
 
 
 
 

Freeman, E., Anderson, R., Williamson, J., Wilson, G. and Brewster, S. A. 

(2017) Textured Surfaces for Ultrasound Haptic Displays. In: 19th ACM 

International Conference on Multimodal Interaction (ICMI 2017), Glasgow, 

Scotland, 13-17 Nov 2017, pp. 491-492. ISBN 9781450355438 

(doi:10.1145/3136755.3143020) 

 

This is the author’s final accepted version. 
 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 

it. 

 

 

 
 
http://eprints.gla.ac.uk/151474/ 
     

 
 
 
 
 

 
Deposited on: 21 November 2017 

 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://dx.doi.org/10.1145/3136755.3143020
http://eprints.gla.ac.uk/151474/
http://eprints.gla.ac.uk/151474/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


Textured Surfaces for Ultrasound Haptic Displays
Euan Freeman, Ross Anderson, Julie Williamson, Graham Wilson and Stephen Brewster

Glasgow Interactive Systems Section

University of Glasgow

Glasgow, Scotland

�rst.last@glasgow.ac.uk

ABSTRACT

We demonstrate a technique for rendering textured haptic sur-

faces in mid-air, using an ultrasound haptic display. Our technique

renders tessellated 3D ‘haptic’ shapes with di�erent waveform

properties, creating surfaces with distinct perceptions.
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1 INTRODUCTION

Non-contact haptic displays can enhance mid-air gesture inter-

action, by allowing users to ‘feel’ the controls they interact with

and by allowing non-visual feedback to be presented directly to

the hand. Many technologies have been developed to enable non-

contact haptics in recent years, but ultrasound haptics [1, 4], in

particular, has received a lot of a�ention because of the high reso-

lution of its output.

In the next section, we present a brief overview of the ways

this technology can be used to produce haptic sensations on the

hand. �ese sensations utilise only a small part of the haptic sense,

typically creating the perception of smooth and continuous vibra-

tion against the hand. Many rich areas of haptic perception are

unexplored, e.g., the perception of di�erent textures. In this work,

we demonstrate a technique that creates haptic surfaces, with tex-

tured properties such as “roughness”. �is could enable richer

non-contact haptics for mid-air interactions: for example, allowing

realistic textured objects for VR/AR, or mid-air bu�ons with distinct

tactile properties.

2 RELATEDWORK

Ultrasound haptics [1, 4] is an emerging technology that allows

users to experience tactile sensations in mid-air, with no need

to hold or contact a device. Focused ultrasound from arrays of

transducers (e.g., Figure 1, le�) creates areas of acoustic radiation

pressure, which are re�ected by the skin [1]. By modulating the

sound at a frequency from the range of haptic sensitivity (e.g.,

200 Hz [1]), the sound is perceived as vibration. �is has been

likened to the feeling of a “gentle breeze” focused upon the skin [7].

Figure 1: An Ultrahaptics device (le�) and two 3D printed

examples of haptic surfaces (right).

Early research prototypes allowed a single point of haptic stim-

ulus above the ultrasound array [4]. Although limited, this had

practical applications in HCI: a single point of feedback could be

presented to a �nger during mid-air pointing interactions [2, 8].

A single point could also be repositioned to create richer tactile

sensations: for example, creating the illusion of continuous motion

on the hand [9]. Later research allowed several distinct points of

stimulus [1], creating potential for new types of haptic experience.

Ultrasound haptics is not limited to distinct ‘focal points’ of

feedback. Long et al. [6] described a haptic rendering technique for

volumetric shapes. �ey controlled the acoustic �eld to create the

illusion of mid-air shapes (e.g., cones and cubes), by rendering the

outline of the 2D cross-section of the shape as the hand intersects

it; e.g., the circular cross-section of a sphere as the hand moves

through it. Korres et al. [5] rendered haptic shapes by rapidly

moving a single point of stimulus to create a “point cloud”; rapid

movement created the perception of all points being presented

simultaneously. Inoue et al. [3] generated an acoustic �eld from

multiple surrounding arrays, allowing haptic stimuli without the

need for frequency modulation (as in [1, 4], etc).

In this paper, we describe a haptic rendering technique that can

be used to create textured surfaces using ultrasound haptics, allow-

ing sensations like “roughness”. �is allows new haptic experiences

and creates new opportunities for mid-air interfaces.

3 RENDERING HAPTIC SURFACES

We de�ne a haptic surface as a tessellation of 3D shapes in a plane;

e.g., a 6x6 plane of pyramids in Figure 2 or a 1x7 plane of tetrahe-

drons in Figure 1, bo�om right. When tessellation is used to create

a surface, the shape, height, and shape width can be varied. �is

changes the structure of the plane and gives three parameters for a

haptic surface:

• tessellation shape (e.g., pyramid, tetrahedron)
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• tessellation height (e.g., 1–10cm)

• tessellation width (e.g., 1–10cm)

height

width

Figure 2: An example surface made from tessellated pyra-

mids. �e shape, height and shape width a�ect the struc-

ture of the haptic surface.

We render the haptic surface in mid-air using ultrasound haptics.

When a user’s hand intersects the surface, we get the points of

intersection and present haptic feedback at those locations only

(Figure 3, le�). We do this by continuously moving a single point

of ultrasound haptic feedback (e.g., to the six locations in Figure 3).

�is creates the illusion of simultaneous presentation across the

whole hand [5].
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Figure 3: Areas of the hand intersecting the surface are

stimulated (le�). Rapid sequential presentation of feedback

across the highlighted locations creates the illusion of simul-

taneous presentation (right).

�ere are several parameters of this rendering method that can

be changed to create the perception that the hand is touching some-

thing with a distinct texture. �e intensity and modulation fre-

quency of the single point of haptic feedback can be changed (e.g.,

reducing intensity or increasing modulation frequency). We en-

hance this by varying the intensity using di�erent waveforms (e.g.,

a �at or sine wave). We also vary the frequency at which the point

of feedback traverses the hand. �is works best from 5–40 Hz, e.g.,

each part of the hand is stimulated by the point of feedback up to

40 times per second. �is gives another four parameters that a�ect

the presentation of a haptic surface:

• intensity (0%–100%)

• waveform (�at, sine, square, sawtooth, triangle)

• modulation freqency (e.g., 200 Hz [1], 175 Hz [2])

• hand traversal freqency (5–40 Hz)

�e seven parameters identi�ed here can be manipulated to

create haptic surfaces with di�erent perceptual properties. Research

is ongoing to be�er understand how these can be used to create

distinct textured surfaces.

4 DEMONSTRATION

Our demonstration will allow a�endees to experience a variety of

mid-air textured haptic surfaces, presented using an Ultrahaptics
1

device and rendered using our technique. We will also use 3D-

printed physical visualisations of each surface (Figure 1, right), to

show a�endees what they are experiencing and to demonstrate the

types of surface this technique can render.
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