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ABSTRACT
This paper presents a new approach for detecting pain in sequences
of spontaneous facial expressions. The motivation for this work is
to accompany mobile-based self-management of chronic pain as a
virtual sensor for tracking patients’ expressions in real-world set-
tings. Operating under such constraints requires a resource efficient
approach for processing non-posed facial expressions from unpro-
cessed temporal data. In this work, the facial action units of pain are
modeled as sets of distances among related facial landmarks. Using
standardized measurements of pain versus no-pain that are specific
to each user, changes in the extracted features in relation to pain
are detected. The activated features in each frame are combined
using an adapted form of the Prkachin and Solomon Pain Intensity
scale (PSPI) to detect the presence of pain per frame. Painful fea-
tures must be activated in N consequent frames (time window) to
indicate the presence of pain in a session. The discussed method
was tested on 171 video sessions for 19 subjects from the McMaster
painful dataset for spontaneous facial expressions. The results show
higher precision than coverage in detecting sequences of pain. Our
algorithm achieves 94% precision (F-score=0.82) against human
observed labels, 74% precision (F-score=0.62) against automatically
generated pain intensities and 100% precision (F-score=0.67) against
self-reported pain intensities.
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1 INTRODUCTION
Chronic pain is a debilitating condition that significantly impacts
on the individuals’ physical, social and emotional function. Mea-
sured treatment outcomes are reliant on patients’ self-reports of
pain, medication usage, activity engagement and mood state. Pa-
tient self-reports are however subjected to many biases and may
not present an objective reference of patient’s actual pain and pain-
related experiences. Designing applications for self-management
of chronic pain that are sensitive to patients’ needs, context and
affect can address such biases as well as barriers such as treatment
costs, accessibility and long wait times. Current pain management
applications however have not been designed with integrated fea-
tures that effectively address the multidimensional nature of pain
[7, 15].

Facial expressions have long been acknowledged as a rich univer-
sal, non-verbal modality for communicating pain. Capturing spon-
taneously facial expressions of patients from a mobile device over
time appears to have the potential to be a more objective measure
of pain information over self-report. Accompanying self-reporting
with automated monitoring can provide deeper insights in person-
alized pain assessment. In addition, meaningful interventions and
follow-up dialogues can be designed to support the patients. Utilis-
ing the high-resolution front-facing smartphone camera embedded
in all smartphones is one promising channel for collecting facial
expressions as patients spend their time on their mobile phones.

Pain detection from facial expressions is a complex problem
that requires intensive resources. The lack of ground truth data
for spontaneous painful expressions in real world settings presents
an additional challenge to research in this area. In this paper, we
discuss the initial results of a new approach in detecting pain se-
quences from spontaneous facial expressions. We extend the state
of the art in pain detection based on the Facial action coding system
(FACS), a widely-used technique that describes facial expressions
through a set of well-defined facial muscle movements [3]. In ad-
dition, we adapt the Prkachin and Solomon Pain Intensity (PSPI)
metric for measuring pain intensity [14] to detect the presence
of pain. We discuss the details of our approach and how it is de-
signed to support mobile-based self-management of pain. Testing
our algorithm on the UNBC-McMaster painful dataset [11] showed
promising results in detecting sequences of pain with very high pre-
cision and good coverage. We conclude the paper with an outlook
and further analysis of the results in relation to the target scenario
of pain tracking in real world settings.

2 THE FACS OF PAIN
Empirical research in studying FACS and painful expressions con-
sistently showed evidence that most information about pain in the
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Table 1: Matching point-pair distances from facial land-
marks to the core pain FACS. The multiplication by two in-
dicates the presence of left and right values.

Cheek-raise (AU6) 2*cheek-eye, 2*cheek-
nose,2*cheek-lip,2* cheek-
bottom-lip

Eye-Lid tightening (AU7)
Eye Closure (AU43)

2*P (eye-open)

Nose Wrinkling (AU9) 2*nose-cheek, 2*nose-eyes,
2*nose-lips, nose-bottom-lip

Upper Lip raising (AU10) nose-bottom-lip, 2* bottom-lip-
lips, 2*nose-lips, lip-corners

Figure 1: Facial landmarks extracted by Google’s Face API
(a). The points and distances highlighted in red (b, c and d)
show the key points corresponding to pain and their adja-
cent distances.

human face are conveyed by a few core facial actions: brow low-
ering (AU4), eye lid tightening (AU7), cheek raising (AU6), upper
lip raising (AU10), nose wrinkling (AU9) and eye closure (AU43)
[13, 14]. Further studies led Prkachin and Solomon [14] to devise a
metric of pain intensity, the PSPI, using the sum of the intensities
of the above actions. The PSPI calculations result in a 16-point
intensity scale as follows:

Painintensity = AU 4 + (AU 6| |AU 7) + (AU 9| |AU 10) +AU 43 (1)

Existing work in detecting pain from facial expressions capitalize
on the above findings of the painful FACS. Automatic detection
of FACS, however, is a challenge. Trained human experts spend
approximately 2 hours to code FACS in one minute of video [9].
The common approaches for automatic detection of FACS combine
techniques from computer vision for feature extraction andmachine
learning for classification [2, 6, 8–10]. Features extracted from the
face can be geometric, the shapes and locations of the facial key
points, appearances, such as texture, or a mix of both types [17].
Different types of classifiers can be used to recognize expressions
on the frame level, such as neural networks and SVM [1], or on
the sequence level, such as Recurrent neural networks and Hidden
Markov models [4]. Rule-based classifiers were applied on both
levels [12]. Putting together all the requirements of the current
approaches for AU detection is resource intensive and not suitable
for real-time processing on a mobile device. Schiavenato et al. [16]
used a light-weight approach in detecting pain for neonates using

NFCS, special facial action units defined for infants. The authors
showed promising results by relying on parametric statistics in
detecting changes in point-pair intensities in video frames.

3 FACIAL PAIN INDICATORS
Building over the findings of Prkachin and Solomon [14], we focus
on the local regions of pain in the human face that relate to the
four painful action units. We further reduce the complexity of the
problem by focusing on clear front views of the face and discarding
other poses.

3.1 Feature Extraction
To extract facial landmarks on a mobile device, we use Google’s
Face API [5]. The Face API can be used for real time detection and
tracking of human faces in the mobile camera feed. The API is
optimized for mobile use and available for Android and iOS devices.
Based on the face orientation, which is given by the API, different
landmarks can be extracted from the detected face. In our target
scenario, facial expressions are extracted as users spend time using
the device. In such case, as users face the front-facingmobile camera,
the following landmarks can be extracted: eye centers (left and
right), cheeks (left and right), nose base, bottom lip and lip corners
(left and right). Moreover, the associated face detector operates at
a maximum of 30 frames per second on the mobile device. With
such rate, we discard any frames with missing landmarks. The API
further characterizes the face with a confidence value of smile and
eye open (left and right). However, querying these values require
additional computation time. To match the core pain actions to the
features extracted by the Face API, we first define the relevant key
points: nose, eyes (right and left), cheeks (right and left) and lips
(right and left). The probability of eye open (left and right) will be
used to indicate eye closure and eye lid squeeze. The Face API does
not detect brow lowering; therefore, this specific action unit is not
used. Second, the Euclidian distances from each of these points to
their adjacent key points (see figure 1) are calculated resulting in 18
unique features. The result is that each pain action unit is described
by a set of distances (see Table 2). A total of 18 unique features
were identified. Table 2 shows the features and their corresponding
action units of pain.

3.2 Feature Analysis
To examine the significance of the extracted features in detecting
pain, we used the UNBC-McMaster shoulder pain dataset [11] to
perform our analysis. The dataset is publicly available for academic
research in pain. It provides 200 video sequences containing spon-
taneous pain expressions for 25 subjects. The videos are processed
into frames, labeled with the PSPI score and FACs. On the session
level, the video sequences are labeled by a self-reported pain mea-
sure and another one by an observer. Using the Face API on the
McMaster dataset generates the coordinates of the eight points of
interests in the detected face in each frame (see figure 1). After
calculating the Euclidian distances among the key points, we scale
the distances as percentages of the detected face’s dimensions in
each frame.

3.2.1 Identifying pain and no-pain frames. On a frame-level,
the only indicator of pain is the PSPI that is calculated based on



Automatic Detection of Pain from Spontaneous Facial Expressions ICMI’17, November 13–17, 2017, Glasgow, UK

Table 2: Facial features ranked based on the mean differ-
ences in Z-scores of pain versus no-pain frames.

FEATURE

Z-
SCORE
MEAN
DIFF

CHEEK-
RAISE

EYE
CLO-
SURE

NOSE
WRIN-
KLE

RAIS-
ING
LIPS

p(eye-open-
right) -1.55 AU7,

AU43
Lip-left-
bottomlip 1.37 AU10

Lip-right-
bottomlip 1.25 AU10

cheek-left-
bottomlip -1.05 AU6

p(eye-open-left) -1.04 AU7,
AU43

cheek-right-
bottomlip -1.01 AU6

cheek-lip-left -0.89 AU6
cheek-lip-right -0.79 AU6
nose-cheek-left 0.71 AU6 AU9
cheek-eye-left -0.66 AU6
cheek-eye-right -0.61 AU6

nose-cheek-right 0.60 AU6 AU9
lip-corners 0.54 AU10

nose-eye-right -0.38 AU6 AU9
nose-lip-right 0.34 AU9
nose-lip-left 0.32 AU9
nose-eye-left -0.26 AU9
nose-lip-bottom 0.06 AU9 AU10

the manually coded AUs. Our close inspection of a sample of the
dataset revealed that many frames are missing clear AUs, such as
eye closure or eye-lid squeeze. Missing AUs affects the PSPI metric
and in multiple frames it scores faces of pain as zero pain. Therefore,
to increase the confidence of the collected pain frames, we collect
the ones with intensity level of 3 and above. Similarly, for pain-free
frames, we collect the ones with no observed AUs to increase the
confidence of neutral faces. Six subjects did not satisfy the above
requirements; thus, they were dropped from our calculations. In
addition, the average number of pain frames dropped from 185
to 74 per subject; while the average number of pain-free frames
dropped from 1015 to 878 per subject, with significant variations
across subjects.

3.2.2 Standard score analysis. Z-scores were calculated on the
scaled features per subject using the means and variances from
the no-pain sequences. The process was repeated for 19 subjects
in the dataset. Table 2 shows the features ranked based on the
mean differences in their Z-scores for pain versus no-pain across
all subjects. The rank shows that the top influential features are
related to eye closure, cheek raising and lip action. The relationships

between the mean Z-score differences for pain and no-pain in our
measurements are consistent with common perceptions of painful
expressions. The decrease in probability of open eyes (eye closed)
is associated with pain while the opposite is true for the increase in
the distances between lips’ key points (mouth horizontal stretch).
The last five features are excluded as their mean score differences
do not indicate significant differences for pain and no-pain frames.
It is worth noting that most of the discarded features are related to
the nose wrinkling action unit of pain (AU9).

4 AUTOMATIC EXTRACTION OF PAIN
Based on our feature analysis results, we selected 11 features that (a)
coincide with the core pain action units and (b) show significance
in pain frames versus no-pain frames. To activate any of these
features in an incoming frame, the corresponding Z-score must be
larger than or equal to the absolute of the corresponding Z-score in
pain frames. This method requires a calibration step to generate a
baseline for each user. To put this requirement in context, users are
required to perform a calibration task in their first time of use of
the application. Based on this calibration step, a profile is generated
for each user consisting of the Z-scores, means and variances of
their pain and no-pain expressions.

4.1 Adapting the PSPI
We extend the PSPI formula to detect the presence of pain by sub-
stituting the AUs in the formula with the corresponding distance
measurements as follows:

Conf idence_o f _pain = p(eye_open) + (nose_cheek)
+ (cheek_eye | |cheek_bottomlip | |cheek_lip)

+ (bottomlip_lip | |lipcorners)

Instead of summing the intensities of the AUS, we count the acti-
vated features for each AU. We use this as a metric to provide a
confidence level for the presence of pain. The presence of any of the
cheek point related features (left or right) will add one. Similarly,
bottomlip-lip (left or right) or lip-corners will increment one. Any
of the eye closure features will add one. To indicate the activation
of an AU, at least one feature from its set of features group should
be activated. Therefore, the maximum value for this formula is 4
indicating high confidence of pain presence. The p(eye_open) refers
to the probability that the left eye or the right eye is open. This
value is given by GoogleâĂŹs FACE API.

4.2 Windows of Pain
The captured data from the mobile camera feed in uncontrolled
settings does not provide carefully processed sequences of frames
as exists in current datasets. Moreover, since our work is based
on distances, the results could be highly sensitive to noisy data,
which is expected to be frequent in real world settings. Therefore,
in addition to dropping any frames with missing landmark data,
we detect pain based on its presence in a continuous sequence with
a pre-defined size N. If the features are activated in one frame and
not the following N-1 frames, then the sequence is discarded. Such
approach helps us in avoiding variations in the data caused by in-
termittent movements, blurry faces or from any other uncertainties
in the real world.
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Table 4: A confusion matrix of the actual labels created by
self reporting, human observers and PSPI versus the de-
tected labels by the proposed algorithm.

Observed PSPI Self-reported

Pain No
Pain Pain No

Pain Pain No
Pain

Pain 30 11 23 20 23 20
No Pain 2 74 8 120 0 27

P=94%,R=73% P=74%, R=53% P=100%, R=53%

Table 3: The total number of sequences labeled as pain ver-
sus no-pain by the patient, an observer, the maximum PSPI
and our algorithm.

Observed self-
reported PSPI our

approach
No Pain 78 27 128 141
Pain 93 144 43 30

4.3 Initial Results
In this section, we discuss the results of applying our approach
on the UNBC-McMaster dataset. Pain sequences were extracted
from 171 video sessions for 19 subjects. The Z-score baseline for
each subject was created for the feature activation test that is done
per frame. Afterwards, the PSPI formula was applied with highest
confidence and pain sequences were extracted using a window size
of 10. For the ground truth, we extracted the sequence-level scores
given by an observer (0-5 scale) and the ones self-reported by the
patient (0-10). Moreover, we extracted the maximum value of PSPI
in each video session as a sequence label for it.

Comparing the number of pain/no-pain sequences in each la-
bel revealed important observations about the dataset (see Table
3). There is a considerable difference in the number of sequences
labeled as pain versus no-pain among the three categories. The
bias of self-reporting towards indicating pain is clear; while, the
PSPI and our approach show bias towards no-pain. As discussed in
section 3.2.1, our definition of pain versus no-pain is based on the
frame-level labels, the PSPI, with values bigger than or equal three.
Only these frames are used when generating the baselines for the
subjects. This explains our approach’s bias to no-pain as well.

To accurately measure our algorithm’s performance, we calcu-
lated the confusion matrices for each label (see Table 4) considering
only the sequences that share our definition of pain and no-pain.
In other words, if a sequence is labeled with score 4 by an observer,
yet the PSPI maximum score is zero, then this frame will not be
included in the count. Doing so decreased the total number of pain
sequences to 41 for the observer and to 43 for self-reported ones.
Based on the calculated confusion matrices, our algorithm achieved
94% precision, compared to human observers (F-score = 0.82), 100%
compared to self-reported intensities (F-score= 0.67) and 74% with
the maximum PSPI labels (F-score = 0.62).

As shown in table 4, our algorithm missed 20 sequences of pain
compared to PSPI. The maximum pain intensity in the un-detected

sequences, however, is 6 on an intensity scale of 16 points. Putting
this in context, as our algorithm works in the background of users’
mobile active time and with a 30-fps rate, the impact of missing
such low intensity pain sequences over time is low. Moreover, in
this test, we used the highest confidence of our adapted PSPI for-
mula to detect pain. Working with a lower confidence can decrease
the number of misses. In all the pain sequences detected by our al-
gorithm, there were no pain-free frames. However, we indicate that
there are 8 misses, (see Table 4 for PSPI), since the frame intentisites
in those sequences are lower than 3.

5 DISCUSSION
This paper presented a new approach for detecting sequences of
pain from video frames. The discussed approach is designed with
the requirements of mobile-based self-management of pain in mind.
Our approach capitalizes on the latest findings in FACS of pain
where pain presence and intensity can be identified from four core
facial actions. We used a mobile optimized technique to extract
the related key points from a video feed. Significant changes in
the distances are subsequently tracked using standardized mea-
surements. The features were activated against a baseline of stan-
dardized no-pain measurements that is automatically generated
per subject. Testing our approach on a widely-used pain dataset
for spontaneous facial expressions showed very high precision and
good coverage. The real value of this work, however, requires test-
ing on spontaneous data collected over time in real world settings.
Unfortunately, there is no ground truth data with such criteria.

To become successfully immersed in patients’ lives, the imple-
mentation of this work must be resource efficient, non-obtrusive,
yet controllable by users. We implemented a mobile service that
tracks the facial expressions of mobile users through the front-
facing mobile camera. The service stops tracking if the user is not
active or not looking at the device. The service does not require
interaction except at installation, as it triggers first time users to
perform a 90-seconds calibration task. The frames collected dur-
ing the calibration task are used as the baseline specific to the
user. Moving forward, the mobile service will be used in controlled
and uncontrolled longitudinal studies to evaluate its real impact in
tracking patients’ expressions in relation to self-management of
pain. The vision is to use the pain sequence detector to enhance
the follow-ups and interventions scenarios in an existing mobile
application built by the authors for self-management of chronic
pain.
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