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Abstract

Large-scale parallel pyrosequencing produces unprecedented quantities of sequence data. However, when generated from
viral populations current mapping software is inadequate for dealing with the high levels of variation present, resulting in
the potential for biased data loss. In order to apply the 454 Life Sciences’ pyrosequencing system to the study of viral
populations, we have developed software for the processing of highly variable sequence data. Here we demonstrate our
software by analyzing two temporally sampled HIV-1 intra-patient datasets from a clinical study of maraviroc. This drug
binds the CCR5 coreceptor, thus preventing HIV-1 infection of the cell. The objective is to determine viral tropism (CCR5
versus CXCR4 usage) and track the evolution of minority CXCR4-using variants that may limit the response to a maraviroc-
containing treatment regimen. Five time points (two prior to treatment) were available from each patient. We first quantify
the effects of divergence on initial read k-mer mapping and demonstrate the importance of utilizing population-specific
template sequences in relation to the analysis of next-generation sequence data. Then, in conjunction with coreceptor
prediction algorithms that infer HIV tropism, our software was used to quantify the viral population structure pre- and post-
treatment. In both cases, low frequency CXCR4-using variants (2.5–15%) were detected prior to treatment. Following
phylogenetic inference, these variants were observed to exist as distinct lineages that were maintained through time. Our
analysis, thus confirms the role of pre-existing CXCR4-using virus in the emergence of maraviroc-insensitive HIV. The
software will have utility for the study of intra-host viral diversity and evolution of other fast evolving viruses, and is
available from http://www.bioinf.manchester.ac.uk/segminator/.
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Introduction

Sequencing platforms, such as the 454 Life Sciences’ GS-FLX

pyrosequencing system, has greatly parallelized the determination

of nucleotide order within genetic material, resulting in the ability

to produce extremely large datasets [1]. The vast numbers of short

sequence segments produced (termed reads) in conjunction with

intrinsic error rates associated with the sequencing platform [2,3]

pose challenging computational problems [4,5]. Importantly, these

data have the potential to provide previously unprecedented

insight into the extent of pathogen variation (diversity) that exists

within a single individual. This is particularly important in the

detection of minority variants, for example, those associated with

drug resistance [6–11].

To date, software has focused on eukaryotic and prokaryotic

genome-scale sequencing with its associated megabase reference

genomes and vast quantities of read data [5,12]. For such studies

traditional fast alignment algorithms [13–15] that employ flexible

k-mer matching are not capable of mapping reads to a reference

sequence within a reasonable time. Consequently new software

tools have been developed that incorporate faster string matching

techniques at the expense of dealing with variation [12,16–18].

For highly variable genomes this limitation will result in data loss

as reads with more than the specified numbers of mismatches, in

relation to a template sequence, are discarded. This loss can occur

non-randomly with reads representing minority subpopulations

being less likely to be mapped to the template. For example, two

distinct phenotypes of HIV-1 exist that are defined by the host

coreceptor that is used during cell entry. The coreceptors involved

are chemokine (C–C motif) receptor 5 (CCR5) and chemokine (C-

X-C) receptor 4 (CXCR4). The location of the viral genome that

determines the phenotype is the third variable (V3) loop, a highly

variable region [19] located within HIV’s envelope gene, env [20–

22]. The most often used genomic reference sequence for HIV-1

is HXB2, a CXCR4-using virus. When mapping V3 data to

HXB2, and limiting the number of mismatches allowed, reads
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representing CCR5 variants are more likely to be lost during

mapping as a result of known amino acid changes associated

with that phenotype [23,24]. This may result in a misleading ratio

of coreceptor use within an HIV-1 population, which can

have consequences for drug treatment decisions [25]. Thus, for

rapidly evolving viruses, such as HIV-1 [26–29], a limitation on

the number of mismatches tolerated during read mapping is less

than optimal. Modification of traditional k-mer matching

approaches [13] is a more suitable approach and becomes

scalable (due to the smaller genome sizes) as they allow for

increased tolerance when dealing with higher levels of variation in

viral 454 data [6,11].

Prior to any evolutionary study reads must be accurately

mapped and aligned. Our software performs these tasks as well as

subsequent tropism testing, phylogenetic tree inference and

visualization (Fig. 1). We demonstrate the software’s underlying

framework in order to quantify the effects of divergence on the

mapping of reads to a template sequence. In addition to unbiased

mapping of data, a reduction of divergence between reads and

template is favorable for the removal of platform dependent

insertions. Characteristically with 454 data there is a high rate of

insertion error associated with the chemistry involved during the

pyrosequencing process [2,3]. Failure to remove such insertions

can result in a further loss of usable data when translations are

required during downstream analysis.

We apply our software to temporally sampled 454 datasets

from two HIV-1 infected individuals in order to characterize the

emergence of low frequency CXCR4-using variants following

treatment with an HIV entry-inhibitor drug, the CCR5

antagonist maraviroc. As the drug will not directly impact on

viruses using the CXCR4 coreceptor [30], patients are screened

for their presence prior to treatment [25,31]. The aim is to

distinguish a viral population that is exclusively CCR5 tropic (R5)

from a viral population including either dual-mixed, DM, (R5

and exclusively CXCR4-using [X4]), or R5 and dual-tropic

viruses (those that can use both CCR5 and CXCR4 [R5X4]).

Note, we refer to both X4 and R5X4 tropic viruses as CXCR4-

using. This application of our software demonstrates that

sequence data generated from the 454 platform – in conjunction

with coreceptor prediction tests based on HIV’s V3 region

[23,24,32] – permits the quantification and evolutionary analysis

of HIV-1 tropism present at low frequencies within a sample

more effectively than could be achieved using standard

population sequencing technologies [6,11]. Our software will

also have utility for studying the within-host diversity of other fast

evolving viruses.

Methods

Datasets
Samples for pyrosequencing were obtained from two HIV-1

infected males, patients D and E, both of whom were treatment

naı̈ve and enrolled in the QD arm of the A4001026 study [31],

were infected with subtype B virus and received maraviroc once

daily together with zidovudine and lamivudine. They discontinued

the study due to insufficient clinical response: patient D continued

to week 2 and patient E to week 24. Both had the M184V

mutation in reverse transcriptase at failure, which confers

resistance to the background therapy and, in addition, patient D

had M41M/L and K70K/R. Samples were collected over five

time points: screening (40 days before), day 1, week 2 (day 15),

week 12 (day 80) and week 16 (day 107) for patient D and

screening (41 days before), day 1, week 8 (day 57), week 24 (day

162) and week 30 (day 211) for patient E.

For each sample, RNA extraction and amplification from the

gp120 region of env was performed. The amplicons were

subjected to nebulization to generate fragments of approximately

600 nucleotides. These were amplified as described in Margulies

et al. [1]. and sequenced on the Genome Sequencer 20 (GS20,

Roche Applied Sciences). Standard protocols for the generation

of a library of tagged single-stranded DNA molecules were used

(for details, see Margulies et al. [1]). The GS20 software package

was used to generate the sequence files. This resulted in files

containing between 14,000 and 31,000 reads (Table 1). The

data is available at the NCBI Sequence Read Archive (http://

www.ncbi.nlm.nih.gov/Traces/sra) under accession number

SRA023641.1.

K-mer mapping
Although RNA extraction and amplification was carried out

across the entire gp120 gene, the region that is required for the

coreceptor prediction of HIV-1 variants is V3 [23,24,32]. Reads

covering this region were identified using a k-mer matching

process similar to the initial phase of the BLAST algorithm [13].

For a single read the location of all k-mers of size five are

identified across the template sequence. If a matching region is

found for the read, the frequencies of k-mer hits will be above the

random level of background noise at that location (Fig. 1). For

each dataset the coordinates of the template in relation to the

HXB2 reference genome are 6900 to 7305. This accommodates

longer reads that may span the entire V3 region. The coordinates

of the V3 loop within this region are 7110 to 7217. Dataset

specificity was generated within the templates using a pre-

mapping to the HXB2 reference sequence for which multiple

alignments are then generated within windows of size 70 (using a

20 nucleotide overlap). Within each of these alignments columns

containing more than 50% gaps were removed. Consensus

sequences, created for each alignment, are then appended in

order to form data-specific templates to which reads are then

remapped.

To explore the effects of using a consensus template on k-mer

mapping, for each dataset, we compared the number of reads

mapped to the data-specific template for that dataset to the

number of reads mapped using HXB2 – the latter being the pre-

mapping stage prior to consensus template generation. Next, we

took our patient D screening dataset and introduced random

variation into the consensus template in sequential steps of 2, 4 up

to 26% (50 repetitions for each). After each introduction of

random variation, the k-mer mapping was performed and the

number of reads successfully mapped recorded. It should be noted

that no precise pairwise alignment to the template sequence is

Author Summary

Due to high data volumes, error rates, and short sequence
lengths, new sequencing technologies present a new
challenge for computational biology. In addition, high-
depth (or ultra-deep) datasets, for example from patho-
gens, contain exceptionally large amounts of variation
over short genomes or genomic regions. Here we present
software for the processing and downstream analysis of
such short-read viral sequence data. We apply the software
to the analysis of two HIV-1 infected individuals who did
not respond optimally to the drug maraviroc. For each
patient, pyrosequence data was available for five time
points. In both cases we detect distinct clusters of low-
frequency drug-insensitive variants that were present prior
to maraviroc treatment and effectively unmasked by the
removal of the drug-sensitive HIV.

Software for Temporal Ultra-Deep Sequence Data
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Figure 1. The data analysis framework. On the left hand side the preprocessing of the template sequence prior to read mapping is illustrated.
The fragments titled ‘‘k-mers’’ are all the unique words (length = 5) within the template sequence. These are stored along with their corresponding
locations. On the opposite side all k-mers of equal length, extracted from the read, are shown. The plot indicates the frequency of k-mer matches
across the template sequence for a single read. Grey boxes indicate processing events that take place within the framework. The yellow circles
indicate optimization steps: (i) only exact k-mer matches used (ii) a heuristic alignment not constructed from the k-mer matching (just the k-mer
match frequencies are plotted) and (iii) only the appropriate region of the template is pairwise aligned to the read.
doi:10.1371/journal.pcbi.1001022.g001
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PLoS Computational Biology | www.ploscompbiol.org 3 December 2010 | Volume 6 | Issue 12 | e1001022



generated during k-mer mapping. Instead the reads within our

datasets covering the portion of the HIV-1 genome between the

coordinates 6900 to 7305 are identified along with their

approximate start positions. The k-mer mapping approach

implicitly allows for a higher degree of tolerance in identifying

such reads when compared to approaches that limit the number of

mismatches [12,16–18] as, although the process involves matching

exact k-mers to the template at any given location, the overall

frequency of k-mer hits will increase at the most likely location of

the read across the template (Fig. 1). This approach, thus, does not

specify an exact limitation on the number of mismatches allowed

between the read itself and the template.

Pairwise alignment
Following k-mer mapping, reads are pairwise aligned to the

consensus template using Smith and Waterman [33]. Indices

obtained during k-mer mapping are used to optimize the

process by only aligning reads to the appropriate region.

Platform dependent insertion error, which makes up the

majority of non-biological error [2,3], is accounted for by

maintaining reference to the dataset specific template. Specif-

ically, insertions relative to the template, which represents an in

frame consensus sequence, are removed. The frequency at

which these insertions occurred across the V3 region was

recorded. The usage of a data-specific consensus sequence is

important to ensure that insertions naturally existing within the

population are not erroneously removed based on use of a

divergent template sequence.

Tropism prediction and phylogenetic inference
Reads spanning the V3 region of env were extracted, truncated,

identical reads removed (frequencies were stored) and multiply

aligned using Muscle [34], packaged with the software.

Coreceptor prediction was performed using the 11/24/25

‘‘charge rule’’ [23,32], implemented within the software and

using the PSSM web tool [24]. Sequence logos were generated

for inferred R5 and CXCR4-using sequence present at each time

point using the Web Logo tool [35]. Nucleotide sequences,

annotated with coreceptor predictions, were used to infer

evolutionary relationships by maximum likelihood using PhyML

[36], packaged with the software. The HKY model of sequence

evolution was used. The resulting phylogenetic trees were

visualized using an integrated version of CTree [37]. Because

bootstrapping is unreliable when performed on very short

sequence alignments, the significance of the identified clusters

within datasets representing the early time points was determined

by comparing the ratio between the intra-cluster pairwise

distance and the inter-cluster pairwise distance (of five random

clusters) to a distribution of values obtained for 500 sets randomly

assigned clusters. A low intra-cluster pairwise distance relative to

the inter-cluster pairwise distance implies a robust cluster [38,39].

Additionally clustering significance was tested using the approx-

imate likelihood ratio test [40] for branches as implemented within

PhyML.

Key functions of the software
The pipeline used for processing the initial read data is

available within our software (Fig. 1). Implemented in Java the

executable runs on Mac OS X, Linux and Windows. All required

external binaries are included within the package. The input is a

FASTA formatted file containing unmapped read data. Output

files are in FASTA, TXT, PDF or NEWICK format as

appropriate. A summary of the key functions incorporated into

the software are: (i) accurate mapping of next generation

sequence data containing high amounts of variation, (ii)

exportation of reads spanning user defined regions of the

template, (iii) translation of reads, (iv) determination of nucleotide

and/or amino acid residue frequencies, (v) generation of a

consensus sequence across the entire dataset taking into account

data-specific indels, thus, reducing dependency on a generic

template, (vi) removal of reads based on a hamming distance

from their corresponding region on the template, (vii) generation

Table 1. Read extraction comparison.

Time point

No. of reads
across entire
gp120

No. of reads
mapped to a
dataset-specific
consensus across V3

No. of reads
mapped to
HXB2’s V3
region

Difference between
dataset-specific
consensus and
HXB2 mapping

% data lost
using HXB2

Divergence
between
templates
(hamming)

Patient D

Screening 30,686 8,385 6,309 2,076 24.8 0.1369

Day 1 28,902 8,655 6,438 2,217 25.6 0.1369

Week 2 28,521 8,009 5,679 2,330 29.1 0.1320

Week 12 23,312 6,845 5,076 1,769 25.8 0.1393

Week 16 14,880 3,591 2,669 922 25.7 0.1589

Patient E

Screening 12,646 3,257 1,813 1,444 44.3 0.1736

Day 1 18,381 4,386 2,891 1,495 34.1 0.1589

Week 8 18,551 4,085 2,611 1,474 36.1 0.1418

Week 24 19,268 4,723 3,228 1,495 31.7 0.1840

Week 30 17,993 4,764 2,890 1,874 39.3 0.1711

Comparison of the number of reads extracted at each time point for patients D and E using k-mer mapping for a dataset-specific consensus and HXB2 templates. The
genome coordinates 6900 to 7305 were used so as to include the V3 region and all reads spanning V3. The numbers in the first column are the total number of reads
covering gp120.
doi:10.1371/journal.pcbi.1001022.t001
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of a multiple alignment of reads spanning a particular region of

the template using Muscle [34], (viii) detection and annotation of

low frequency variants, (ix) inference of phylogenetic trees using

PhyML [36], (x) tree label searching based on the annotation

produced in viii and visualized using CTree [37], and (xi)

management of bar coded data. During the scaffolding process, a

number of output plots are generated to summarize the data.

These include read length distributions and template coverage.

The latter is portrayed in a circular plot to allow for longer

templates to be displayed optimally.

Results

K-mer mapping
For each dataset, following k-mer mapping to the consensus

template, high read coverage was observed across the V3

region (Table 1). In each case when HXB2 was used as a

template sequence fewer reads are mapped. For patient D the

mean loss of reads is 26.4%, while for patient E it is 36.5%, the

difference being due to the divergence between patients D and

E’s data-specific templates and HXB2 (Table 1). When random

Table 2. V3 region coverage.

Time point
No. of complete V3’s
initially extracted

No. of insertions
present

No. of reads containing
at least one insertion

% per site insertion
frequency across the V3
region

Patient D

Screening 2,022 489 (24.2%) 581 0.27

Day 1 2,081 471 (22.6%) 533 0.24

Week 2 2,266 655 (28.9%) 759 0.35

Week 12 1,609 378 (23.5%) 440 0.2

Week 16 908 183 (20.2%) 207 0.1

Patient E

Screening 778 174 (22.4%) 199 0.1

Day 1 1,022 180 (17.6%) 216 0.1

Week 8 1,082 352 (32.5%) 506 0.23

Week 24 1,015 253 (24.9%) 387 0.17

Week 30 1,244 235 (18.9%) 267 0.12

The total number of reads completely spanning the V3 region (coordinates 7110 to 7217), regardless of the presence or absence of frame shift errors. The percentage
containing singleton or dinucleotide insertion events across this region is displayed.
doi:10.1371/journal.pcbi.1001022.t002

Figure 2. Relationship between k-mer mapping and diversity. As divergence from the consensus template increases the number of reads
successfully mapped decreases. Each box and whisker (1.5 times the inter-quartile range) represents 50 repetitions of the mapping process at the
level of divergence indicated on the x-axis. The bottom circle, on the y-axis, indicates the percentage of reads mapped to HXB2 in relation to the total
number mapped to the consensus template (top circle). The dataset used for this comparison was patient D at screening.
doi:10.1371/journal.pcbi.1001022.g002
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variation in sequential steps of 2 to 26% was introduced

into the consensus template derived from the patient D

screening dataset and k-mer mapping performed on reads

from that dataset, a reduction in the number of mapped can be

observed that is directly proportional to increasing divergence

(Fig. 2).

Pairwise alignment
Reads were pairwise aligned to the appropriate region

(identified from the k-mer mapping step) of the data-specific

consensus templates and those spanning both the start and end of

the V3 region were extracted and truncated. Between 17 and 33%

of reads contain at least one insertion event across the V3 region in

Table 4. Patient E tropism predictions.

Time point R5 (%)
CXCR4-using
(%)

Viral load
(copies/ml)

CXCR4-using
viral load
(copies/ml)

No. V3 of reads
and unique reads
in brackets.

CD4
(cells/mcl)

Screening pre-treatment with maraviroc

Charge Rule 97.5 2.5 476,000 11,900 651 (113) 27

PSSM 97.7 2.3

Day 1 pre-treatment with maraviroc

Charge Rule 85 15 350,000 52,500 833 (147) 12

PSSM 94.72 5.28

Week 8 on-treatment with maraviroc

Charge Rule 0.7 99.3 23,000 22,839 900 (93) 162

PSSM 60.9 39.1

Week 24 on-treatment with maraviroc

Charge Rule 0.5 99.5 5,420 5,392 1123 (153) 176

PSSM 1.4 98.6

Week 30 off-treatment with maraviroc

Charge Rule 0.4 99.6 85,700 85,357 1054 (126) 132

PSSM 3.1 96.9

Predicted coreceptor usage, viral load, estimated proportion of population that is CXCR4-using (from % estimated by charge rule), number of V3 sequences extracted
(in-frame) and CD4 cell count at different time points pre- and post-treatment for patient E.
doi:10.1371/journal.pcbi.1001022.t004

Table 3. Patient D tropism predictions.

Time point R5 (%)
CXCR4-using
(%)

Viral load
(copies/ml)

CXCR4-using viral
load (copies/ml)

No. V3 of reads
and unique reads
in brackets.

CD4 (cells/
mcl)

Screening pre-treatment with maraviroc

Charge Rule 93.5 6.5 668,000 43,420 1,743 (284) 31

PSSM 93.7 6.3

Day 1 pre-treatment with maraviroc

Charge Rule 86.7 13.3 673,000 89,509 1,755 (266) 29

PSSM 86.7 13.3

Week 2 on-treatment with maraviroc

Charge Rule 58.7 41.3 3,560 1,470 1,897 (196) 88

PSSM 58.8 41.2

Week 12 off-treatment with maraviroc

Charge Rule 82.1 17.9 25,300 4,528 1,344 (194) 97

PSSM 82.4 17.6

Week 16 off-treatment with maraviroc

Charge Rule 42.7 57.3 1,890 1,082 710 (106) N/A

PSSM 42.7 57.3

Predicted coreceptor usage, viral load, estimated proportion of population that is CXCR4-using (from % estimated by charge rule), number of V3 sequences extracted
(in-frame) and CD4 cell count at different time points pre- and post-treatment for patient D.
doi:10.1371/journal.pcbi.1001022.t003
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comparison to the consensus template (Table 2). The vast majority

of these insertions were observed to be singleton or dinucleotide

insertions (causing a frame shift), with a mean per site frequency of

0.18%. Note, this frequency is after the sequences have been

truncated. These are lower numbers than would be expected if

complete reads had been included [3] as the starts and ends of the

majority of the reads have been removed by the truncation step.

During the alignment process such insertions were removed in

order to maintain as many correctly translated V3 regions as

possible.

Tropism prediction and phylogenetic inference
For both patients a high coverage of in-frame reads across

the V3 region was observed at each time point (Tables 3 and 4)

with many unique variants. Those reads that could not be

translated correctly were discarded, resulting in the lower

numbers observed in Tables 3 and 4 than those presented in

table 2. When both the charge rule and PSSM tests

were performed on these data, CXCR4-using variants were

detected prior to treatment within both patients (Tables 3

and 4). On maraviroc treatment, for patient D, CXCR4-using

virus increased to a frequency of 41% and for patient E

increased to 99% at the sampling times (Tables 3 and 4).

Interestingly, despite the CXCR4-using population increas-

ing in patient D and becoming dominant in patient E on-

treatment, the reduction in viral load corresponds to an order

of magnitude less CXCR4-using virus than that prior to

treatment.

Figure 3. Evolutionary relationships of patient D’s viral population through time. Each phylogeny shows the predicted R5 and CXCR4-
using variants for the time points: screening, day 1, week 2, week 12 and week 16; only unique variants are shown. Subsequent to screening, the
CXCR4-using variants from the previous time point are included for visualization purposes. Sequence logos for R5 and CXCR4-using sequences for
each time point are also shown. Colors (see key) indicate sampling time in phylogenies and residue charges in sequence logos. The red numbers on
the lineage separating branches at screening and day 1 indicate the branch support value from the approximate likelihood ratio test for the distinct
CXCR4-using lineage present at these time points. The inset plots indicate the extent of the clustering present for these same lineages and time
points (value next to circle on x axis) in comparison to a distribution of randomly assigned clusters; see methods for further details. The scale bar
represents nucleotide substitutions per site.
doi:10.1371/journal.pcbi.1001022.g003
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The inference of the evolutionary history for each dataset,

revealed the majority of CXCR4-using variants formed a distinct

cluster, present prior to maraviroc treatment and divergent to the

main R5 populations present prior to treatment (Fig. 3 and. 4).

The inset plots confirm the significance of each CXCR4-using

cluster based on the comparison of intra- and inter-pairwise

distances and confirmed using the approximate likelihood ratio test

(Fig. 3 and 4). The sequence logos beside each phylogeny

represents a comparison between the sequence characteristics of

the R5 tropic and CXCR4-using variants. At each time point, key

differences in charge [23,24,32] can be observed at sites 11 for

patient D and at site 25 for patient E.

For each patient for the two time points prior to therapy

when the CXCR4-using variants located within the R5 tropic

clusters were investigated, they were observed to be more

similar to their closely related R5 tropic counterparts than to the

distinct clusters of CXCR4-using variants (Fig. 3 and 4,

screening and Day 1). For patient D there are four such

variants (1.1% of the CXCR4-using population), while for

patient E there are ten (7% of the CXCR4-using population)

prior to therapy.

It is important to note, the extent of the divergence in the

phylogenetic trees is mainly due to the high number of either

unique or rare variants. These variants cluster around high

frequency variants within the population (Fig. 5). For example,

at screening (Patient D) only ten variants make up 75% of

the viral population with a single variant contributing to 23% of

the population. Despite a proportion of this variation being

due to sequencing error, this level of variation emerging in

relatively short time periods highlights the extreme mutability of

HIV.

Tables 3 and 4 show the results of the PSSM test carried out on

the extracted V3 sequences. In all cases, with the exception of

patient E (week 8), PSSM confirms similar levels of CXCR4-using

virus to those predicted by the charge rule. PSSM predicts viruses

to be CXCR4-using based on scores being higher than a threshold

of 22.88 (Fig. 6), and to be R5 tropic based on scores being below

a threshold value of 26.96 (Fig. 6). Between these two threshold

values a reliable PSSM prediction cannot be made and so

composite PSSM utilizes the charge rule at sites 11 and 25 [24].

Note, we have also included site 24 in the composite prediction

[23].

Figure 4. Evolutionary relationships of patient E’s viral population through time. Each phylogeny shows the predicted R5 and CXCR4-
using variants for the time points: screening, day 1, week 8, week 24 and week 30. See figure 3’s legend for further details.
doi:10.1371/journal.pcbi.1001022.g004
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Discussion

We have developed freely available software for the manage-

ment and downstream analysis of pathogen sequence data. We

demonstrate the utility of this software by applying it to the

detection, and subsequent evolutionary analysis, of drug resistant

variants within two temporally sampled patients infected with

HIV-1. In our study of the V3 region we demonstrate that both

the CXCR4-using viral populations, which emerge during

maraviroc treatment, do not evolve de novo. Instead, confirming

previous studies [6,11,41], they emerge from a pre-existing,

distinct, viral subpopulation that is present prior to therapy (Fig. 3

and 4). Note, the phylogenetic analysis was repeated excluding

sites 11, 24 and 25 (those used in the charge rule test), and the

same divergent CXCR4-using cluster identified (and statistically

supported), indicating convergent evolution is not biasing the

inferences. If the R5 variants had evolved during treatment to

become CXCR4-using they would be more closely related to

these R5 counterparts. In addition, characteristic differences

between R5 and X4 variants (specifically at sites 11, 24 or 25 in

V3) are observed at screening and day 1 (Fig. 3 and 4, sequence

logos).

We quantified the effects of HIV-1 mutability on the k-mer

mapping process prior to downstream analysis. Using the

patient D screening dataset, in conjunction with the consensus

template for that data within which random mutations were

introduced in sequential steps, we observed that at a divergence

level of 26% just over 20% of the reads originally mapped to the

unaltered consensus map successfully (Fig. 2). This demonstrates

there is a direct relationship between the number of reads that

are mapped successfully and the level of divergence between the

data and template sequence. The usage of an inappropriate

template will, thus, very probably result in the non-random loss

of data, introducing an unnecessary bias. Indeed for each of our

datasets, when mapped to HXB2 rather than the data-specific

consensus templates, between 24 and 44% of reads covering the

V3 region were not mapped as a result of divergence between

the consensus templates and HXB2 which ranged form 14

to16.5% (Table 1).

When an amino acid translation step is performed, in our case

for inferring reads as R5 or CXCR4-using, data loss can be further

minimized by utilizing a correction procedure relative to the in-

frame template sequence. Platform-dependent insertions make up

the majority of sequencing error usually resulting in an over-

representation of frame shifts within the reads [2,3]. Correction

based on a divergent template will result in a greater probability of

complete codons being removed erroneously and therefore it is

optimal to use a template that is dataset specific (Figure S1). In

Tsibris et al., [11] where no such correction was performed on

temporally sampled data from two subtype B infected patients

much of the data was removed. Within one sample a platform

dependent insertion within a known homopolymeric stretch

resulted in the staggering removal of 85% reads. Using a

correction approach, based on an in-frame consensus template,

reduces this loss greatly (Table 5).

Algorithms for the computational prediction of tropism are

highly dependent on the available training datasets. In the case of

PSSM, for example, the training data used in the web tool defines

the threshold cutoff values (22.88 and 26.96) used in the

coreceptor prediction [24]. When data falls between the current

threshold values the PSSM web tool uses the charge rule [24].

This can be misleading as seen for patient E week 8 (Fig. 6), the

charge rule called 99.3% of the population as CXCR4-using

based on the presence of a positive charge at site 25, while PSSM

called 39.1% of the population as CXCR4-using (Table 4). For

the latter only 0.3% of variants fall above the PSSM CXCR4-

using threshold. The remaining 38.8% of CXCR4-using variants

is based on the charge rule and not the PSSM scores. The

variants that fall below the CCR5-using threshold (60.9%),

despite the majority still possessing a positively charged residue at

site 25, have been called based on their PSSM scores. The most

likely explanation is that these variants are dual tropic and typing

them as R5 is incorrect.

It is also important to consider how much CXCR4-using

virus is acceptable in the context of combination therapy. At

present a 2% threshold has been proposed by RH [42]. In our

study both patients had greater than 2% CXCR4-using virus at

screening and the CXCR4-using population was greater than

10,000 copies/ml. Interestingly, although the CXCR4-using

virus is clearly present during therapy, the overall CXCR4-

using plasma HIV-1 RNA was reduced during the treatment

phase, presumably due to the effect of the other drugs used with

maraviroc.

In conclusion, our results demonstrate that, in conjunction

with appropriate software, pyrosequencing data has utility for

the evolutionally analysis and detection of low frequency
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Figure 5. Frequency of HIV-1 variants in the phylogenetic
trees. Evolutionary tree inferred from all patient D’s V3 nucleotide
sequences (A), and all patient E’s V3 nucleotide sequences (B). Colors
(see key) indicate the frequency of each sequence. The scale bar
represents nucleotide substitutions per site.
doi:10.1371/journal.pcbi.1001022.g005
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variants within viral populations. In our analysis we have

provided a high-resolution snapshot, through temporally

sampled data, of intra-patient viral diversity and evolution

associated with the CCR5-antagonist maraviroc. We have also

quantified the effects of viral diversity on the initial k-mer

mapping of read data in relation to the correction of platform

Figure 6. Tropism prediction. Frequency plots of PSSM scores of unique V3 sequences within each dataset. The red area indicates the region
below the 26.96 threshold (R5), the green region indicates the area above the 22.88 threshold (CXCR4-using) and the grey area indicates the region
between the two thresholds. The numbers within each plot area indicate the percentage of reads called as R5 or CXCR4-using for that region.
doi:10.1371/journal.pcbi.1001022.g006

Table 5. Reference template comparison.

No reading frame correction Data-specific consensus based frame correction

Sample ID No. of Reads No. V3’s
No. of V3’s used after
translation No. V3’s No. of V3’s used after translation

18.00 138,681 130,268 110,471 (80%) 138,363 132,197 (95%)

18.02 62,475 52,403 25,419 (41%) 61,747 54,558 (87%)

18.16 98,025 86,392 14,366 (15%) 97,374 73,862 (75%)

19.00 70,391 64,978 59,226 (84%) 69,937 66,655 (95%)

19.02 46,826 43,224 38,217 (82%) 46,563 43,982 (94%)

19.17 25,685 23,755 22,519 (88%) 25,483 24,384 (95%)

Comparison of use of a data-specific template with a published study which used HXB2 as a reference template [11]. Dataset sizes are from Tsibris et al., [11]. The
number of in-frame reads available for downstream analysis after correction based on a data-specific consensus is compared to the number of in-frame reads when no
correction is applied.
doi:10.1371/journal.pcbi.1001022.t005
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dependent insertion error. The features of the software used

here can be applied to other drug susceptibility and resistance

studies, within other genomic regions of HIV-1 or to other

pathogen genomes.

Supporting Information

Figure S1 Example of frame correction to a dataset specific

template and HXB2. Pairwise alignment of the V3 region of the

consensus template (patient D, screening) to that of HXB2 (A).

Correction of the V3 sequence based on HXB2, and subsequent

loss of a complete codon (B). Correction of the V3 sequence based

on the data-specific template, and no codon loss (C).

Found at: doi:10.1371/journal.pcbi.1001022.s001 (0.46 MB EPS)
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