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Abstract

We study the impact of a spatially homogeneous yet non-stationary dielectric permittivity on the
dynamical and spectral properties of light. Our choice of potential is motivated by the interest in

PT -symmetric systems as an extension of quantum mechanics. Because we consider a homogeneous
and non-stationary medium, P7" symmetry reduces to time-reversal symmetry in the presence of
balanced gain and loss. We construct the instantaneous amplitude and angular frequency of waves
within the framework of Maxwell’s equations and demonstrate the modulation of light amplification
and attenuation associated with the well-defined temporal domains of gain and loss, respectively.
Moreover, we predict the splitting of extrema of the angular frequency modulation and demonstrate
the associated shrinkage of the modulation period. Our theory can be extended for investigating
similar time-dependent effects with matter and acoustic waves in P7 -symmetric structures.

1. Introduction

During the past years, a new class of Hamiltonians has been widely investigated, which extends quantum
mechanics from the Hermitian into the non-Hermitian (complex) domain [1]. Despite the lack of Hermiticity,
Bender et al have shown in their seminal papers that a Hamiltonian can have real eigenspectra if it possesses so-
called parity-time (P7 ) symmetry [2, 3]. Such a symmetry means there is invariance of the theory under parity
(spatial) reflection P: p — —p, & — —X,and timereflection7: p — —p (t — —¢),i — —i, £ — £, where
pand £ are the momentum and position operators, respectively, while ¢ is the time coordinate and i is the
imaginary unit. This combined P7 symmetry leads to subtle changes in the unitary evolution of the system and
modification of the inner product [4-7]. As P7 symmetry represents an extension of quantum mechanics, it is
nowadays used in various different contexts, such as quantum reflection [8—10] and chaos [11], and has even
been generalized to fermionic [12, 13], gyrotropic [14, 15] and magnetic systems [16].

Although the concept of P7” symmetry was originally introduced in quantum mechanical systems, one has
found experimental evidence and also a wide range of applications in classical optics. In 2010, Riiter ef al were the
first to realize a P7 -optical coupled system that involves well-defined regions with gain and loss regimes,
inherent to the complex-valued refractive index [17]. Such an extension of the concept of spacetime reflection
into the classical domain stems from the works of El-Ganainy et al [ 18] and Makris et al[19, 20], who have
employed the similarity between the Schrodinger and a scalar approximation of Maxwell’s equations to describe
the dynamics of light beams in P7 -symmetric optical lattices. There have been further theoretical [21-24] and
experimental [25-27] studies dealing with the implementation of the parity-time reversal symmetry in optics
especially relevant for the development of new artificial structures and materials (see also the recent review paper
[28] and references cited therein).

PT -symmetric structures have mainly been investigated in the spatial domain (that is, for time-
independent complex potentials) and little attention has been paid to the study of the non-stationary regime.

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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The significance of considering the time-dependent potentials both in the quantum [29-33] and classical theories
[34, 35] arises from the attempt to examine the full time evolution of the system. Recently, a non-Hermitian
opto-mechanical structure has been realized experimentally in the temporal domain [36]. Despite the recent
works, however, there are no rigorous analytical studies of wave equations with non-stationary complex
potentials possessing time reflection symmetry. Given that the energy (frequency) and time are conjugate
variables, a successful solution of P7 -symmetric time-dependent Maxwell’s equations would constitute a
complete characterization of the dynamical and spectral features of light.

The purpose of this paper is to study the dynamics of light in time-dependent optical potentials having P7
symmetry. We consider a spatially homogenenous system, for which P7 reduces to symmetry under time
reversal, albeit in the presence of both gain and loss. In view of this, we calculate both the instantaneous
amplitude and angular frequency of waves and show how the complex-valued dielectric permittivity controls
the light in the temporal domain. The resulting modulations of amplification and attenuation of the amplitude is
demonstrated to be associated with well-defined regimes of gain and loss, respectively. A comparison with the
angular frequency modulation by a real permittivity is provided to reveal the impact of P7 -symmetric
potentials in that we observe (i) splitting of the extrema and (ii) a shrinkage of the frequency modulation period.
Moreover, a particular emphasis is placed on studying modulations of light amplification and attenuation for
experimentally accessible values of the modulated permittivity.

The paper is organized as follows. In section 2 we briefly discuss P7 symmetry in optics by considering
space-independent but time-varying modulations of a complex-valued dielectric permittivity. For such a
modulated permittivity, symmetric under time-reversal, we construct an analytical solution to Maxwell’s
equations under the assumption that the modulation rate is much smaller than the wave frequency. This
solution is further exploited in section 3 to derive and analyze the instantaneous amplitude and angular
frequency oflight. Peculiar properties, such as modulations of amplitude amplification and attenuation as well
as the splitting of frequency extrema and shrinkage of frequency modulation, are discussed in detail. Finally,
conclusions are given in section 4.

2. Solution to Maxwell’s equations for space-independent but time-varying dielectric
permittivity obeying P7 symmetry

We start with a brief discussion of general properties of classical optical systems possessing P7” symmetry.
Building on the formal equivalence of the Schrédinger equation with the paraxial Helmholtz (Maxwell)
equation, we identify the complex refractive index n = PR (n) + iJ(n) as the optical potential, the real (R(n))
and imaginary (J(n)) parts of which are, correspondingly, even and odd functions of spacetime coordinates to
ensure the P7 invariance of the theory [17-20]. Likewise, since for non-magnetic structures the real (R(¢)) and
imaginary (J(¢)) parts of the dielectric permittivity are defined via R(¢) = [R(n)]* — [J(n)]> and

J(e) = 2R (n)I(n), the symmetry, R(e(x, )] = R[e(—x, —1)], and anti-symmetry,

Jle(x, t)] = —J[e(—x, —t)], relations guarantee that the full wave equation, without any approximation,
remains invariant under the parity-time transformation [37, 38]. Throughout this work, we place our emphasis
on the femporal domain and consider a spatially homogeneous yet time-dependent dielectric permittivity, € ().
For the sake of illustration we choose

e(t) = (1) = & + g cos? (1) + igy sin (27), (1)

as amodulated time-dependent optical potential (see figure 1), similar to its spatial counterpart as discussed in
[19,20] °.In equation (1), & is the background dielectric constant, & represents the amplitude of the real profile
of the potential, whereas &, describes the strength of the gain/loss periodic distribution. Moreover, 7 = bt isa
dimensionless time, where b > 0 acts as a scaling factor and indicates the rate (i.e., the frequency) of modulation
of the permittivity, that we assume to occur slower than the oscillations of the wave. This is reminiscent of the
similar form of modulation adopted in [19, 20] for the spatial case and could be experimentally realized by
utilizing opto-mechanical [36] or electro-optical systems [39]. Note that we treat the amplitudes & and ¢, as
signed quantities in equation (1), though in general the behavior is not symmetric under an exchange of the sign
of the amplitudes.

In order to investigate dynamical and spectral properties of light in non-stationary P7 -symmetric
structures, we derive an exact second order differential equation from Maxwell’s equations [40] for the electric
displacement vector D,

Note that this choice of the time-varying permittivity, being the analog of the refractive index used in [19] in position space, does not satisfy
the standard Kramers—Kronig relations, i.e., the medium is not subject to the causality principle. ¢ () is valid for all time (that is, does not
vanish for negative times) so that a priori no restrictions on the past are necessary.
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Figure 1. Symmetric real, 2(¢), and anti-symmetric imaginary, J(¢), parts of the time-dependent dielectric permittivity.

e(t) 92
2o
which is valid for an arbitrary shape of the time-dependent dielectric permittivity [41]. Here, A is the Laplace
operator and cis the speed of light in vacuum (for the theory of non-stationary electromagnetism see, e.g.,
[42—-44]). Without the modulation rate, i.e., when b = 0, the standard linear dispersion relation
k = wye(0) k / ¢ holds, where €(0) = & + g is the permittivityat 7 = 0 and k is the unit vector in the direction
of propagation. In the presence of modulation (1), both the amplitude and the angular frequency of light
undergo a time-dependent modification governed by equation (2). Accounting for this instantaneous effect we
seek a solution of equation (2) by making the ansatz

D(r, t) = die'kr=vt) F(7), 3)

which reflects the spatial homogeneity of the permittivity. Here, 4 is the unit vector along the polarization
direction, while the complex-valued ‘amplitude’ F describes the influence of the modulated potential on the
light. In the absence of any modulation, we expect to recover the free propagation oflight through a uniform
medium with a constant dielectric permittivity so that 7 = 1. Note that a similar (full) wave equation for the
space-dependent electric field and permittivity is discussed in [37] for describing the so-called P7 -symmetric
coherent-perfect-absorber laser. Moreover, time reversal and time-dependent wave propagation is studied in
various aspects, such as for time-localized perturbations combined with spatial periodicity [45-48] and
sigmoidally changing systems with either real or complex permittivity/refractive index [41, 49-52].

Next, we insert the ansatz (3) in equation (2) and obtain a second order linear differential equation for F,

AD(r, t) — —D(r, t) =0, ©))

w

(b)f@)—zl f()+(5?§ )f@):o, (4)
T

where ‘dot’ refers to the derivative with respect to the dimensionless time 7. As our interest is restricted to
modulations of the complex dielectric permittivity profile, which are slow when compared to the oscillations of
light, we can adopt b/w < 1 and henceforth safely ignore the first term in equation (4). In this approximation,
the remaining first order differential equation generally determines the instantaneous angular frequency as

F w e(0)R[e(1)]
Q) = w — Zl1=% EXRAEATA
(N)=w-—10b7 (}_) 5 [1 + P ] (5)

for an arbitrary form of the dielectric permittivity’. The exact solution of the reduced equation when integrated
from the ‘initial’ time 0 to some instant of time 7 leads to

F(T) = exp {1—; — z—garctanh(CB) } exp {L;—lfarctanh[C(B — iAtanT)] } 6)

This explicitly exhibits the P7 symmetry of the displacement, D*? = D.In equation (6), the constant
parameters A, B, C are introduced for the sake of brevity: A = Z/(Z + &) > 0 carries information about the

7 This reminds us of the analogous definition of the local wave vector in the spatial domain (see, e.g., [53]).
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real potential, whereas B = ¢, /(¢ + &) amounts to the complex-valued permittivity, being the signature of the
gain/loss mechanism. Both A and BB, combined with C = 1 / VA + B? > 0, demonstrate the significance of
the real and imaginary parts of the permittivity in the instantaneous character of light. Note that any modulation
vanishesif B=0, A =C = 1(g = g = 0)and/or b = 0so that we recover the anticipated free propagation
oflight, as also lim;,_,o F = 1. The solution (6) holds for a class of potentials of the form (1), which is fully
determined on choosing A, B and one of the constants in the potential, say . In addition, to mark out the range
of variation of these parameters, we insert the (approximate) solution (6) into the exact equation (4) and estimate
the error for a given modulation frequency b and angular frequency w numerically. As can be easily checked, the
relative error (that s, the term (b/w)?F /F) does not exceed 0.13 for A € [0.7, 1.7]and B € [—0.8, 0.8] for *a
ratio of b/w = 0.01. Moreover, other analytical solutions for P7 -symmetric (quantum mechanical) potentials
canbe foundin [54, 55].

3. Instantaneous characteristics of P7 -modulated electromagnetic waves

The solution (6) allows us to fully characterize the dynamics of waves in non-stationary complex potentials.
Indeed, by decoupling the real and imaginary parts of the time-dependent component of the electric
displacement, e ! F(7) = |D(7)| e!®™), we obtain direct access to the profile of the instantaneous amplitude
|D()]

|'D(T) > = |F(1)|* = exp { —wCb'arctanh(CB)}

X ex w—carctanh 2B 7)
Pl C(A + 2B + Atan’7)

and also to that of the instantaneous phase

wr  wC ( ACtant ACtanT )
¢(r) = —— — —|arctan —— + arctan ——— |,
2b 4D 1+ BC 1-8C
the first derivative of which yields the profile (5) of the instantaneous angular frequency, 2 = —b®, as one

would expect. Its explicit form expressed in terms of parameters A and 55 is

®)

) 2
Q(r) = %[1 n Asin? T 4 cos’> T ]

(Asin®T + cos?1)? + B?sin® (27)
Again, note that when the P7” modulation is ‘switched off’, the relations | D|> = 1, ® = —wt and Q = ware
obtained (see [56] for main study methods of signals whose frequency content changes in time). Such a
modulation, moreover, is different from frequency conversion occurring as a result of temporal switching (see,
e.g., [43,57] and [58] for electromagnetic and acoustic waves, respectively).

For a complete description of the instantaneous amplitude and angular frequency, and in order to reveal
their specific properties, we determine the extrema of (7) and (8) at the stationary points ¢ty € (—o0, 00). They
are given implictly by the equations

bA |e 2| D = —Buwe? |DPsin(27) = 0, 244 [e|*) = we?sin(27) {(1 — A) A[R(e)?
+ 482B*(Asin* T — cos*T)} = 0. 9)
From here we immediately recognize that both quantities have extrema at 7 = 7m/2 provided that misan
integer whose even values, m = 2 (with A/ beingan integer), result in | D(7 V) |*? = 1and Q(z ) = w.In
contrast, the odd values, m = 2\ + 1, giverise to
|D(r/2 + 7 N)|* = exp { —wCb 'arctanh(CB)}, (10)
Qr/2 + 7N) = wd + A)/QA), (11)

as obtained from equations (7) and (8), respectively. Equation (10) leads to the maximum possible amplitude
amplification (B < 0)and attenuation (B > 0) correspondingly linked to the well-defined temporal domains
of gain and loss. A feature of our complex and P7 -symmetric potentials is the presence of additional extremal
values at

sin?7h = (1 — 84B%/JD) /(1 — A) (12)

when the discriminant D = 16AB%[48? — (1 — A)?] of the quadratic polynomial (in sin® 7) appearing in the
curly parentheses in equation (9) is positive, that is when 2|B| > |1 — .A|. The threshold, however, does not
guarantee that the additional extrema are to be found at real values of 7. For this we need to specify the value of

The choice for the ratio of modulation and wave frequencies is to estimate the upper value of b/w, for which our approximation is
accurate. The effects, as proposed below, remain the same for smaller values of b/ w.

4
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Figure 2. Instantaneous amplitude (left panel, equation (7)) and angular frequency (right panel, equation (5) or (8)) of light modulated
by the PT -symmetric dielectric permittivity €, equation (1), for different values of A and B. |B| < |1 — A|/2 corresponds to the
upper panel (below the threshold), | B| > |1 — .A| /2 to the lower one (above the threshold).

B further, albeit the precise criterion depends on the value of A.For 0 < A < 1, the criterion for additional
extremais given by 2|B| > /1 — A determined by the constraint sin? 7, > 0, whereas for A > 1, the criterion
changesto 2|B| > v A2 — A following from the condition sin? 7, < 1.For A = 1, the two criteria are
equivalent, and additional extrema can be expected from equation (9) for any value of B at 7, = (2N + 1)7/4.

The physical reason for this difference is the sign of the modulation in the real part of the dielelectric
permittivity in equation (1). For 0 < A < 1the modulation of the real part is positive, that is, the real part varies
between & and & + g, which gives rise to an increase of the instantaneous frequency as shown in figure 2(b). For
A > 1the signed amplitude ¢ is negative and the permittivity varies between £ — |g|and &, whichleadstoa
decrease. In both cases the position of the additional extrema is aptly described by equation (12), which gives rise
to a splitting of the modulation extrema (as shown in figure 2(d)) that would otherwise be determined by
equation (11) in the case when the instantaneous angular frequency is modulated by the conventional real
permittivity. The value of the instantaneous angular frequency at these additional extrema for a modulation by
the imaginary permittivity beyond the threshold is then given by

Q1h) = w C*(1 + 5A + 4B* + D /(4B?)/ 8. (13)

Itis important to note that even though changing the time origin in equation (1) does affect the formal definition
of time-reversal symmetry, the observed effects remain the same with the only modification that the symmetry
point is shifted for modulations of both the instantaneous amplitude, equation (7), and angular frequency,
equation (8).

Time-periodic P7 -symmetric optical potentials feature unusual, though expected modulations of the
instantaneous properties of the light. Figure 2 illustrates the evolution of these quantities, possessing time-
reversal symmetry (D(7) > = |D(—7) %, Q(7) = Q(—7)), against the dimensionless time 7 for various values
of A and B. Figure 2(a) shows that the sign of B determines whether the overall dynamics give rise to
amplification (B < 0) or attenuation (B > 0), despite the fact that in both cases there are equal periods of gain
and loss, occurring, however, with different strengths. In addition to these amplitude variations, figure 2(b)
shows modulations of the instantaneous angular frequency towards either higher (0 < A < 1) or lower
(A > 1)frequencies, compared to w. For small values of | 3|, the instantaneous angular frequency remains
mostly unaltered (figure 2(b)—the additional maxima for A = lat 7, = (2\" + 1)7/4 are too small to discern
on this scale) and only the amplitude experiences a modulation. Larger values of 3 lead to a vigorous
modulation of the amplitude attenuation (figure 2(c)) and to a pronounced modification of the frequency
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Figure 3. Extrema of the modulus squared of the instantaneous amplitude ((a), equation (10)) and angular frequency ((b),

equations (11)—(13)). The comparison is made between modulations of light via a real permittivity profile (given by the unit surface in
(a) and the upper surface in (b)) and P7 -symmetric permittivity profiles (given by the surface crossing unity in (a) and the lower
surface in (b)).

modulation profile (figure 2(d)). Unlike the ordinary modulation of angular frequency, where the modulation
rate is commensurate with the scaling factor (i.e., the modulation frequency b) of the real potential [59], in our
PT -symmetric structure the extrema of frequency modulation experience a splitbeyond the threshold

2|B| = |1 — A|, asdepicted in figure 2(d). The global extremum turns into a local one and two new global
extrema appear on either side such that now they occur with a shrunken period and the troughs of curves are
shifted towards the lower frequency domain, quantitatively determined via equation (13). The values of the
instantaneous amplitude and angular frequency at the regular and additional extrema are shown in figure 3 as
functions of .4 and BB, where a comparison is made between the P7T - and real-potential induced surfaces. As the
gain/loss parameter B changes its sign from negative to positive, the extrema of the instantaneous amplitude
descend from the region of amplification (D(n/2 + 7 AN)[* > 1)to the region of attenuation

(D(r/2 + mN)]? < 1)forall values of A (figure 3(a)). By comparison, the unit surface indicates the absence
of the amplitude modulation when the imaginary part of the permittivity is ‘switched off’, that is for B = 0,
which marks the line along which both surfaces intersect. In contrast, as seen from figure 3(b), the extrema of the
instantaneous angular frequency differ from unity even if the imaginary part of the permittivity is zero. While
the B-independent surface designated by 2(7/2 + wN') /w describes the extrema of the instantaneous angular
frequency as modulated only by the real part of the permittivity, the surface Q(7() /w always lies below

Q(r/2 + wN') /w and represents the split extrema due to the imaginary part of .

Until now, we have discussed how the P7” modulation of the dielectric permittivity affects the instantaneous
characteristics of light for various values of .4 and 15, as allowed for within our approximation. Since the time-
dependent permittivity in experimental situations can be modulated with the amplitude much less than through
the background dielectric constant (see, e.g., [59]), it is sensible to discuss the impact of the permittivity in the
dynamics of light for those values of parameters which are currently available especially in P7 -coupled
waveguide devices. If we consider a modulation of the dielectric permittivity with the real || < & and
imaginary || < & parts and keep terms up to first order of || /& and |&, | /2 in the parameters A ~ 1 — g /2,
B~ g/¢and C ~ 1 + g /(2%), we can reduce equation (7) to an experimentally accessible form

2
I D(T)|? ~ exp{%[—Zarctanh% + arctanhzgzi%]}. (14)

As seen, the instantaneous amplitude no longer depends on the value of the real part of the permittivity
modulation given by &, but only on the gain/loss distribution strength &,, the sign of which suitably defines the
temporal domains of gain (g, < 0) andloss (g, > 0), asalso shown in figure 4(a). As the magnitude of the
absolute value of &, increases, the amplitude modulations become more pronounced. For a given

|&2| /& = 0, 003, for instance, one can clearly distinguish between the increase of ~35% and decrease of ~25% in
the amplitude modulation extrema (the black solid and dashed curves). Such an asymmetry in the gain and loss
domains is due to the fact that equation (14) changes its form under the change of the sign of &,. In contrast to the
amplitude modulations, that distinctly occur already for small values of &,, the modulations of the instantaneous
angular frequency are driven only by the real profile since the gain/loss strength contributes with the second-
order term in the denominator of equation (5). However, if we allow for a strong P7 coupling by setting

|&2] /& < 1, butkeep the same restriction for the real amplitude, |& | /& < 1, the instantaneous frequency will be
modulated beyond the threshold, and therefore, the split of extrema and associated shrunken periods can clearly
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Figure 4. Instantaneous amplitude ((a), equation (14)) and frequency ((b), equation (5)) of light modulated by the P7 -symmetric
dielectric permittivity €, equation (1), for the small value of the amplitude ¢ of the real profile (¢ | /&2 = 0, 001) and for selected
values of the gain/loss strength &,.

beseenat 7y = 2N + 1)7/4since A ~ 1, as demonstrated in figure 4(b). Moreover, when &, /& = 0.3, the
change in the instantaneous frequency rises by 4%, as compared to the initial frequency w.

4, Conclusions

In conclusion, we have examined the impact of the time-dependent P7 -symmetric dielectric permittivity in the
dynamical and spectral features of light. In our formalism, we have shown that the P7” modulation of light is
associated with the well-defined temporal domains of gain (B < 0)andloss (B > 0). We have also determined
two different criteria for the splitting of the extrema of the angular frequency modulation to occur and we have
demonstrated the shrinkage of the modulation period. Both the split and shrinkage are general, inherent features
of time-dependent complex potentials. A direct manifestation of time reflection symmetry in our particular
non-stationary structure is always evident. Such effects warrant more detailed future investigations with
different time-dependent 7 -symmetric potentials. It is true that while the predicted curves on figure 4 could
be observed experimentally with techniques available nowadays, the curves on figure 2 are likely to only be
accessed in future.

We should mention that our choice of the permittivity suggests that the causality principle is not fulfilled,
i.e., the parameters of the permittivity do not follow conventional dispersion constraints, as represented by the
Kramers—Kronig relations. Given the known inconsistencies with the Kramers—Kronig relations for
PT -symmetric systems [60—63] and other artificial metamaterials with complex-valued permittivity [64—68],
analogous relations must be constructed for various types of P7 -symmetric time-varying dielectric
permittivities, relaxing the strict assumptions made for causality.

Although the theory developed here can be readily expanded for studying similar P7 -induced effects for
acoustic [52, 58, 69, 70] waves, it also has indirect implications for time-dependent coupling in mechanical
systems [71, 72]. The consideration of the analogous theory for modified P7 symmetries [73—75] would be of
great interest.
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