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Abstract
We study the impact of a spatially homogeneous yet non-stationary dielectric permittivity on the
dynamical and spectral properties of light. Our choice of potential ismotivated by the interest in
 -symmetric systems as an extension of quantummechanics. Becausewe consider a homogeneous
and non-stationarymedium,  symmetry reduces to time-reversal symmetry in the presence of
balanced gain and loss.We construct the instantaneous amplitude and angular frequency of waves
within the framework ofMaxwell’s equations and demonstrate themodulation of light amplification
and attenuation associatedwith thewell-defined temporal domains of gain and loss, respectively.
Moreover, we predict the splitting of extrema of the angular frequencymodulation and demonstrate
the associated shrinkage of themodulation period. Our theory can be extended for investigating
similar time-dependent effects withmatter and acoustic waves in  -symmetric structures.

1. Introduction

During the past years, a new class ofHamiltonians has beenwidely investigated, which extends quantum
mechanics from theHermitian into the non-Hermitian (complex) domain [1]. Despite the lack ofHermiticity,
Bender et alhave shown in their seminal papers that aHamiltonian can have real eigenspectra if it possesses so-
called parity-time ( ) symmetry [2, 3]. Such a symmetrymeans there is invariance of the theory under parity
(spatial) reflection  : p p x x, -  -ˆ ˆ ˆ ˆ, and time reflection  : p p -ˆ ˆ (t t - ), x xi i, - ˆ ˆ, where
p̂ and x̂ are themomentum and position operators, respectively, while t is the time coordinate and i is the
imaginary unit. This combined  symmetry leads to subtle changes in the unitary evolution of the system and
modification of the inner product [4–7]. As  symmetry represents an extension of quantummechanics, it is
nowadays used in various different contexts, such as quantum reflection [8–10] and chaos [11], and has even
been generalized to fermionic [12, 13], gyrotropic [14, 15] andmagnetic systems [16].

Although the concept of  symmetry was originally introduced in quantummechanical systems, one has
found experimental evidence and also awide range of applications in classical optics. In 2010, Rüter et alwere the
first to realize a  -optical coupled system that involves well-defined regionswith gain and loss regimes,
inherent to the complex-valued refractive index [17]. Such an extension of the concept of spacetime reflection
into the classical domain stems from theworks of El-Ganainy et al [18] andMakris et al [19, 20], who have
employed the similarity between the Schrödinger and a scalar approximation ofMaxwell’s equations to describe
the dynamics of light beams in  -symmetric optical lattices. There have been further theoretical [21–24] and
experimental [25–27] studies dealingwith the implementation of the parity-time reversal symmetry in optics
especially relevant for the development of new artificial structures andmaterials (see also the recent review paper
[28] and references cited therein).
 -symmetric structures havemainly been investigated in the spatial domain (that is, for time-

independent complex potentials) and little attention has been paid to the study of the non-stationary regime.
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The significance of considering the time-dependent potentials both in the quantum [29–33] and classical theories
[34, 35] arises from the attempt to examine the full time evolution of the system. Recently, a non-Hermitian
opto-mechanical structure has been realized experimentally in the temporal domain [36]. Despite the recent
works, however, there are no rigorous analytical studies of wave equationswith non-stationary complex
potentials possessing time reflection symmetry. Given that the energy (frequency) and time are conjugate
variables, a successful solution of  -symmetric time-dependentMaxwell’s equationswould constitute a
complete characterization of the dynamical and spectral features of light.

The purpose of this paper is to study the dynamics of light in time-dependent optical potentials having 
symmetry.We consider a spatially homogenenous system, forwhich  reduces to symmetry under time
reversal, albeit in the presence of both gain and loss. In view of this, we calculate both the instantaneous
amplitude and angular frequency of waves and showhow the complex-valued dielectric permittivity controls
the light in the temporal domain. The resultingmodulations of amplification and attenuation of the amplitude is
demonstrated to be associatedwithwell-defined regimes of gain and loss, respectively. A comparisonwith the
angular frequencymodulation by a real permittivity is provided to reveal the impact of  -symmetric
potentials in thatwe observe (i) splitting of the extrema and (ii) a shrinkage of the frequencymodulation period.
Moreover, a particular emphasis is placed on studyingmodulations of light amplification and attenuation for
experimentally accessible values of themodulated permittivity.

The paper is organized as follows. In section 2we briefly discuss  symmetry in optics by considering
space-independent but time-varyingmodulations of a complex-valued dielectric permittivity. For such a
modulated permittivity, symmetric under time-reversal, we construct an analytical solution toMaxwell’s
equations under the assumption that themodulation rate ismuch smaller than thewave frequency. This
solution is further exploited in section 3 to derive and analyze the instantaneous amplitude and angular
frequency of light. Peculiar properties, such asmodulations of amplitude amplification and attenuation aswell
as the splitting of frequency extrema and shrinkage of frequencymodulation, are discussed in detail. Finally,
conclusions are given in section 4.

2. Solution toMaxwell’s equations for space-independent but time-varying dielectric
permittivity obeying  symmetry

We start with a brief discussion of general properties of classical optical systems possessing  symmetry.
Building on the formal equivalence of the Schrödinger equationwith the paraxial Helmholtz (Maxwell)
equation, we identify the complex refractive index n n ni= +( ) ( )R I as the optical potential, the real ( n( )R )
and imaginary ( n( )I ) parts of which are, correspondingly, even and odd functions of spacetime coordinates to
ensure the  invariance of the theory [17–20]. Likewise, since for non-magnetic structures the real ( e( )R ) and
imaginary ( e( )I ) parts of the dielectric permittivity are defined via n n2 2e = -( ) [ ( )] [ ( )]R R I and

n n2e =( ) ( ) ( )I R I , the symmetry, x t x t, ,e e= - -[ ( )] [ ( )]R R , and anti-symmetry,
x t x t, ,e e= - - -[ ( )] [ ( )]I I , relations guarantee that the full wave equation, without any approximation,

remains invariant under the parity-time transformation [37, 38]. Throughout this work, we place our emphasis
on the temporal domain and consider a spatially homogeneous yet time-dependent dielectric permittivity, te( ).
For the sake of illustrationwe choose

t cos i sin 2 , 11
2

2e e t e e t e tº = + +( ) ( ) ˜ ( ) ( ) ( )

as amodulated time-dependent optical potential (see figure 1), similar to its spatial counterpart as discussed in
[19, 20]6. In equation (1), ẽ is the background dielectric constant, 1e represents the amplitude of the real profile
of the potential, whereas 2e describes the strength of the gain/loss periodic distribution.Moreover, btt º is a
dimensionless time, where b 0 acts as a scaling factor and indicates the rate (i.e., the frequency) ofmodulation
of the permittivity, that we assume to occur slower than the oscillations of thewave. This is reminiscent of the
similar formofmodulation adopted in [19, 20] for the spatial case and could be experimentally realized by
utilizing opto-mechanical [36] or electro-optical systems [39]. Note that we treat the amplitudes 1e and 2e as
signed quantities in equation (1), though in general the behavior is not symmetric under an exchange of the sign
of the amplitudes.

In order to investigate dynamical and spectral properties of light in non-stationary  -symmetric
structures, we derive an exact second order differential equation fromMaxwell’s equations [40] for the electric
displacement vector,

6
Note that this choice of the time-varying permittivity, being the analog of the refractive index used in [19] in position space, does not satisfy

the standardKramers–Kronig relations, i.e., themedium is not subject to the causality principle. te( ) is valid for all time (that is, does not
vanish for negative times) so that a priori no restrictions on the past are necessary.
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which is valid for an arbitrary shape of the time-dependent dielectric permittivity [41]. Here,Δ is the Laplace
operator and c is the speed of light in vacuum (for the theory of non-stationary electromagnetism see, e.g.,
[42–44]).Without themodulation rate, i.e., when b=0, the standard linear dispersion relation
k k c0w e= ( ) ˆ holds, where 0 1e e eº +( ) ˜ is the permittivity at 0t = and k̂ is the unit vector in the direction
of propagation. In the presence ofmodulation (1), both the amplitude and the angular frequency of light
undergo a time-dependentmodification governed by equation (2). Accounting for this instantaneous effect we
seek a solution of equation (2) bymaking the ansatz

r ut, e , 3k r ti  t= w-( ) ˆ ( ) ( )( · )

which reflects the spatial homogeneity of the permittivity. Here, û is the unit vector along the polarization
direction, while the complex-valued ‘amplitude’  describes the influence of themodulated potential on the
light. In the absence of anymodulation, we expect to recover the free propagation of light through a uniform
mediumwith a constant dielectric permittivity so that 1 = . Note that a similar (full)wave equation for the
space-dependent electric field and permittivity is discussed in [37] for describing the so-called  -symmetric
coherent-perfect-absorber laser.Moreover, time reversal and time-dependent wave propagation is studied in
various aspects, such as for time-localized perturbations combinedwith spatial periodicity [45–48] and
sigmoidally changing systemswith either real or complex permittivity/refractive index [41, 49–52].

Next, we insert the ansatz (3) in equation (2) and obtain a second order linear differential equation for ,

b b¨ 2i
0

1 0, 4
2

  
w

t
w

t
e
e t

t- + - =⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( ) ˙ ( ) ( )

( )
( ) ( )

where ‘dot’ refers to the derivative with respect to the dimensionless time τ. As our interest is restricted to
modulations of the complex dielectric permittivity profile, which are slowwhen compared to the oscillations of
light, we can adopt b 1w  and henceforth safely ignore the first term in equation (4). In this approximation,
the remainingfirst order differential equation generally determines the instantaneous angular frequency as

b
2

1
0

, 5
2




t w

w e e t
e t

W = - = +
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥( )

˙ ( ) [ ( )]
∣ ( )∣

( )I
R

for an arbitrary formof the dielectric permittivity7. The exact solution of the reduced equationwhen integrated
from the ‘initial’ time 0 to some instant of time τ leads to

b b b
exp i

2 2
arctanh exp

2
arctanh i tan . 6





  t

wt w w
t= - -{ } { }( ) ( ) [ ( )] ( )

This explicitly exhibits the  symmetry of the displacement,  = . In equation (6), the constant
parameters , ,   are introduced for the sake of brevity: 01 e e eº + >˜ (˜ ) carries information about the

Figure 1. Symmetric real, e( )R , and anti-symmetric imaginary, e( )I , parts of the time-dependent dielectric permittivity.

7
This reminds us of the analogous definition of the local wave vector in the spatial domain (see, e.g., [53]).
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real potential, whereas 2 1 e e eº +(˜ ) amounts to the complex-valued permittivity, being the signature of the
gain/lossmechanism. Both and  , combinedwith 1 02  º + > , demonstrate the significance of
the real and imaginary parts of the permittivity in the instantaneous character of light. Note that anymodulation
vanishes if 0, 1  = = = ( 01 2e e= = ) and/or b=0 so that we recover the anticipated free propagation
of light, as also lim 1b 0 = . The solution (6) holds for a class of potentials of the form (1), which is fully
determined on choosing ,  and one of the constants in the potential, say ẽ. In addition, tomark out the range
of variation of these parameters, we insert the (approximate) solution (6) into the exact equation (4) and estimate
the error for a givenmodulation frequency b and angular frequencyωnumerically. As can be easily checked, the
relative error (that is, the term b ¨2 w( ) ) does not exceed 0.13 for 0.7, 1.7 Î [ ]and 0.8, 0.8 Î -[ ] for 8a
ratio of b 0.01w = .Moreover, other analytical solutions for  -symmetric (quantummechanical) potentials
can be found in [54, 55].

3. Instantaneous characteristics of  -modulated electromagnetic waves

The solution (6) allows us to fully characterize the dynamics of waves in non-stationary complex potentials.
Indeed, by decoupling the real and imaginary parts of the time-dependent component of the electric
displacement, e eti i t t=w t- F( ) ∣ ( )∣ ( ) , we obtain direct access to the profile of the instantaneous amplitude
 t∣ ( )∣

b

b

exp arctanh

exp
2

arctanh
2

2 tan
7

2 2 1

2 2 2

   

 

   

t t w

w
t

= = -

´
+ +

-

⎧⎨⎩
⎫⎬⎭

∣ ( )∣ ∣ ( )∣ { ( )}

( )
( )

and also to that of the instantaneous phase

b b2 4
arctan

tan

1
arctan

tan

1
,

 






t

wt w t t
F = - -

+
+

-

⎛
⎝⎜

⎞
⎠⎟( )

thefirst derivative of which yields the profile (5) of the instantaneous angular frequency, bW = - Ḟ, as one
would expect. Its explicit form expressed in terms of parameters  and  is

2
1

sin cos

sin cos sin 2
. 8

2 2

2 2 2 2 2



 
t

w t t
t t t

W = +
+

+ +

⎡
⎣⎢

⎤
⎦⎥( )

( ) ( )
( )

Again, note thatwhen the  modulation is ‘switched off’, the relations t1,2 w= F = -∣ ∣ and wW = are
obtained (see [56] formain studymethods of signals whose frequency content changes in time). Such a
modulation,moreover, is different from frequency conversion occurring as a result of temporal switching (see,
e.g., [43, 57] and [58] for electromagnetic and acoustic waves, respectively).

For a complete description of the instantaneous amplitude and angular frequency, and in order to reveal
their specific properties, we determine the extrema of (7) and (8) at the stationary points t ,0 Î -¥ ¥( ). They
are given implictly by the equations

b sin 2 0, 2 sin 2 1

4 sin cos 0. 9

2 2 2 2 2 4 4 2 2 2

2 2 4 4

     

 

e we t e we t e
e t t

=- = W = -
+ - =

∣ ∣ ∣ ∣˙ ˜ ∣ ∣ ( ) ∣ ∣ ˙ ˜ ( ){( ) [ ( )]
˜ ( )} ( )

R

Fromherewe immediately recognize that both quantities have extrema at m 20t p= provided thatm is an
integer whose even values, m 2= (with  being an integer), result in 12 p =∣ ( )∣ and p wW =( ) . In
contrast, the odd values, m 2 1= + , give rise to

b2 exp arctanh , 102 1   p p w+ = - -∣ ( )∣ { ( )} ( )

2 1 2 , 11  p p wW + = +( ) ( ) ( ) ( )
as obtained from equations (7) and (8), respectively. Equation (10) leads to themaximumpossible amplitude
amplification ( 0 < ) and attenuation ( 0 > ) correspondingly linked to thewell-defined temporal domains
of gain and loss. A feature of our complex and  -symmetric potentials is the presence of additional extremal
values at

Dsin 1 8 1 122
0

2 t ¢ = - -( ) ( ) ( )

when the discriminant D 16 4 12 2 2  º - -[ ( ) ]of the quadratic polynomial (in sin2 t) appearing in the
curly parentheses in equation (9) is positive, that is when 2 1 > -∣ ∣ ∣ ∣. The threshold, however, does not
guarantee that the additional extrema are to be found at real values of 0t¢ . For this we need to specify the value of

8
The choice for the ratio ofmodulation andwave frequencies is to estimate the upper value of b w/ , for which our approximation is

accurate. The effects, as proposed below, remain the same for smaller values of b w/ .
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 further, albeit the precise criterion depends on the value of. For 0 1< < , the criterion for additional
extrema is given by 2 1 > -∣ ∣ determined by the constraint sin 02

0t¢ > , whereas for 1 > , the criterion

changes to 2 2  > -∣ ∣ following from the condition sin 12
0t¢ < . For 1 = , the two criteria are

equivalent, and additional extrema can be expected from equation (9) for any value of  at 2 1 40 t p¢ = +( ) .
The physical reason for this difference is the sign of themodulation in the real part of the dielelectric

permittivity in equation (1). For 0 1< < themodulation of the real part is positive, that is, the real part varies
between ẽ and 1e e+˜ , which gives rise to an increase of the instantaneous frequency as shown infigure 2(b). For

1 > the signed amplitude 1e is negative and the permittivity varies between 1e e-˜ ∣ ∣and ẽ, which leads to a
decrease. In both cases the position of the additional extrema is aptly described by equation (12), which gives rise
to a splitting of themodulation extrema (as shown infigure 2(d)) that would otherwise be determined by
equation (11) in the case when the instantaneous angular frequency ismodulated by the conventional real
permittivity. The value of the instantaneous angular frequency at these additional extrema for amodulation by
the imaginary permittivity beyond the threshold is then given by

D1 5 4 4 8. 130
2 2 2   t wW ¢ = + + +( ) ( ( )) ( )

It is important to note that even though changing the time origin in equation (1) does affect the formal definition
of time-reversal symmetry, the observed effects remain the samewith the onlymodification that the symmetry
point is shifted formodulations of both the instantaneous amplitude, equation (7), and angular frequency,
equation (8).

Time-periodic  -symmetric optical potentials feature unusual, though expectedmodulations of the
instantaneous properties of the light. Figure 2 illustrates the evolution of these quantities, possessing time-
reversal symmetry ( 2 2 t t= -∣ ( )∣ ∣ ( )∣ , t tW = W -( ) ( )), against the dimensionless time τ for various values
of and  . Figure 2(a) shows that the sign of  determines whether the overall dynamics give rise to
amplification ( 0 < ) or attenuation ( 0 > ), despite the fact that in both cases there are equal periods of gain
and loss, occurring, however, with different strengths. In addition to these amplitude variations, figure 2(b)
showsmodulations of the instantaneous angular frequency towards either higher (0 1< < ) or lower
( 1 > ) frequencies, compared toω. For small values of ∣ ∣, the instantaneous angular frequency remains
mostly unaltered (figure 2(b)—the additionalmaxima for 1 = at 2 1 40 t p¢ = +( ) are too small to discern
on this scale) and only the amplitude experiences amodulation. Larger values of  lead to a vigorous
modulation of the amplitude attenuation (figure 2(c)) and to a pronouncedmodification of the frequency

Figure 2. Instantaneous amplitude (left panel, equation (7)) and angular frequency (right panel, equation (5) or (8)) of lightmodulated
by the  -symmetric dielectric permittivity e, equation (1), for different values of  and  . 1 2 < -∣ ∣ ∣ ∣ corresponds to the
upper panel (below the threshold), 1 2 > -∣ ∣ ∣ ∣ to the lower one (above the threshold).
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modulation profile (figure 2(d)). Unlike the ordinarymodulation of angular frequency, where themodulation
rate is commensurate with the scaling factor (i.e., themodulation frequency b) of the real potential [59], in our
 -symmetric structure the extrema of frequencymodulation experience a split beyond the threshold
2 1 = -∣ ∣ ∣ ∣, as depicted infigure 2(d). The global extremum turns into a local one and two new global
extrema appear on either side such that now they occurwith a shrunken period and the troughs of curves are
shifted towards the lower frequency domain, quantitatively determined via equation (13). The values of the
instantaneous amplitude and angular frequency at the regular and additional extrema are shown infigure 3 as
functions of and  , where a comparison ismade between the  - and real-potential induced surfaces. As the
gain/loss parameter  changes its sign fromnegative to positive, the extrema of the instantaneous amplitude
descend from the region of amplification ( 2 12 p p+ >∣ ( )∣ ) to the region of attenuation
( 2 12 p p+ <∣ ( )∣ ) for all values of (figure 3(a)). By comparison, the unit surface indicates the absence
of the amplitudemodulationwhen the imaginary part of the permittivity is ‘switched off’, that is for 0 = ,
whichmarks the line alongwhich both surfaces intersect. In contrast, as seen from figure 3(b), the extrema of the
instantaneous angular frequency differ fromunity even if the imaginary part of the permittivity is zero.While
the -independent surface designated by 2 p p wW +( ) describes the extrema of the instantaneous angular
frequency asmodulated only by the real part of the permittivity, the surface 0t wW ¢( ) always lies below

2 p p wW +( ) and represents the split extrema due to the imaginary part of ε.
Until now,we have discussed how the  modulation of the dielectric permittivity affects the instantaneous

characteristics of light for various values of and  , as allowed forwithin our approximation. Since the time-
dependent permittivity in experimental situations can bemodulatedwith the amplitudemuch less than through
the background dielectric constant(see, e.g., [59]), it is sensible to discuss the impact of the permittivity in the
dynamics of light for those values of parameters which are currently available especially in  -coupled
waveguide devices. If we consider amodulation of the dielectric permittivity with the real 1e e∣ ∣ ˜ and
imaginary 2e e∣ ∣ ˜ parts and keep terms up tofirst order of 1e e∣ ∣ ˜ and 2e e∣ ∣ ˜ in the parameters 1 1 e e» - ˜ ,

2 e e» ˜ and 1 21 e e» + ( ˜ ), we can reduce equation (7) to an experimentally accessible form

b
exp

2
2arctanh arctanh

2 cos
. 142 2 2

2

 t
w e

e
e t

e
» - +

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭∣ ( )∣
˜ ˜

( )

As seen, the instantaneous amplitude no longer depends on the value of the real part of the permittivity
modulation given by 1e , but only on the gain/loss distribution strength 2e , the sign of which suitably defines the
temporal domains of gain ( 02e < ) and loss ( 02e > ), as also shown infigure 4(a). As themagnitude of the
absolute value of 2e increases, the amplitudemodulations becomemore pronounced. For a given

0, 0032e e =∣ ∣ ˜ , for instance, one can clearly distinguish between the increase of∼35%and decrease of∼25% in
the amplitudemodulation extrema (the black solid and dashed curves). Such an asymmetry in the gain and loss
domains is due to the fact that equation (14) changes its formunder the change of the sign of 2e . In contrast to the
amplitudemodulations, that distinctly occur already for small values of 2e , themodulations of the instantaneous
angular frequency are driven only by the real profile since the gain/loss strength contributes with the second-
order term in the denominator of equation (5). However, if we allow for a strong  coupling by setting

12e e <∣ ∣ ˜ , but keep the same restriction for the real amplitude, 11e e ∣ ∣ ˜ , the instantaneous frequencywill be
modulated beyond the threshold, and therefore, the split of extrema and associated shrunken periods can clearly

Figure 3.Extrema of themodulus squared of the instantaneous amplitude ((a), equation (10)) and angular frequency ((b),
equations (11)–(13)). The comparison ismade betweenmodulations of light via a real permittivity profile (given by the unit surface in
(a) and the upper surface in (b)) and  -symmetric permittivity profiles (given by the surface crossing unity in (a) and the lower
surface in (b)).
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be seen at 2 1 40 t p¢ = +( ) since A 1» , as demonstrated infigure 4(b).Moreover, when 0.32e e =˜ , the
change in the instantaneous frequency rises by 4%, as compared to the initial frequencyω.

4. Conclusions

In conclusion, we have examined the impact of the time-dependent  -symmetric dielectric permittivity in the
dynamical and spectral features of light. In our formalism, we have shown that the  modulation of light is
associatedwith thewell-defined temporal domains of gain ( 0 < ) and loss ( 0 > ).We have also determined
two different criteria for the splitting of the extrema of the angular frequencymodulation to occur andwe have
demonstrated the shrinkage of themodulation period. Both the split and shrinkage are general, inherent features
of time-dependent complex potentials. A directmanifestation of time reflection symmetry in our particular
non-stationary structure is always evident. Such effects warrantmore detailed future investigations with
different time-dependent  -symmetric potentials. It is true that while the predicted curves onfigure 4 could
be observed experimentally with techniques available nowadays, the curves onfigure 2 are likely to only be
accessed in future.

We shouldmention that our choice of the permittivity suggests that the causality principle is not fulfilled,
i.e., the parameters of the permittivity do not follow conventional dispersion constraints, as represented by the
Kramers–Kronig relations. Given the known inconsistencies with theKramers–Kronig relations for
 -symmetric systems [60–63] and other artificialmetamaterials with complex-valued permittivity [64–68],
analogous relationsmust be constructed for various types of  -symmetric time-varying dielectric
permittivities, relaxing the strict assumptionsmade for causality.

Although the theory developed here can be readily expanded for studying similar  -induced effects for
acoustic [52, 58, 69, 70]waves, it also has indirect implications for time-dependent coupling inmechanical
systems [71, 72]. The consideration of the analogous theory formodified  symmetries [73–75]would be of
great interest.
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