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ABSTRACT
Despite the fact that advertisements (ads) often include strongly
emotional content, very little work has been devoted to a�ect
recognition (AR) from ads. This work explicitly compares content-
centric and user-centric ad AR methodologies, and evaluates the
impact of enhanced AR on computational advertising via a user
study. Speci�cally, we (1) compile an a�ective ad dataset capable of
evoking coherent emotions across users; (2) explore the e�cacy of
content-centric convolutional neural network (CNN) features for en-
coding emotions, and show that CNN features outperform low-level
emotion descriptors; (3) examine user-centered ad AR by analyzing
Electroencephalogram (EEG) responses acquired from eleven view-
ers, and �nd that EEG signals encode emotional information better
than content descriptors; (4) investigate the relationship between
objective AR and subjective viewer experience while watching
an ad-embedded online video stream based on a study involving
12 users. To our knowledge, this is the �rst work to (a) expressly
compare user vs content-centered AR for ads, and (b) study the
relationship between modeling of ad emotions and its impact on a
real-life advertising application.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and
models; User centered design;

KEYWORDS
A�ect recognition, Ads, Content-centric vs User-centric, CNNs,
EEG, Multimodal analytics, Computational Advertising

1 INTRODUCTION
Advertising is a rapidly evolving global industry that aims to in-
duce consumers into preferentially buying speci�c products or
services. In this digital age, audio-visual content is increasingly
becoming the preferred means of delivering advertising campaigns.
The global advertising industry is estimated to be worth over US

$500 billion1, and web advertising is expected to be a key pro�t-
making sector with video advertising playing a signi�cant role2.
Advertisements (ads) often contain strongly emotional content to
convey an e�ective message to viewers. Ad valence (pleasantness)
and arousal (emotional intensity) are key properties that modu-
late emotional values and consumer attitudes associated with the
advertised product [10, 11, 27]. In the context of Internet video
advertising (as with YouTube), modeling the emotional relevance
between ad and program content can improve program compre-
hension and advertisement brand recall, as well as optimize user
experience [36].

Even though automated mining of ad emotions is bene�cial,
surprisingly very few works have attempted to computationally
recognize ad emotions. This is despite the �eld of a�ective com-
puting receiving considerable interest in the recent past, and a
multitude of works modeling emotions elicited by image [6, 18],
speech [24], audio [2], music [20] and movie [1, 33] content. Over-
all, a�ect recognition (AR) methods can be broadly classi�ed as
content-centric or user-centric. Content-centric AR approaches char-
acterize emotions elicited by multimedia content via textual, audio
and visual cues [9, 35]. In contrast, user-centric AR methods aim
to recognize the elicited emotions by monitoring the user or mul-
timedia consumer via facial [14] or physiological [1, 20, 32, 33]
measurements.

This paper expressly examines and compares the utility of content-
centric and user-centric approaches for ad AR. As emotion is a sub-
jective human feeling, most recent AR methods have focused on a
variety of human behavioral cues. Nevertheless, ads are di�erent
from conventional media such as movies, and are compact repre-
sentations of themes and concepts which aim to impact the viewer
within a short span of time. Thus, it would be reasonable to ex-
pect that ads contain powerful audio-visual content to convey the
intended emotional message. While some works have compared
content and user-centric features for AR, an explicit comparison
has not been performed for ads to our knowledge. Another question

1http://www.cnbc.com/2016/12/05/global-ad-spend-to-slow-in-2017-while-2016-
sales-were-nearly-500bn.html
2http://www.pwc.com/gx/en/industries/entertainment-media/outlook/segment-
insights/internet-advertising.html



that we try to answer in this work, perhaps for the �rst time in
a�ective computing, is whether improved AR as given by objective
measures, directly impacts subjective human experience while using
a multimedia application.

We �rst present a carefully curated a�ective ad dataset, capable
of evoking coherent emotions across viewers as seen from emo-
tional impressions reported by experts and novice annotators. On
ensuring that the ads are able to reliably evoke target emotions
(in terms of arousal and valence levels), we examine the e�cacy
of content and user-based methods for modeling ad emotions–
speci�cally, high-level convolutional neural network (CNN) fea-
tures and low-level audio visual descriptors [9] are explored for
content-centered analysis, while EEG measurements are employed
for user-centered AR. CNN features outperform low-level audio-
visual descriptors, but are inferior to EEG signals implying that
user-centric cues enable superior ad AR. We then show how im-
proved AR achieved by the CNN and EEG features re�ects in terms
of better ad memorability and user experience for a computational
advertising application [36].

To summarize, this work makes the following contributions: (1)
To our knowledge, this is the �rst work to explicitly compare and
contrast content-centered and user-centered ad AR; (2) This is also
the �rst work to demonstrate how an improvement in objective AR
performance improves subjective ad memorability and user expe-
rience while watching an ad-embedded online video stream. Our
�ndings show that enhanced AR can facilitate better ad insertion
onto broadcast multimedia content; (3) The compiled dataset of 100
a�ective ads along with accompanying subjective ratings and EEG
responses is unique for ad-based AR.

The paper is organized as follows. Section 2 reviews related
literature, while Section 3 overviews the compiled ad dataset and the
EEG acquisition protocol. Section 4 presents the techniques adopted
for content and user-centered ad AR, while Section 5 discusses AR
results. Section 6 describes a user study to establish how improved
AR facilitates computational advertising. Section 7 summarizes the
main �ndings and concludes the paper.

2 RELATEDWORK
To position our work with respect to the literature and highlight
its novelty, we review the related work examining (a) a�ect recog-
nition (b) the impact of a�ective ads on consumer behavior (c)
computational advertising.

2.1 A�ect recognition
Building on the circumplex emotion model that represents emo-
tions in terms of valence and arousal [29], many computational
methods have been designed for a�ect recognition. Typically, such
approaches are either content-centric which employ image, audio
and video-based emotion correlates [9, 30, 34] to recognize a�ect
in a supervised manner; or user-centric, which measure stimulus-
driven variations in speci�c physiological signals such as pupillary
dilation [15], gazing patterns [28, 32] and neural activity [1, 20, 37].
Performance of these models is typically subject to the variability
in subjective, human-annotated labels, and careful a�ective label-
ing is crucial for successful AR. We carefully curate a set of 100
ads such that they are assigned very similar emotional labels by

two independent groups comprising experts and novice annotators.
These ads are then mined for emotional content via content and
user-based methods. User-centered AR is achieved via EEG signals
acquired via the wireless and wearable Emotiv headset, while facili-
tates naturalistic user behavior and can be employed for large-scale
AR.

2.2 Emotional impact of ads
Ad-induced emotions have been shown to shape consumer behav-
ior in a signi�cant manner [10, 11]. Although this key observation
was made nearly three decades ago [10], computational advertising
methods till recently have matched low-level visual and semantic
properties between video segments and candidate ads [25]. Re-
cent work [27] indicates a shift form the traditional thinking by
emphasizing that ad-evoked emotions can change brand percep-
tion among consumers. A very recent and closely related work to
ours [30] discusses how e�cient a�ect recognition from ads via
deep learning and multi-task learning can lead to improved online
viewing experience. In this work, we show how e�ectively rec-
ognizing emotions from ads via content and user-based methods
can achieve optimized insertion of ads onto streamed/broadcast
videos via the CAVVA framework [36]. A user study shows that
better ad AR translates to better ad memorability and enhanced
user experience while watching an ad-embedded video stream.

2.3 Computational advertising
Exploiting a�ect recognition models for commercial applications
has been a growing trend in recent years. The �eld of computa-
tional advertising focuses on presenting contextually relevant
ads to multimedia users for commercial bene�ts, social good or to
induce behavioral change. Traditional computational advertising
approaches hae worked by exclusively modeling low-level visual
and semantic relevance between video scenes and ads [25]. A para-
digm shift in this regard was introduced by the CAVVA framework,
which proposed an optimization-based approach to insert ads onto
a video stream based on the emotional relevance between the video
scenes and candidate ads. CAVVA employed a content-centric ap-
proach to match video scenes and ads in terms of emotional valence
and arousal. However, this could be replaced by an interactive and
user-centric framework as described in [15]. We explore the use
of both content-centric (via CNN features) and user-centric (via
EEG features) methods for formulating an ad-insertion strategy.
A user study shows that CNN-based ad insertion results in better
ad memorability, while an EEG-based strategy achieves the best
user experience. The following section describes the compiled ad
dataset, and the EEG acquisition protocol.

3 ADVERTISEMENT DATASET
This section presents details regarding the ad dataset used in this
study along with the protocol employed for collecting EEG re-
sponses for user-centric AR.

3.1 Dataset Description
De�ning valence as the feeling of pleasantness/unpleasantness and
arousal as the intensity of emotional feeling while viewing an audio-
visual stimulus, �ve experts carefully compiled a dataset of 100,



Table 1: Summary statistics for quadrant-wise ads.

Quadrant Mean length (s) Mean asl Mean val

H asl, H val 48.16 2.17 1.02

L asl, H val 44.18 1.37 0.91

L asl, L val 60.24 1.76 -0.76

H asl, L val 64.16 3.01 -1.16

Figure 1: (left) Scatter plot of mean asl, val ratings color-
coded with expert labels. (middle) Asl and (right) Val rating
distribution with Gaussian pdf overlay (view under zoom).

roughly 1-minute long commercial advertisements (ads) which are
used in this work. These ads are publicly available3 and found to
be uniformly distributed over the arousal–valence plane de�ned
by Greenwald et al. [8] (Figure 1). An ad was chosen if there was
consensus among all �ve experts on its valence and arousal labels
(de�ned as either high (H)/low (L)). The high valence ads typically
involved product promotions, while low valence ads were social
messages depicting the ill e�ects of smoking, alcohol and drug
abuse, etc.. Labels provided by experts were considered as ground-
truth, and used for all recognition experiments in this work.

To evaluate the e�ectiveness of these ads as a�ective control
stimuli, we examined how consistently they could evoke target
emotions across viewers. To this end, the ads were independently
rated by 14 annotators for valence (val) and arousal (asl)4. All ads
were rated on a 5-point scale, which ranged from -2 (very unpleas-
ant) to 2 (very pleasant) for val and 0 (calm) to 4 (highly aroused) for
asl. Table 1 presents summary statistics for ads over the four quad-
rants. Evidently, low val ads are longer and are perceived as more
arousing than high val ads suggesting that they evoked stronger
emotional feelings among viewers.

Furthermore, we computed agreement among raters in terms of
the (i) Krippendor�’s α and (ii) Cohen’s κ scores. The α coe�cient
is applicable when multiple raters code data with ordinal scores–
we obtained α = 0.60 and 0.37 for val and asl implying valence
impressions were most consistent across raters. We then computed
the κ agreement between annotator and ground-truth labels to de-
termine concordance between the annotator and expert groups. To
this end, we thresholded each rater’s asl, val scores by their mean
rating to assign H/L labels for each ad, and compared them against
ground-truth labels. This procedure revealed a mean agreement of
0.84 for val and 0.67 for asl across raters. Computing κ between
the annotator and expert populations by thresholding the mean
asl, val score per ad across raters against the grand mean gave a
κ = 0.94 for val and 0.67 for asl5. Clearly, there is good-to-excellent

3On video hosting websites such as YouTube.
4Annotators were familiarized with emotional attributes prior to the rating task.
5Chance agreement corresponds to a κ value of 0.

agreement between annotators and experts on a�ective impres-
sions with considerably higher concordance for val. The observed
concordance between the independent expert and annotator groups
a�rms that the compiled 100 ads are e�ective control stimuli for
a�ective studies.

Another desirable property of an a�ective dataset is the indepen-
dence of the asl and val dimensions. We (i) examined scatter plots
of the annotator ratings, and (ii) computed correlations amongst
those ratings. The scatter plot of the mean asl, val annotator rat-
ings, and the distribution of asl and val ratings are presented in
Fig. 1. The scatter plot is color-coded based on expert labels, and is
interestingly di�erent from the classical ‘C’ shape observed with
images [23], music videos [20] and movie clips [1] owing to the
di�culty in evoking medium asl/val but strong val/asl responses.
The distributions of asl and val ratings are also roughly uniform re-
sulting in Gaussian �ts with large variance, with modes observed at
the median scale values of 2 and 0 respectively. A close examination
of the scatter plot reveals that a number of ads are rated as moderate
asl, but high/low val. This is owing to the fact that ads are designed
to convey a strong positive or negative message to viewers, which
is not typically true of images or movie scenes. Finally, Wilcoxon
rank sum tests on annotator ratings revealed signi�cantly di�erent
asl ratings for high and low asl ads (p < 0.00005), and distinctive
val scores for high and low valence ads (p < 0.000001), consistent
with expectation.

Pearson correlation was computed between the asl and val di-
mensions with correction for multiple comparisons by limiting the
false discovery rate to within 5% [5]. This procedure revealed a
weak and insigni�cant negative correlation of 0.19, implying that
ad asl and val scores were largely uncorrelated. Overall, (i) Our
ads constitute a control a�ective dataset as asl and val ratings are
largely independent; (ii) Di�erent from the ‘C’-shape characteriz-
ing the asl-val relationship for other stimulus types, asl and val
ratings are uniformly distributed for the ad stimuli, and (iii) There
is considerable concordance between the experts and annotators
on a�ective labels, implying that the selected ads e�ectively evoke
coherent emotions across viewers.

3.2 EEG acquisition protocol
As 11 of the 14 annotators rated the ads for asl and val upon watch-
ing them, we acquired their Electroencephalogram (EEG) brain
activations via the Emotiv wireless headset. To maximize engage-
ment and minimize fatigue during the rating task, these raters took
a break after every 20 ads, and viewed the entire set of 100 ads over
�ve sessions. Upon viewing each ad, the raters had a maximum of
10 seconds to input their asl and val scores via mouse clicks. The
Emotiv device comprises 14 electrodes, and has a sampling rate
of 128 Hz. Upon experiment completion, the EEG recordings were
segmented into epochs, with each epoch denoting the viewing of a
particular ad. Upon removal of noisy epochs, we were left with a to-
tal of 804 clean epochs. Each ad was preceded by a 1s �xation cross
to orient user attention, and to measure resting state EEG power
used for baseline power subtraction. The EEG signal was band-
limited between 0.1–45 Hz, and independent component analysis
(ICA) was performed to remove artifacts relating to eye movements,



eye blinks and muscle movements. The following section describes
the techniques employed for content and user-centered AR.

4 CONTENT & USER-CENTERED ANALYSIS
This section presents the modeling techniques employed for content-
centered and user-centered ad a�ect recognition.

4.1 Content-centered Analysis
For content centered analysis, we employed a convolutional neural
network (CNN)-based model, and the popular a�ective model of
Hanjalic and Xu based on low-level audio visual descriptors [9].
CNNs have recently become very popular for visual [22] and au-
dio [12] recognition, but they require vast amounts of training data.
As our ad dataset comprised only 100 ads, we �ne-tuned the pre-
trained places205 [22] model via the a�ective LIRIS-ACCEDE movie
dataset [4], and employed the �ne-tuned model to extract emo-
tional descriptors for our ads. This process is termed as domain
adaptation in machine learning literature.

In order to learn deep features for ad AR, we employed the
Places205 CNN [19] originally trained for image classi�cation.
Places205 is trained using the Places-205 dataset comprising 2.5 mil-
lion images involving 205 scene categories. The Places-205 dataset
contains a wide variety of scenes captured under varying illumi-
nation, viewpoint and �eld of view, and we hypothesized a strong
relationship between scene perspective, lighting and the scene
mood. The LIRIS-ACCEDE dataset contains asl, val ratings for ≈
10 s long movie snippets, whereas our ads are about a minute-long
with individual ads ranging from 30–120 s.

4.1.1 FC7 Feature Extraction via CNNs. For deep CNN-based ad
AR, we represent the visual modality using key-frame images, and
the audio modality using spectrograms. We �ne-tune Places205 via
the LIRIS-ACCEDE [4] dataset, and employ this model to compute
the fully connected layer (fc7) visual and audio ad descriptors.

Keyframes as Visual Descriptors. From each video in the ad and
LIRIS-ACCEDE datasets, we extract one key frame every three
seconds– this enables extraction of a continuous video pro�le for
a�ect prediction. This process generates a total of 1791 key-frames
for our 100 ads.

Spectrograms as Audio Descriptors. Spectrograms (SGs) are visual
representations of the audio frequency spectrum, and have been
successfully employed for AR from speech and music [3]. Speci�-
cally, transforming the audio content to a spectrogram image allows
for audio classi�cation to be treated as a visual recognition prob-
lem. We extract spectrograms over the 10s long LIRIS-ACCEDE
clips, and consistently from 10s ad segments. This process generates
610 spectrograms for our ad dataset. Following [3], we combine
multiple tracks to obtain a single spectrogram (as opposed to two
for stereo). Each spectrogram is generated using a 40 ms window
short time Fourier transform (STFT), with 20 ms overlap. Larger
densities of high frequencies can be noted in the spectrograms for
high asl ads, and these intense scenes are often characterized by
sharp frequency changes.

CNN Training. We use the Ca�e [13] deep learning framework
for �ne-tuning places205, with a momentum of 0.9, weight decay

Table 2: Extracted features for content-centric AR.

Attribute Valence/Arousal
Audio Video aud+vid (A+V)

CNN 4096D Alexnet FC7 4096D Alexnet FC7 features by 8192D FC7 features
Features features obtained extracted from keyframes with SGs + keyframes

with 10s SGs. sampled every 3 seconds. over 10s intervals.
Hanjalic [9] Per-second sound Per-second shot change Concatenation of
Features energy and pitch frequency and motion audio-visual features.

statistics [9]. statistics [9].

of 0.0005, and a base learning rate of 0.0001 reduced by 1
10
th every

20000 iterations. We totally train four binary classi�cation networks
to recognize high and low asl/val from audio/visual features. To �ne-
tune places205, we use only the top and bottom 1/3rd LIRIS-ACCEDE
videos in terms of asl and val rankings under the assumption that
descriptors learned for the extreme-rated clips will e�ectively model
a�ective concepts. 4096-dimensional fc7 layer outputs extracted
from the four networks for our 100 ads are used in the experiments.

4.1.2 ARwith audio-visual features. We will mainly compare our
CNN-based AR framework against the algorithm of Hanjalic and
Xu [9] in this work. Even after a decade, this algorithm remains one
of the most popular AR baselines as noted from recent works such
as [1, 20]. In [9], asl and val are modeled via low-level descriptors
describing motion activity, colorfulness, shot change frequency,
voice pitch and sound energy in the scene. These hand-crafted
features are intuitive and interpretable, and employed to estimate
time-continuous asl and val levels conveyed by the scene. Table 2
summarizes the audio-visual features used for content-centric AR.

4.2 User-centered analysis
The 804 clean epochs obtained from the EEG acquisition process
were used for user-centered analysis. However, these 804 epochs
were of di�erent lengths as the duration of each ad was variable.
To maintain dimensional consistency, we performed user-centric
AR experiments with (a) the �rst 3667 samples (≈ 30s of EEG data),
(b) the last 3667 samples and (c) the last 1280 samples (10s of EEG
data) from each epoch. Each epoch sample comprises data from 14
EEG channels, and the epoch samples were input to the classi�er
upon vectorization.

5 EXPERIMENTS AND RESULTS
We �rst provide a brief description of the classi�ers used and set-
tings employed for binary content-centric and user-centric AR,
where the objective is to assign a binary (H/L) label for asl and
val evoked by each ad, using the extracted fc7/low-level audio vi-
sual/EEG features. The ground truth here is provided by the experts,
and has a substantial agreement with the user ratings in Sec. 3.1.
Experimental results will be discussed thereafter.

Classi�ers: We employed the Linear Discriminant Analysis (LDA),
linear SVM (LSVM) and Radial Basis SVM (RSVM) classi�ers in our
AR experiments. LDA and LSVM separate H/L labeled training data
with a hyperplane, while RSVM is a non-linear classi�er which
separates H and L classes, linearly inseparable in the input space,
via transformation onto a high-dimensional feature space.

Metrics and Experimental Settings: We used the F1-score (F1),
de�ned as the harmonic mean of precision and recall as our per-
formance metric, due to the unbalanced distribution of positive



Table 3: Ad AR from content analysis. F1 scores are presented in the form µ ± σ .

Method Valence Arousal
F1 (all) F1 (L30) F1 (L10) F1 (all) F1 (L30) F1 (L10)

Audio FC7 + LDA 0.61±0.04 0.62±0.10 0.55±0.18 0.65±0.04 0.59±0.10 0.53±0.19
Audio FC7 + LSVM 0.60±0.04 0.60±0.09 0.55±0.19 0.63±0.04 0.57±0.09 0.50±0.18
Audio FC7 + RSVM 0.64±0.04 0.66±0.08 0.62±0.17 0.68±0.04 0.60±0.10 0.53±0.19
Video FC7 + LDA 0.69±0.02 0.79±0.08 0.77±0.13 0.63±0.03 0.58±0.10 0.57±0.18
Video FC7 + LSVM 0.69±0.02 0.74±0.08 0.70±0.15 0.62±0.02 0.57±0.09 0.52±0.17
Video FC7 + RSVM 0.72±0.02 0.79±0.07 0.74±0.15 0.67±0.02 0.62±0.10 0.58±0.19
A+V FC7 + LDA 0.70±0.04 0.66±0.08 0.49±0.18 0.60±0.04 0.52±0.10 0.51±0.18
A+V FC7 + LSVM 0.71±0.04 0.66±0.07 0.49±0.19 0.56±0.04 0.49±0.10 0.47±0.19
A+V FC7 + RSVM 0.75±0.04 0.70±0.07 0.55±0.17 0.63±0.04 0.56±0.11 0.49±0.19
A+V Han + LDA 0.59±0.09 0.63±0.08 0.64±0.12 0.54±0.09 0.50±0.10 0.58±0.08
A+V Han + LSVM 0.62±0.09 0.62±0.10 0.65±0.11 0.55±0.10 0.51±0.11 0.57±0.09
A+V Han + RSVM 0.65±0.09 0.62±0.11 0.62±0.12 0.59±0.12 0.58±0.11 0.56±0.10
A+V FC7 LDA DF 0.60±0.04 0.66±0.04 0.70±0.19 0.59±0.02 0.60±0.07 0.57±0.15
A+V FC7 LSVM DF 0.65±0.02 0.66±0.04 0.65±0.08 0.60±0.04 0.63±0.10 0.53±0.13
A+V FC7 RSVM DF 0.72±0.04 0.70±0.04 0.70±0.12 0.69±0.06 0.75±0.07 0.70±0.07
A+V Han LDA DF 0.58±0.09 0.58±0.09 0.61±0.09 0.59±0.06 0.59±0.07 0.61±0.08
A+V Han LSVM DF 0.59±0.10 0.59±0.09 0.60±0.10 0.61±0.05 0.61±0.08 0.60±0.09
A+V Han RSVM DF 0.60±0.08 0.56±0.10 0.58±0.09 0.58±0.09 0.56±0.06 0.58±0.09

Table 4: Ad AR from EEG analysis. F1 scores are presented in the form µ ± σ .

Method Valence Arousal
F1 (F30) F1 (L30) F1 (L10) F1 (F30) F1 (L30) F1 (L10)

LDA 0.79 ± 0.03 0.79 ± 0.03 0.75 ± 0.03 0.75 ± 0.03 0.74 ± 0.03 0.71 ± 0.04
LSVM 0.77 ± 0.03 0.76 ± 0.04 0.77 ± 0.05 0.74 ± 0.03 0.73 ± 0.02 0.69 ± 0.04
RSVM 0.83 ± 0.03 0.83 ± 0.03 0.81 ± 0.03 0.80 ± 0.02 0.80 ± 0.03 0.76 ± 0.04

and negative samples. For content-centric AR, apart from unimodal
(audio (A) or visual (V)) fc7 features, we also employed feature
fusion and probabilistic decision fusion of the unimodal outputs.
Feature fusion (A+V) involved concatenation of fc7 A and V features
over 10 s windows (see Table 2), while theWest technique [21] was
employed for decision fusion (DF). In DF, the test label is assigned
the index i corresponding to maximum Pi =

∑2
i=1 α

∗
i tipi , where

i denotes the A,V modalities, pi ’s denote posterior A,V classi�er
probabilities and {α∗i } are the optimal weights maximizing test
F1-score, and determined via a 2D grid search. If Fi denotes the
training F1-score for the ith modality, then ti = αiFi/

∑2
i=1 αiFi for

given αi . Note that the use of a validation set for parameter tuning
is precluded by the small dataset size as with [1,18] and that the DF
results denote ’maximum possible’ performance.

As the Hanjalic (Han) algorithm [9] uses audio plus visual fea-
tures to model asl and val, we only consider (feature and decision)
fusion performance in this case. User-centered AR uses only EEG
information. As we evaluate AR performance on a small dataset,
AR results obtained over 10 repetitions of 5-fold cross validation
(CV) (total of 50 runs) are presented. CV is typically used to over-
come the over�tting problem on small datasets, and the optimal
SVM parameters are determined from the range [10−3, 103] via an
inner �ve-fold CV on the training set. Finally, in order to examine
the temporal variance in AR performance, we present F1-scores
obtained over (a) all ad frames (‘All’), (b) last 30s (L30) and (c) last
10s (L10) for content-centered AR, and (a) �rst 30s (F30), (b) last 30s
(L30) and (c) last 10s (L10) for user-centered AR. These settings were

chosen bearing in mind that EEG sampling rate is much higher
than the audio or video sampling rate.

5.1 Results Overview
Tables 3 and 4 respectively present content-centric and user-centric
AR results for the various settings described above. The highest F1
score achieved for a given temporal setting across all classi�ers and
either unimodal or multimodal features is denoted in bold. Based
on the observed results, we make the following claims.

Superior val recognition is achieved with both content-centric
and user-centric methods. Focusing on content-centric results, uni-
modal fc7 features, val (peak F1 = 0.79) is generally recognized
better than asl (peak F1 = 0.68) and especially with video features.
A and V fc7 features perform comparably for asl. Concerning recog-
nition with fused fc7 features, comparable or better F1 scores are
achieved with multimodal approaches. In general, better recogni-
tion is achieved via decision fusion as compared to feature fusion6.
For val, the best fusion performance (0.75 with feature fusion and
RSVM classi�er) is superior compared to A-based (F1 = 0.66), but
inferior compared to V-based (F1 = 0.79) recognition. Contrastingly
for asl, fusion F1-score (0.75 with DF) considerably outperforms
unimodal methods (0.68 with A, and 0.67 with V). Comparing A+V
fc7 vs Han features, fc7 descriptors clearly outperform Han fea-
tures and the di�erence in performance is prominent for val, while
comparable recognition is achieved with both features for asl. The

6To our knowledge, either of feature or decision fusion may work better depending
on the speci�c problem and available features.



RSVM classi�er produces the best F1-scores for both asl and val
with unimodal and multimodal approaches.

User-centric or EEG-based AR results are generally better than
content-centric results achieved under similar conditions. The best
user-centric val and asl F1-scores are considerably higher than the
best content-centric results. Again, val is recognized better than asl
with EEG data (as with the content-centric case), which is interesting
as EEG is known to correlate better with asl rather than val. Never-
theless, positive val is found to correlate with higher activity in the
frontal lobes as compared to negative val as noted in [26], and the
Emotiv device is known to e�ciently capture frontal lobe activity
despite its limited spatial resolution. Among the three classi�ers
considered with EEG data, RSVM again performs best while LSVM
performs worst.

Focusing on the di�erent temporal conditions considered in our
experiments, relatively small σ values are observed for the ‘All’
content-centric condition with the �ve-fold CV procedure (Table 3),
especially with fc7 features. Still lower σ ’s can be noted with EEG-
based classi�cation results, suggesting that our overall AR results
are minimally impacted by over��ing. Examining temporal
windows considered for content-centered AR, higher σ ’s are ob-
served for the L30 and L10 cases, which denote model performance
on the terminal ad frames. Surprisingly, one can note a general
degradation in asl recognition for the L30 and L10 conditions with
A/V features, while val F1-scores are more consistent.

Three inferences can be made from the above observations,
namely, (1) Greater heterogeneity in the ad content towards end-
ings is highlighted by the large variance with fusion approaches;
(2) Fusion models synthesized with Han features appear to be more
prone to over�tting, given the generally larger σ values seen with
the models; (3) That asl recognition is lower in the L30 and L10
conditions highlights the limitation of using a single asl/val label (as
opposed to dynamic labeling) over time. Generally lower F1-scores
achieved for asl with all methods suggests that asl is a more tran-
sient phenomenon as compared to val, and that coherency between
content-based val features and labels is sustainable over time.

User-centered AR results obtained over the �rst 30, last 30 and
�nal 10 s for the ads are relatively more stable than content-centered
results, especially for val. However, there is a slight dip in AR
performance for asl over the �nal 10s. As the ads were roughly one
minute long, we can infer that (a) the consistent F1 scores achieved
for the �rs and last 30s suggests that humans tend to perceive the ad
mood rather quickly. This is in line with the objective of ad makers,
who endeavor to convey an e�ective message within a short time
duration. However, the dip in asl performance over the �nal 10s
as with content centered methods again highlights the limitation of
using a single a�ective label over the entire ad duration.

5.2 Discussion
We now summarize and compare the content-centric and user-centric
AR results. Between the content-centric features, the deep CNN-
based fc7 descriptors considerably outperform the audio-visual
Han features. Also, the classi�ers trained with Han features are
more prone to over-�tting than fc7-based classi�ers, suggesting
that the CNN descriptors are more robust as compared to low-level
Han descriptors. Fusion-based approaches do not perform much

Table 5: Summary of program video statistics.

Name Scene length (s) Manual Rating
Valence Arousal

coh 127±46 0.08±1.18 1.53±0.58
ipoh 110±44 0.03±1.04 1.97±0.49

friends 119±69 1.08±0.37 2.15±0.65

better than unimodal methods. However, EEG-based AR achieves
the best performance, considerably outperforming content-based
features and thereby endorsing the view that emotions are best
characterized by human behavioral cues.

Superior val recognition is achieved with both content-centric
and user-centric AR methods. Also, temporal analysis of classi�-
cation results reveals that content-based val features as well as
user-based val impressions are more stable over time, but asl im-
pressions are transient. Cumulatively, the obtained results highlight
the need for �ne-grained and dynamic AR methods as against most
contemporary studies which assume a single, static a�ective label
per stimulus.

6 COMPUTATIONAL ADVERTISING- USER
STUDY

Given that superior ad AR is achieved with user EEG responses
(see Table 4), we examined if enhanced AR resulted in the inser-
tion of appropriate ads at vantage temporal positions within a
streamed video, as discussed in the CAVVA video-in-video ad inser-
tion framework [36]. CAVVA is an optimization-based framework
for ad insertion onto streamed videos (as with YouTube). It formu-
lates an advertising schedule by modeling the emotional relevance
between video scenes and candidate ads to determine (a) the subset
of ads for insertion, and (b) the temporal positions (typically after a
scene ending) at which the chosen ads are to be inserted. In e�ect,
CAVVA aims to strike a balance between (a) maximizing ad impact
in terms of brand memorability, and (b) minimally disrupting (or
enhancing) viewer experience while watching the program video
onto which ads are inserted. We hypothesized that better ad a�ect
recognition should lead to optimal ad insertions, and consequently
better viewing experience. To this end, we performed a user study
to compare the subjective quality of advertising schedules gener-
ated via ad asl and val scores generated with the content-centric
Han [9] and Deep CNN models, and the user-centric EEG model.

6.1 Dataset
For performing the user study, we used 28 ads (out of the 100 in the
original dataset), and three program videos. The ads were equally
divided into four quadrants of the valence-arousal plane based on
asl and val labels provided by experts. The program videos were
scenes from a television sitcom (friends) and two movies (ipoh and
coh), which predominantly comprised social themes and situations
capable of invoking high-to-low valence and moderate arousal
(see Table 5 for summary statistics). Each of the program videos
comprised eight scenes implying that there were seven candidate
ad-insertion points in the middle of each sequence. The average
scene length was found to be 118 seconds.



6.2 Advertisement insertion strategy
We used the three aforementioned models to perform ad a�ect

estimation. For the 24 program video scenes (3 videos × 8 scenes),
the average of asl and val ratings acquired from three experts was
used to denote a�ective scores. For the ads, a�ective scores were
computed as follows. For the Deep method, we used normalized
softmax class probabilities [7] output by the video-based CNN
model for val estimation, and probabilities from the audio CNN for
asl estimation. The mean score over all video/audio ad frames was
used to denote the a�ective score in this method. The average of
the per-second asl and val level estimates over the ad duration was
used to denote a�ective scores for the Han approach. Mean of SVM
class posteriors over all EEG epochs was used for the EEG method.
We then adopted the CAVVA optimization framework [36] to obtain
nine unique video program sequences (with average length of
19.6 minutes) comprising the inserted ads. These video program
sequences comprised ads inserted via the three a�ect estimation
approaches onto each of the three program videos. Exactly 5 ads
were inserted (out of 7 possible) onto each program video. 21 of
the 28 chosen ads were inserted at least once into the nine video
programs, with maximum and mean insertion frequencies of 5 and
2.14 respectively.

6.3 Experiment and Questionnaire Design

To evaluate the subjective quality of the generated video pro-
gram sequences and thereby the utility of the three a�ect estimation
techniques for computational advertising, we recruited 12 users
(5 female, mean age 19.3 years) who were university undergradu-
ates/graduates. Each of these users viewed a total of three video
program sequences, corresponding to the three program videos
with ad insertions performed using one of the three a�ect estima-
tion approaches. We used a randomized 3×3 Latin square design in
order to cover all the nine generated sequences with every set of
three users. Thus, each video program sequence was seen by four
of the 12 viewers, and we have a total of 36 unique responses.

We designed a questionnaire for the user evaluation so as to
reveal whether the generated video program sequences (a) included
seamless ad insertions, (b) facilitated user engagement (or alter-
natively, resulted in minimum disruption) towards the streamed
video and inserted ads and (c) ensured good overall viewer experi-
ence. To this end, we evaluated whether a particular ad insertion
strategy resulted in (i) increased brand recall (both immediate and
day-after recall) and (ii) minimal viewer disturbance or enhanced
user viewing experience.

Recall evaluation to intended to verify if the inserted ads were
attended to by viewers, and the immediate and day-after recall were
objective measures that quanti�ed the impact of ad insertion on
the short-term (immediate) and long-term (day-after) memorability
of advertised content, upon viewing the program sequences. Specif-
ically, we measured the proportion of (i) inserted ads that were
recalled correctly (Correct recall), (ii) inserted ads that were not
recalled (Forgotten) and (iii) non-inserted ads incorrectly recalled
as viewed (Incorrect recall). For those inserted ads which were cor-
rectly recalled, we also assessed whether viewers perceived them
to be contextually (emotionally) relevant to the program content.

Upon viewing a video program sequence, the viewer was pro-
vided with a representative visual frame from each of the 28 ads
to test ad recall along with a sequence-speci�c response sheet. In
addition to the recall related questions, we asked viewers to indicate
if they felt that the recalled ads were inserted at an appropriate
position in the video (Good insertion) to verify if ad positioning
positively in�uenced recall. All recall and insertion quality-related
responses were acquired from viewers as binary values. In addition
to these objective measures, we de�ned a second set of subjective
user experience measures, and asked users to provide ratings on a
Likert scale of 0–4 for the following questions with 4 implying best
and 0 denoting worst:

1. Were the advertisements uniformly distributed across the
video program?

2. Did the inserted advertisements blend with the program
�ow?

3. Whether the inserted ads were relevant to the surrounding
scenes with respect to their content and mood?

4. What was the overall viewer experience while watching
each video program?

Each participant �lled the recall and experience-related question-
naires immediately after watching each video program. Viewers
also �lled in the day-after recall questionnaire, a day after complet-
ing the experiment.

6.4 Results and Discussion
As mentioned previously, scenes from the program videos were
assigned asl, val scores based on manual ratings from three experts,
while the Deep, Han and EEG-based methods were employed to
compute a�ective scores for ads. The overall quality of the CAVVA-
generated video program sequence hinges on the quality of a�ective
ratings assigned to both the video scenes and ads. In this regard,
we hypothesized that better ad a�ect estimation would result in
optimized ad insertions.

Firstly, we computed the similarity in terms of the ad asl and
val scores generated by the three approaches in terms of Pearson
correlations, and found that (1) there was signi�cant and positive
correlation between asl scores generated by the Han–EEG (ρ =
0.5,p < 0.01) as well as the Han–Deep methods (ρ = 0.42,p < 0.05).
However, the Deep and EEG-based asl scores did not agree signi�-
cantly (ρ = 0.22, n.s.). For val, the only signi�cant correlation was
noted between the Han and Deep approaches (ρ = 0.41,p < 0.05),
while the Han and EEG (ρ = 0.07, n.s.) as well as the Deep and EEG
val scores (ρ = 0.20, n.s.) were largely uncorrelated. This implies
that while methods content-centric and user-centric methods agree
well on asl scores, there is signi�cant divergence between the val
scores generated by the two approaches.

Based on the questionnaire responses received from viewers, we
computed the mean proportions for correct recall, ad forgottenness,
incorrect recall and good insertions immediately and a day after
the experiment. Figure 2 presents the results of our user study and
there are several interesting observations. A key measure indicative
of a successful advertising strategy is high brand recall [11, 15, 36],
and the immediate and day-after recall rates observed for three
considered approaches are presented in Fig. 2 (left),(middle). Video
program sequences obtained with Deep a�ective scores result in



Immediate Recall Day-after recall User Experience

Figure 2: Summary of user study results in terms of recall and user experience-related measures. Error bars denote unit
standard deviation.

high immediate and day-after recall, least ad forgottenness and
least incorrect recall. Ads inserted via the EEG method are found
to be the best inserted, even if they have relatively lower recall
rates as compared to the Deep approach (p < 0.05 for independent
t-test). Ads inserted via Han-generated a�ective scores have the
least immediate recall and are also forgotten the most, and are
also perceived as the the worst inserted. The trends observed for
immediate and day-after recall are slightly di�erent, but the various
recall measures are clearly worse for the day-after condition with
a very high proportion of ads being forgotten. Nevertheless, the
observed results clearly suggest that the Deep and EEG approaches
which achieve superior AR compared to the Han method also lead
to better ad memorability.

However, it needs to be noted that higher ad recall does not
directly translate to a better viewing experience. On the contrary,
some ads may well be remembered because they disrupted the
program �ow and distracted viewers. In order to examine the im-
pact of the a�ect-based ad insertion strategy on viewing experi-
ence, we computed the mean subjective scores acquired from users
(Fig. 2(right)). Here again, the Deep method scores best in terms of
uniform insertion and ad relevance, while the EEG method performs
best with respect to blending and viewer experience (p < 0.05 with
two-sample t-tests in all cases). Interestingly, the Han method again
performs worst in terms of ad relevance and viewer experience.
The CAVVA optimization framework [36] has two components–
one for selection of ad insertion points into the program video, and
another for selecting the set of ads to be inserted. Asl scores only
play a role in the choice of insertion points, whereas val scores
in�uence both components. In this context, the two best methods
for val recognition, which also outperform the Han approach for
asl recognition, maximize both ad recall and viewing experience.

7 DISCUSSION AND CONCLUSION
This work evaluates the e�cacy of content-centric and user-centric
techniques for ad a�ect recognition. At the outset, it needs to be
stressed that content and user-centered AR methods encode com-
plementary emotional information. Content-centric approaches
typically look for emotional cues from low-level audio-visual (or
textual) features, and do not include the human user as part of the
computational loop; recent developments in the �eld of CNNs [22]
have now made it possible to extract high-level emotion descriptors.
Nevertheless, emotion is essentially a human feeling, and best mani-
fests via user behavioral cues (e.g., facial emotions, speech and phys-
iological signals), which explains why a majority of contemporary

AR methods are user-centered [1, 20, 37]. With the development
of a�ordable, wireless and wearable sensing technologies such as
Emotiv, AR from large scale user data (termed crowd modeling) is
increasingly becoming a reality.

We speci�cally evaluate the performance of two content-centered
methods, the popular Han baseline for a�ect prediction from low-
level audio-visual descriptors, and a Deep CNN-based framework
which learns high-dimensional emotion descriptors from video
frames or audio spectrograms, against the user-centered approach
which employs EEG brain responses acquired from eleven users for
AR. Experimental results show that while the deep CNN framework
outperforms the Han method, it nevertheless performs inferior to
an SVM-based classi�er trained on EEG epochs for asl and val
recognition. A study involving 12 users to examine if improved AR
facilitates computational advertising reveals that (1) Ad memorabil-
ity is maximized with better modeling of the ad a�ect via the Deep
and EEG methods, and (2) Viewing experience is also enhanced
by better matching of a�ective scores among the ads and video
scenes. To our knowledge, this paper represents the �rst a�ective
computing work to establish a direct relationship between objective
AR performance and subjective viewer opinion.

Future work will focus on the development on e�ective alterna-
tive strategies to CAVVA for video-in-video advertising, as CAVVA
is modeled on ad-hoc rules derived from consumer psychology lit-
erature. Also, we observe that EEG-encoded a�ective information
is complementary to representations learned by the Han and Deep
CNN approaches, as EEG signals are derived from human users
and there is little correlation between the val scores computed via
the content and user-centered methods (Sec. 6.2). This reveals the
potential for fusion strategies where content-centric and user-centric
cues can be fused in a cross-modal decision making framework, as
successfully attempted in prior [16, 17, 31] problems.
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