
Issues Affecting Security Design Pattern
Engineering

Jan de Muijnck-Hughes and Ishbel M. Duncan

School of Computer Science,
University of St Andrews,
St Andrews, Fife, UK

{jfdm, ishbel.duncan}@st-andrews.ac.uk

Abstract Security Design Patterns present the tried and tested design
decisions made by security engineers within a well documented format.
Patterns allow for complex security concepts, and mechanisms, to be ex-
pressed such that non-domain experts can make use of them. Our research
is concerned with the development of pattern languages for advanced
crypto-systems. From our experience developing pattern languages we
have encountered several recurring issues within security design pattern
engineering. These issues, if not addressed, will affect the adoption of
security design patterns. This paper describes these issues and discusses
how they could be addressed.

Keywords: security, design patterns, security patterns, pattern engin-
eering, software engineering

1 Introduction

Security Design Patterns provide well described solutions to recurrent security
problems [15]. By using security design patterns complex security concepts and
mechanisms can be expressed concisely and explicitly such that non-domain
experts can understand them, and consequently use them to address security
concerns within their applications [5].

Our research investigates how a pattern-based approach can be used to
address how guarantees towards encrypted access control can be made using
advanced crypto-systems by non-experts. The main result of our investigation is
the creation of a pattern language detailing both the crypto-system itself and its
deployment. During the development of our pattern language several areas of
concern became apparent that adversely affected our experience. These issues per-
tain to: (a) Pattern Development (Section 4); (b) Pattern Templates (Section 5);
(c) Pattern Encoding (Section 6); (d) Pattern Classification (Section 7); (e) Pat-
tern Repositories (Section 8); and (f) Pattern Evaluation (Section 9). It is our
belief that if these issues are left unresolved they may have a negative effect
upon both the development of security design patterns but also the adoption of
pattern-based approaches when developing secure applications.

Proceedings of Cyberpatterns 2013, pp 54–61



Issues Affecting Security Design Pattern Engineering 55

This paper presents an overview of the perceived issues. We begin first with
some preliminary information over Security Patterns (Section 2), and Security
Pattern Engineering—Section 3. The remainder of the paper details the perceived
issues.

2 Security Design Patterns

Within the domain of software engineering patterns represent a well documented
solution to a recurrent problem within a particular context. Typically, patterns
represent frequently recurring structures, behaviours, activities, and processes
used to solve recurrent problems, and are used to document the tried and tested
design decisions made by software developers and engineers when providing a
solution [8].

Consequently a pattern will encapsulate the engineer’s experience within the
pattern itself; patterns will embody expert domain knowledge. Patterns provide
a separation of concern between solution conception and solution application.
By using patterns not only is expert domain knowledge made more accessible to
non-domain experts but cross domain knowledge transfer can be established.

Pattern templates are a set of predefined headings used to document individual
patterns. These headings are used to capture the various different aspects of the
problem and solution being presented. Typically, the aspects described within a
pattern will include: (a) the context in which the pattern is being applied; (b) the
problem the pattern is solving; (c) forces that affect not only how the problem
can be solved but also how the solution is implemented; (d) the solution presented
by the pattern; (e) the solution’s structure and dynamics; and (f) guidance for
implementing the pattern. Patterns are themselves written using a mixture of
natural language descriptions and formal models to document the solution’s
components and their interaction.

First introduced in Yoder and Barcalow [20], Security Design Patterns are
patterns describing solutions to recurring security related problems. Not only
can security design patterns be used to describe well known security concepts
but also be used to describe various security mechanisms used within software
engineering [15]. Pattern-oriented approaches that use security design patterns are
increasingly being used to develop secure systems [7]. Security pattern languages
are pattern languages within the security domain. By using security patterns,
complex security concepts and mechanisms can be expressed concisely and
explicitly such that non-domain experts can understand them, and consequently
use them [5]. When designing security systems abstract patterns [6] can be used to
abstract over multiple similar patterns that address a common security problem.
According to Bunke et al. [1] there are 409 known security design patterns,
providing solutions to security problems as diverse as access control, session
management, and identity management. These patterns were collected through a
systematic literature review of patterns published between the 1997 and 2010.
The relevant literature documenting these patterns can be found within Bunke
et al. [1].



56 Jan de Muijnck-Hughes and Ishbel M. Duncan

Remark 1. Security Design Patterns describe how security problems can be
addressed. The antithesis of security design patterns are known as Attack Patterns.
Attack patterns describe how security problems can be caused [16]. In this paper
we are concerned with issues affecting security design patterns, only.

3 Security Pattern Engineering

The lifecycle of a pattern can be viewed as two distinct processes. The first:
Pattern Development is concerned with the development of the pattern itself;
and the second Pattern Application details the application of said pattern.
Pattern engineering involves the steps required within these processes that allow
for pattern creation and pattern deployment. Within Yoshioka et al. [21] the
author’s enumerate this pattern engineering process as follows:

– Development
D1: Finding a pair of recurring problem and its corresponding solution from

knowledge and/or experiences of software development.
D2: Writing the found pair with forces in a specific pattern format.
D3: Reviewing and revising the written pattern.
D4: Publishing the revised pattern via some public or private resource

(WWW, book or paper,. . . ).
– Application

A1: Recognizing context and security problems in software development.
A2: Selecting software patterns that are thought to be useful for solving the

recognized problems.
A3: Applying the selected patterns to the target problem.
A4: Evaluating the application result.

4 Pattern Development

Our experience stems from the creation of pattern languages and thus the
development of (Security) Design Patterns. Specifically, our research requires the
management and implementation of Steps D2–4 from Section 3. Although, there
is existing guidance concerning how to approach pattern writing (see Wellhausen
and Fießer [19] and Meszaros and Doble [14]), the authors do not provide guidance
as to how this process should be managed and also implemented. Furthermore,
the existing guidance has been written to aid in the creation of generic patterns,
and is not specific to the creation of security design patterns.

For new pattern writers this raises the question over how best this development
process should be managed, followed, and implemented. Several of the problems
affecting pattern development are practical in nature, and relate to practical
matters such as tool selection. For example, how patterns are encoded and stored
during development will have an effect on how the development process can be
managed and vice versa. Similarly, how patterns are stored once development
has been completed will affect how patterns are subsequently published.



Issues Affecting Security Design Pattern Engineering 57

5 Pattern Templates

For usability, patterns are often described using a mixture of structured headings,
textual descriptions, and formal models. Pattern templates represent a fixed set
of headings that are used to describe like patterns. However, there appears to be
no one common pattern template that is used through out the security design
pattern community [1, 21]. Moreover, various templates have been developed for
different security problem domains but are not strictly adhered to—see Bunke
et al. [1]. Put succinctly the universe of security design pattern templates is too
heterogeneous. Examples of different templates can be found in Buschmann et al.
[2], Gamma et al. [8], Schumacher et al. [15] and Cuevas et al. [4].

Moreover, different headings within pattern templates can be used to describe
similar aspects. This results in templates that have different headings but nonethe-
less describe the same content. Furthermore, headings within a template may be
required or optional, not all headings are used. This makes both the identification
of like patterns, and pattern evaluation, classification and comparison a much
more difficult task to perform. When developing patterns a developer should seek
to select a suitable pattern template that all the developed patterns must adhere
to.

6 Pattern Encoding

Patterns are expected to be published within a variety of end media. For example,
patterns can be expected to be found within academic articles, textbooks for
education, and online repositories. The concern here is related to how best security
patterns be represented (encoded) such that they can be stored and used, during
pattern development and pattern application.

Outside the security design pattern area, existing efforts have utilised custom
mark-up languages. For example: Entity Meta-specification Language (EML)
is an XML based construct that was designed with the purpose of: describing
all kinds of software patterns and supporting concepts Welicki et al. [18]. In a
related effort Pattern Language Markup Language (PLML) and eXtended Pattern
Language Markup Language (xPML) are other XML derived languages developed
for the domain of HCI [12]. Lastly, the Common Attack Pattern Enumeration
and Classification (CAPEC) repository [3] also utilises a custom XML schema to
represent attack patterns. Should like schema be developed for security design
patterns?

In general, the issues that need to be taken into account when looking to
encode patterns include: the pattern template being used; the use of natural
language to describe the pattern; pattern metadata; and the modelling language
used to represent the solution. An encoding needs to be chosen/developed that
facilitates pattern: (a) creation; (b) storage; (c) comparison (d) exportation; and
(e) publication.

A related issue to pattern encoding is the representation of the prescribed
solution. With design patterns, the solution’s structure and dynamics are often



58 Jan de Muijnck-Hughes and Ishbel M. Duncan

modelled using the Unified Modelling Language (UML) modelling language.
Structure using class diagrams, and dynamics using sequence diagrams. However,
UML is a graphical-oriented modelling language, the result is a series of diagrams.
This is not ideal when working with the resulting models, the modelling informa-
tion is lost as a result of the graphical notation. How best should the solution be
modelled and presented within the pattern itself?

7 Pattern Classification

As more patterns are being developed it is important to consider how secur-
ity patterns (and pattern languages) can be classified. Classification allows for
patterns to be grouped according to characteristics and properties that they
share. This is beneficial when developers are exploring the pattern landscape
for existing patterns during pattern application [7]. Classification helps reduce
the search space. Much work has already been performed in classifying security
patterns, most recently by Bunke et al. [1]. The problem of pattern classifica-
tion can be broken down into: (a) the development of a pattern taxonomy; and
(b) the classification of a group of patterns. However, the process of developing
(automatic) classification techniques, taxonomies, and performing pattern classi-
fication is made harder due to the use of non-standard pattern templates, and
lack of central pattern repository. Other problems related to pattern classification
include the selection of classification criteria and the visual representation of
multi-dimensional criteria—see Bunke et al. [1].

8 Pattern Repositories

Pattern Repositories are centralised locations that developers can use to access
patterns. Example pattern repositories can be found: online [17]; within books
e.g. Schumacher et al. [15]; or (and most commonly) within academic literature.
A comprehensive list of academic literature featuring security patterns can be
found in Bunke et al. [1]. Pattern repositories have also been presented as a
single PDF document Kienzle et al. [11]. However, these resources are either:
a) incomplete; b) cannot be modified; or c) cannot be used programmatically.
The CAPEC repository [3] is a good example of a pattern repository, however, it
has been designed for attack and not security design patterns.

Central to security pattern engineering, and also research, is the creation
of an easily accessible security design pattern repository that can be used by
researchers and developers alike. The existence of such a pattern repository
would provide pattern researchers with a catalogue through which they can
perform pattern related research. This would also benefit pattern developers. For
software developers, a centralised repository will facilitate access to a variety
of security design patterns that they can examine/select for their needs during
pattern application. When looking to develop such a repository for security design
patterns the CAPEC repository appears to be a good place to start.



Issues Affecting Security Design Pattern Engineering 59

9 Pattern Evaluation

Pattern evaluation is one of the lesser reported aspects within security pattern
research. A well known practise within the pattern community is that of Peer
Review and Shepherding [19]. During the pattern engineering process shepherding
pairs the pattern author with another, experienced, pattern writer who provides
authoritative guidance and advice concerning the pattern development. However,
an inherent problem with shepherding is that the process provides subjective
evaluation over the quality of the pattern itself and not the solution being
described. A more formal approach to evaluation is required.

Within the security design pattern community there have been several papers
that look towards security pattern evaluation [9, 10, 21]. However, each of these
papers provides not only a different evaluation criteria but not all were designed
to evaluate security patterns. Analyses were given of the pattern landscape (at the
time) as well. This raises the question concerning which properties of a security
pattern should be selected for evaluation. Heyman et al. [10] examined a pattern
according to the appropriateness and quality of documentation. Yoshioka et al.
[21] examined patterns according to a patterns ease of use; effectiveness; and
sufficiency. Are these existing properties sufficient, or should other properties, for
instance usability, be examined?

When looking to establish an evaluation framework for security design pat-
terns an evaluation approach needs to be defined. Should the approach be
quantitative, qualitative, or a mixture of both? Regardless of the approach taken,
the selected criteria should assess the patterns themselves and not the actual
implementation [9].

The precise nature concerning how security patterns should be evaluated is
still ongoing. However, work by Laverdière et al. [13] that utilises the House of
Quality evaluation framework does look most promising.

10 Conclusion

Although the area of security patterns is not new, there are several worrying trends
seen within security pattern research. For further research into, and development
of, security design patterns these areas of concern need to be addressed.

There are a variety of pattern templates used by pattern developers. Some
templates are unique to the pattern itself, while others are variations of existing
ones. With the rich variety of templates used this makes the classification,
identification and comparison of like security patterns more difficult. Standard
templates need to be defined for key domain areas, and adopted by all pattern
developers within those domains.

Pattern development has also been made more difficult due to the lack of a
central pattern repository. This lowers the accessibility of the patterns themselves.
Not all developers will have access to academic literature. Pattern developers,
and users, would benefit greatly from a centralised repository.

Perhaps the most striking element is the lack of formal evaluation in relation
to the patterns themselves, and the solutions represented therein. Patterns are



60 Jan de Muijnck-Hughes and Ishbel M. Duncan

supposed to represent the tried and tested design decisions made by software
developers/engineers when providing a solution. How can a developer know that
the solution presented is ‘good’? Can trust be established in relation to the quality
of the pattern? To promote the adoption of patterns a more formal evaluation
framework needs to be established and made accessible. How this framework
should look is open research.

Bibliography

[1] Bunke, M., Koschke, R., Sohr, K.: Application-domain classification for
security patterns. In: PATTERNS 2011, The Third International Conferences
on Pervasive Patterns and Applications. pp. 138–143. ThinkMind (2011)

[2] Buschmann, F., Henney, K., Schmidt, D.: Pattern-oriented software archi-
tecture: On patterns and pattern languages. Wiley series in software design
patterns, John Wiley & Sons (2007)

[3] Corporation, M.: Common Attack Pattern Enumeration and Classification
Repository. Online (2013), http://capec.mitre.org/

[4] Cuevas, A., Laube, A., Sorniotti, A., Khoury, P.E., Gomez, L.: Security
patterns for untraceable secret handshakes with optional revocation. Inter-
national Journal On Advances in Security 3(1&2), 68–79 (sept 2010)

[5] Delessy, N., Fernandez, E., Larrondo-Petrie, M.: A pattern language for
identity management. In: Computing in the Global Information Technology,
2007. ICCGI 2007. International Multi-Conference on. p. 31 (march 2007)

[6] Fernandez, E.B., Washizaki, H., Yoshioka, N.: Abstract security patterns.
In: Proceedings of the 15th Conference on Pattern Languages of Programs.
pp. 4:1–4:2. PLoP ’08, ACM, New York, NY, USA (2008), http://doi.acm.
org/10.1145/1753196.1753201

[7] Fernández, E.B., Yoshioka, N., Jürjens, H.W.J., Hilst, M.V., Pernul, G.:
Using Security Patterns to Develop Secure Systems, chap. 2, pp. 16–31. IGI
Global (2011)

[8] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley (1994)

[9] Halkidis, S., Chatzigeorgiou, A., Stephanides, G.: A qualitative evaluation
of security patterns. In: Lopez, J., Qing, S., Okamoto, E. (eds.) Information
and Communications Security, Lecture Notes in Computer Science, vol. 3269,
pp. 251–259. Springer Berlin / Heidelberg (2004), http://dx.doi.org/10.
1007/978-3-540-30191-2_11

[10] Heyman, T., Yskout, K., Scandariato, R., Joosen, W.: An analysis of the
security patterns landscape. In: Proceedings of the Third International
Workshop on Software Engineering for Secure Systems. p. 3. SESS ’07, IEEE
Computer Society, Washington, DC, USA (2007), http://dx.doi.org/10.
1109/SESS.2007.4

[11] Kienzle, D.M., Elder, M.C., Tyree, D., Edwards-Hewitt, J.: Secur-
ity patterns repository version 1.0 (2003), http://scrypt.net/~celer/
securitypatterns/repository.pdf, online [Accessed 2012-02-27]

http://capec.mitre.org/
http://doi.acm.org/10.1145/1753196.1753201
http://doi.acm.org/10.1145/1753196.1753201
http://dx.doi.org/10.1007/978-3-540-30191-2_11
http://dx.doi.org/10.1007/978-3-540-30191-2_11
http://dx.doi.org/10.1109/SESS.2007.4
http://dx.doi.org/10.1109/SESS.2007.4
http://scrypt.net/~celer/securitypatterns/repository.pdf
http://scrypt.net/~celer/securitypatterns/repository.pdf


Issues Affecting Security Design Pattern Engineering 61

[12] Kruschitz, C., Hitz, M.: Bringing formalism and unification to human-
computer interaction design patterns. In: Proceedings of the 1st International
Workshop on Pattern-Driven Engineering of Interactive Computing Systems.
pp. 20–23. PEICS ’10, ACM, New York, NY, USA (2010), http://doi.acm.
org/10.1145/1824749.1824754

[13] Laverdière, M.A., Mourad, A., Hanna, A., Debbabi, M.: Security design
patterns: Survey and evaluation. In: Electrical and Computer Engineering,
2006. CCECE ’06. Canadian Conference on. pp. 1605–1608 (2006)

[14] Meszaros, G., Doble, J.: Pattern languages of program design 3. chap. A
pattern language for pattern writing, pp. 529–574. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA (1997), http://dl.acm.org/
citation.cfm?id=273448.273487

[15] Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F.,
Sommerlad, P.: Security patterns: integrating security and systems engineer-
ing. Wiley series in software design patterns, John Wiley & Sons (2006)

[16] Sethi, A., Barnum, S.: Introduction to attack patterns. Tech. rep., Cigital
Inc. (Nov 2006), https://buildsecurityin.us-cert.gov/articles/
knowledge/attack-patterns/introduction-to-attack-patterns

[17] The Hillside Group: Patterns catalog. Online (2013), http://hillside.
net/patterns/patterns-catalog

[18] Welicki, L., Manuel, J., Lovelle, C., Aguilar, L.J.: Patterns meta-specification
and cataloging: towards knowledge management in software engineering.
In: Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications. pp. 679–680. OOPSLA
’06, ACM, New York, NY, USA (2006), http://doi.acm.org/10.1145/
1176617.1176670

[19] Wellhausen, T., Fießer, A.: How to write a pattern? a rough guide for first-
time pattern authors. In: Proceedings of the 16th European Conference on
Pattern Languages of Programs. pp. 5:1–5:9. EuroPLoP ’11, ACM, New
York, NY, USA (2012), http://doi.acm.org/10.1145/2396716.2396721

[20] Yoder, J., Barcalow, J.: Architectural patterns for enabling application
security. In: Proceedings of the Conference on Pattern Languages of Programs
(PLoP 1997). Monticello/IL (1997)

[21] Yoshioka, N., Washizaki, H., Maruyama, K.: A survey on security patterns.
Progress in Informatics (5), 33–47 (2008)

http://doi.acm.org/10.1145/1824749.1824754
http://doi.acm.org/10.1145/1824749.1824754
http://dl.acm.org/citation.cfm?id=273448.273487
http://dl.acm.org/citation.cfm?id=273448.273487
https://buildsecurityin.us-cert.gov/articles/knowledge/attack-patterns/introduction-to-attack-patterns
https://buildsecurityin.us-cert.gov/articles/knowledge/attack-patterns/introduction-to-attack-patterns
http://hillside.net/patterns/patterns-catalog
http://hillside.net/patterns/patterns-catalog
http://doi.acm.org/10.1145/1176617.1176670
http://doi.acm.org/10.1145/1176617.1176670
http://doi.acm.org/10.1145/2396716.2396721

	Issues Affecting Security Design Pattern Engineering

