 R22R32 R23R33 R22R33 +R23R32 R23R31 +R21R33 R21R32 +R22R31

R31R11 R32R12 R33R13 R32R13 +R33R12 R33R11 +R31R13 R31R12 +R32R11

R11R21 R12R22 R13R23 R12R23 +R13R22 R13R21 +R11R23 R11R22 +R12R21

 ,

where Rij (i, j = 1, 2, 3) are the coefficients of the orthogonal rotational matrix. Then, the
stiffness tensor rotated by an angle θ is obtained by

Cθ = RCRT .

Remark 4. In the particular case of a two phase layered material the effective coefficients
computed by formula (45) coincide with those in [22].

5. Modeling the mechanical properties of a single osteon

In this section, we apply the technique to a biological scenario of interest, particularly to

bone modeling. Bone’s excellent mechanical properties (high stiffness, strength, fracture tough-

ness and light weight) are attributed to its composite complex hierarchical structure spanning

from nanoscale to whole bone level. Several studies have dealt with the modeling and simulation

of bone’s properties. For example, in [5] the asymptotic homogenization technique was used

to study the mechanical properties of compact bone. In addition, cortical and trabecular bone

were investigated in [9] and [10], respectively. The analysis involved a bottom-up multi-scale

approach, starting from nanoscale and moving up the scales to sub-microscale, microscale and

mesoscale levels. On the other hand, the efficacy of three alternative approaches: the method

of asymptotic homogenization, the Mori-Tanaka scheme and the Hashin-Rosen bounds, was

considered in [11] in order to compare theoretical predictions of the effective elastic moduli of

cortical bone at both, mesoscale and macroscale. In [23], the approach in [24] was extended

for musculoskeletal mineralized tissues by exploiting the potential of the asymptotic homoge-

nization technique investigated in [25, 26]. The authors setup a hierarchical, hybrid asymptotic

homogenization/Eshelby based (e.g. Mori Tanaka and self-consistent schemes) model that ex-

plains the stiffening of old bone tissues.

Here, we are interested in the mechanical properties of osteons which are the fundamental

functional units of compact bone. The osteon is regarded as a hierarchical elastic compos-

ite. At the sub-micro-structural level (1 to 10 µm), the osteon is assumed to be composed by

two-phase concentric lamellae of same thickness and constituents Ωε1
1 and Ωε1

2 and divided into

13



cylindrical sectors, each being approximated by a parallelepiped made of a superimposition of

plates. Likewise, at the nano-structural level (from a few hundred nanometers to 1 µm), each

lamella is considered to be a two-phase layered composite material consisting of hydroxyapatite

mineral crystals (Ωε2
1 ) and collagen (Ωε2

2 ). Particularly, for each successive lamella the lami-

nates are supposed oriented by an angle θ with respect to the longitudinal axis of the osteon

(Fig. 3). As described in Section 3, the present hierarchical modeling approach consists of

1

1

1

2

1
L

2
L

2
l

1
l

2

2

2

1

3

3

3

Figure 3: Single osteon representation. The osteon is divided into cylindrical sectors, each being approximated

by a parallelepiped made of a superimposition of plates or lamellae along the x2-axis. Each lamella is described as

a two-phase laminate structure where its orientation differs in adjacent lamellae. This simplified representation

is considered just for the sake of exemplify the proposed method.

successive homogenization steps. Indeed, first we find the effective mechanical properties at

the ε1-hierarchical level and use the results as the inputs for computing the effective mechan-

ical properties of the composite. Here, we present a parametric study by varying the volume

fraction of minerals (φh). Moreover, the effect of the laminates orientation on the effective

mechanical properties of the osteon is showed. The fact that the orientation angle is part of the

model opens up the possibility of studying its effect on the elastic constants. Common inputs

for the elastic modulus and Poisson’s ratio of collagen are Ec = 1.2 GPa and vc = 0.35, re-

spectively ([27]). For hydroxyapatite crystals Eh = 114 GPa and vh = 0.28, respectively ([27]).

Now, when interpreting histological and microstructural aspects of lamellae, most researches

accept that collagen fibers in alternating lamellae are oriented at different angles ([28]). In fact,

numerous different lamellar arrangements have been observed within osteons using circularly

polarized light (CPL) microscopy ([27]). In the present study, as proposed by [28] and observed

in different investigations (see e.g. [29]), three sets of laminates orientation are considered

where adjacent lamellas differ in the orientation angle of their layered structure. Specifically

and following [27], we choose {15◦,−15◦} (transverse orientation), {75◦,−75◦} (longitudinal

orientation) and {15◦,−75◦} (alternating orientation) (Fig. 4). Figure 5 shows the analytical
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(a) (b) (c)

Figure 4: (a) Transverse, (b) longitudinal and (c) alternating orientations of the laminates at the ε2-structural

level.

results for the longitudinal effective Young’s modulus Ê3 with respect to the mineral volume

fraction in a lamella and for different sets of the laminate orientation angles. Also shown in

Fig. 5 are the values of the experimental elastic moduli reported in [28, 30, 31]. They appear

as horizontal lines, as details regarding the mineral content were unavailable. In particular,

it can be observed a monotonic increase of Young’s modulus Ê3 with respect to the mineral

content φh. Moreover, the magnitude of the longitudinal effective Young’s modulus is obviously

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0

5

10

15

20

25

Longitudinal Alternating Transverse

Roy et al. (1999) [28]

Korsa et al. (2015) [29]

Ascenzi & Bonnucci (2015) [26]

Figure 5: Longitudinal effective elastic modulus for a single osteon as a function of mineral volume fraction for

different arrangements.

depending on the orientation of the layers at the nanoscale. The highest values are obtained

for laminates oriented in the direction of the longitudinal axis of the osteon. Conversely, the

lowest values are found for transversely oriented layers. These qualitative results are in agree-

ment with those found in [27]. Experimental findings showed that osteons whose laminates

are mainly oriented in the longitudinal direction (dark osteons) are characterized by an elastic

modulus of 12 GPa, and 5.5 GPa for osteons with laminates oriented in intermediate directions

[28]. We note that these experimental values are attained by model’s results for low mineral

15



concentrations. Besides, nanoindentation tests provided Young’s modulus values of 22.4 GPa

([30]) and 20.6 GPa ([31]) for the osteon, which are similar to the values predicted by our pro-

cedure for a longitudinal orientation arrangement. On the other hand, the numerical study by

[9] predicted a Young’s modulus value of 17.22 GPa which is in agreement with those obtained

in Fig. 5 for a longitudinal arrangement of laminates for φh = 0.18. In [9] the effective Young’s

modulus was obtained for a mineral volume fraction of the osteon equals to 0.42. In our case,

the mineral volume fraction is referred to a single lamella and not to the entire osteon.

The present model also allows to find other elastic effective constants. In particular, mono-

clinic properties were obtained for the lamellae, which became the input values for computing

the nine orthotropic effective elastic properties of a single osteon (Fig. 6). These engineering

constants are computed in terms of the components of the effective stiffness tensor ([32]). As

shown in Fig. 6, effective Young’s modulus Ê1 shows no dependence with the variation of

the angle given that the predicted curves are superimposed. On the contrary, the predicted

values for Ê2 and Ê3 depend on the orientation angle, and particularly, opposite behaviors are

observed. That is, Ê2 presents higher values when the laminates are oriented transverse to the

longitudinal axis of the osteon and lower values when they are oriented along the osteon prin-

cipal axis. Figure 6 also shows the effective shear modulus and Poisson’s ratio. For instance,

0.1 0.15 0.2 0.25 0.3
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20
25
30
35

Longitudinal Alternating Transverse
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Figure 6: Orthotropic effective engineering constants for a single osteon as a function of mineral volume fraction

for different arrangements.
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Ĝ23 does not exhibit a dependence with respect to the orientation angle θ since the curves are

superimposed.

6. Discussion and conclusions

In the present work, a multiple scales asymptotic homogenization approach was presented

with the aim of studying the effective properties of hierarchical composites. A novel power series

expansion is proposed which allows to determine the homogenized properties of hierarchical

periodic composites at each structural level and we recover known results from reiterated and

two scales asymptotic homogenization techniques as particular cases of the proposed method.

Furthermore, analytical formulae for the effective coefficients of a hierarchical layered composite

were obtained for the first time. In fact, since analytical formulae were found, the computational

cost to calculate the homogenized properties was very low at both steps. The method was

applied to study the mechanical properties of an osteon. In particular, the analytical results of

the model were successfully compared with experimental data, and we noticed a variation of

the effective properties with respect to the orientation angle.

The present study has some limitations and is open to several improvements. For instance,

analytical formulae were found for a very particular geometry (i.e. layered material) at each

of the structural levels. Nevertheless, the next natural step is to account for more realistic

geometries by solving the appropriate cell problems analytically (see, e.g. [33]) and/or numer-

ically (see, e.g. [25, 26]). Furthermore, we have neglected the effect of external volume loads,

although, whenever these are locally unbounded, the resulting macroscale formulation depends

on the properties of the microstructure (see [34], where these aspects have been investigated

in the context of two-scale asymptotic homogenization for elastic composites). Our work could

be extended to imperfect interfaces. In fact, the out-of-plane shear modulus of linear elastic

composites reinforced by cylindrical, uniaxially aligned fibers and possessing a periodic struc-

ture at each hierarchical level of organization has been computed in the submitted work [35]

(which is based on the theoretical framework proposed here) for the case of perfect contact. The

latter results can be extended to the case of imperfect contact on the interfaces by following

the methodology in [33] for each structural level.

In our formulation, higher order terms could be considered in the homogenization procedure

in order to elucidate new aspects of the proposed method compared with the reiterated asymp-

totic homogenization approach. Another future research relies on the extension of the method

to a nonlinear framework. For example, in [36] the static microstructural effects of periodic

hyperelastic composites at finite strain are studied via a two-scale asymptotic homogenization

process. In this sense, the power series expansion proposed in this work could be applied in a
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similar fashion as done in [36] taken into account the corresponding assumptions. Moreover,

based on a classical asymptotic homogenization analysis, analytical formulae are proposed in

[6, 7, 37], which can be useful for investigating macroscopic behavior of human cortical bones.

The formulae in these works are self-contained; their computational implementations are very

simple and are in a good agreement with experimental data reported in [38, 39]. These formulae

could be used to examine properties of the different scale levels resulting of a multiple scales

homogenization study as in [16].

A key assumption underlying the whole method is periodicity of the microstructure at

both strucutural levels. This assumption can be considered realistic for specific types of mi-

crostructures only. However, our framework could be extended to more complex geometry by

considering non-macroscopically uniform media (see, e.g., [40, 41, 42]) that is, accounting for a

parametric dependency of the cell geometry on the macroscale. This would however lead to an

increase in the computational cost (as it would be necessary to solve the cell problems for each

macroscale point, i.e. for each computational point of the macroscale domain), and to apparent

volume forces as a result of application of the generalized Reynold’s transport theorem. A

special attention is given in [43, 44] to the definition of appropriate boundary conditions for

the unit cell to ensure periodicity. Furthermore, it is worth remarking that solutions obtained

via periodic asymptotic homogenization are in general acceptable in the domain interior, while

they be less accurate when approaching the domain’s boundary (due to lack of periodicity).

The homogenization process described in this work is fine for regions far enough away from the

boundary so that its effect is not felt because near boundaries the material will not behave as

an effective material with homogenized coefficients. To account properly the homogenization

process on bounded domains, the so-called boundary-layer technique could be used ([12], [45])

or by adapting the consideration reported for homogenization of composite materials in [46].

The depicted approach represents a useful tool in the study of biomechanical and engi-

neering applications where several length scales are present and represents a first step towards

computationally feasible multiscale modeling of complex hierarchical materials.
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