
 
 
 
 
 
Penta, R. and Merodio, J. (2017) Homogenized modeling for vascularized 

poroelastic materials. Meccanica, 52(14), pp. 3321-3343. 

(doi:10.1007/s11012-017-0625-1) 

This is the author’s final accepted version. 
 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 

it. 

 
http://eprints.gla.ac.uk/151339/                                

 
 
 
 
 

 
Deposited on: 04 December 2017 

 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk  

http://dx.doi.org/10.1007/s11012-017-0625-1
http://eprints.gla.ac.uk/151339/
http://eprints.gla.ac.uk/


Meccanica manuscript No.
(will be inserted by the editor)

Homogenized modeling for vascularized poroelastic materials

Raimondo Penta · José Merodio
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Abstract A new mathematical model for the macro-

scopic behavior of a material composed of a poroelastic

solid embedding a Newtonian fluid network phase (also

referred to as vascularized poroelastic material), with

fluid transport between them, is derived via asymp-

totic homogenization. The typical distance between the

vessels/channels (microscale) is much smaller than the

average size of a whole domain (macroscale). The ho-

mogeneous and isotropic Biot’s equation (in the quasi-

static case and in absence of volume forces) for the

poroelastic phase and the Stokes’ problem for the fluid

network are coupled through a fluid-structure interac-

tion problem which accounts for fluid transport between

the two phases; the latter is driven by the pressure dif-

ference between the two compartments. The averaging

process results in a new system of partial differential
equations (PDEs) that formally reads as a double poroe-

lastic, globally mass conserving, model, together with

a new constitutive relationship for the whole material

which encodes the role of both pore and the fluid net-

work pressures. The mathematical model describes the
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mutual interplay among fluid filling the pores, flow in

the network, transport between compartments, and lin-

ear elastic deformation of the (potentially compressible)

elastic matrix comprising the poroelastic phase. Assum-

ing periodicity at the microscale level, the model is com-

putationally feasible, as it holds on the macroscale only

(where the microstructure is smoothed out), and en-

codes geometrical information on the microvessels in

its coefficients, which are to be computed solving clas-

sical periodic cell problems. Recently developed dou-

ble porosity models are recovered when deformations

of the elastic matrix are neglected. The new model is

relevant to a wide range of applications, such as fluid

in porous, fractured rocks, blood transport in vascular-

ized, deformable tumors, and interactions across differ-

ent hierarchical levels of porosity in the bone.

Keywords Poroelasticity · Fluid-structure interac-

tion · Fluid transport · Double porosity · Multiscale

expansion · Asymptotic homogenization · Hierarchical

materials · Vascularized tumors

1 Introduction

The interplay between a deformable, porous solid and

a fluid network phase (i.e. made of vessels, channels,

or connected cavities) concerns a large variety of real-

world physical scenarios, such as groundwater aquifers

and petroleum reservoirs, hard biological tissues, and

organs/cell aggregates. These systems are often multi-

scale, and possibly hierarchical in nature. The spatial

scale characterizing the fluid flow in the pores is much

smaller than the typical length scale of the network.

Such a scale is, in turn, much smaller than the average,

macroscopic size of the hierarchical level of the system
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under investigation. The latter can be a portion of tis-

sue, rock, organ, etc. that contains a high number of

vessels (or channels, cavities), such that the difference

between two of them cannot be resolved on such a scale.

Relevant examples include fluid flowing in relatively

large fractures and vugs, interacting with porous and

deformable rocks [2], fluid transport across the mem-

brane of tubular cavities interacting with the bone min-

eralized matrix [14] (which is made of collagen, mineral

and water [44]), as well as blood extravasating from the

vascular walls to the healthy and tumor tissue [23, 24].

Most of these physical systems can be viewed, from a

modeling perspective, as poroelastic media interacting

with a viscous fluid phase. Here we focus on these media

and we define them as vascularized poroelastic materi-

als.

The theory of poroelasticity ([6, 7, 8, 9, 10]) has been

extensively adopted for continuum modeling of solids

such as rocks [43], the mineralized collagen matrix in

the bone [14], and healthy and malignant cell aggre-

gates [11]. The equations of poroelasticity can be de-

rived “averaging” the interactions between fluid filling

the pores and the deformable comprising matrix, result-

ing in a system of partial differential equations (PDEs)

that can effectively represent the physics of the sys-

tem even though the pore geometry itself is smoothed

out. The upscaling process can be carried out via sev-

eral approaches, such as effective medium theory, vol-

ume averaging, mixture theory, and asymptotic homog-

enization (also known as two-scale homogenization or

multiscale homogenization), see, e.g. the comprehensive

review [5]. Average fields techniques, such as effective

medium theory, can provide an estimate of the coef-

ficients, and related bounds, for a limited number of

particular cases, exploiting the semi-analytical results

due to Eshelby [18], where the different phases are rep-

resented as elliptical inclusions. The mixture theory and

volume averaging approaches allow for generality in the

constitutive behavior of the constituents, and can pro-

vide some characterizations of the coefficients on the

basis of physical considerations. The asymptotic homog-

enization technique exploits the length scale separation

that exists in the system to derive the effective gov-

erning equations of (linearized) poroelasticity retaining

the information on the porescale, which are encoded in

the coefficients of the model (see [13]). The latter are

prescribed in terms of the solution of differential prob-

lems to be solved on the porescale geometry. Therefore,

this approach is powerful as it provides the appropriate

structure of the governing PDEs and precise pore scale

prescriptions for the coefficients. However, it is neces-

sary to assume periodicity of the pore scale structure to

actually solve the pore scale problems in practice, and

this approach cannot be trivially extended to nonlin-

ear constitutive equations for the fluid and the elastic

phases.

The physical system that we consider in this work

can be studied, from a mechanical viewpoint, as a fluid-

structure interaction problem. The structure and the

fluid are represented by an elastic, porous medium (that

can be modeled via the theory of poroelasticity) and a

viscous fluid (that is typically considered Newtonian),

respectively. There exist several examples in the con-

text of poroelasticity, see, e.g. [42] and [17], where the

coupling between the poroelastic and viscous compart-

ments is carried out analytically (for slightly compress-

ible phases and negligible in inertia) and numerically

(for intrinsically incompressible phases, and accounting

for inertia in the context of hemodynamic applications),

respectively.

The three dimensional solution of such a problem

would be almost impossible from a practical (computa-

tional) viewpoint, due to the large number of microves-

sels’ interactions to be resolved. Furthermore, experi-

mental measurements are usually performed at an av-

eraged, tissue level (see, e.g., [22, 23, 24] where examples

of measurements of tumor blood flow determinants are

reported). These arguments motivate the development

of a multiscale approach which can provide an effective

model capable to describe the macroscopic and consti-

tutive behavior of the system on a macroscale; such a

scale should be representative of the whole system and

much bigger than the intervessel (channels) distance.

At the same time, it is of crucial importance to retain

information on the geometrical complexity of the fluid

network phase.

In this work, we embrace the asymptotic homoge-

nization technique to derive a novel mathematical model

for the macroscale representation of vascularized poroe-

lastic materials.

We first setup a fluid structure interaction prob-

lem between a linearized poroelastic material and a

low-Reynolds number fluid, governed by the linear and

isotropic Biot’s equations and the Stokes’ problem, re-

spectively. We neglect inertia, body forces, and assume

that both the fluid in the pores and in the network

is incompressible, whereas compressibility of the solid

phase is permitted. The two compartments are cou-

pled via appropriate interface conditions that account

for (a) conservation of momentum (via prescription of

continuity of the global stresses), (b) fluid mass con-

servation, relating normal components of velocities to

account for possible compressibility of the solid phase,

(c) slip over the porous surface, prescribing the tan-

gential component of the fluid network stress, which is

assumed to be proportional to the tangent component
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of fluid network velocity (relative to the solid velocity)

[4], (d) transport of fluid across the interface between

the two compartments, prescribing that the difference

between the normal component of the fluid stresses is

proportional to the normal component of the fluid net-

work velocity (relative to the solid velocity). The latter

condition is particularly important to address transport

of fluid across the interface, as it represents the rigorous

formalization of a phenomenological relationship (also

known as Starling’s law [41]) that relates the fluid flux

across the vessels membrane to the difference between

the poroelatic (interstitial) and vessels’ pressure. This

relationship is adapted from [34] to account for possi-

ble (linear elastic) deformations of the porous compart-

ment, and ignoring contribution due to passive scalars

(e.g. drugs), which are not considered in this work.

We define an asymptotic small parameter as the ra-

tio between the microscale, which is the intervessels

(channels) distance, and the macroscale, i.e. the av-

erage size of the whole vascularized poroelastic mate-

rial. We perform an appropriate non-dimensionalization

step to account for the asymptotic behavior of the var-

ious parameters arising in the formulation, following

and adapting the physical considerations reported in

[34] to the case of a deformable porous structure. We

then introduce and apply the asymptotic homogeniza-

tion technique (see, e.g., [1, 3, 20, 27, 31, 39]), repre-

senting the relevant field as power series in terms of the

small asymptotic parameter in the light of the sharp

length scale separation that exists in the system. We

further assume periodicity to better compare the re-

sults to previously derived double porosity models and

to provide coefficients’ prescriptions that can be used
for practical applications at a reduced computational

cost.

We obtain a new macroscale system of PDEs in

terms of the zero-th order pressures, velocities and elas-

tic displacement. The mathematical model is formally

of double poroelastic type, and effectively accounts for

the fluid transport between the poroelastic and the fluid

network compartments through source terms which are

proportional to the difference in pressure. The mutual

influence of time variations of the pressures due to de-

formations of the solid matrix comprising the poroelas-

tic compartment appear explicitly. The model is glob-

ally mass conserving and the coefficients are to be com-

puted solving standard periodic problems on a geome-

try which is representative of the microvessels.

The model reads as a significant generalization of

the existing double porosity fluid transport model re-

cently derived in the context of rigid, vascularized tu-

mors in [41] and [34]1), and solved via a semi-analytical

approach in [33] for a tortuous microvasculature. The

latter model is recovered as a particular case for a rigid

solid compartment. The reminder of this work is orga-

nized as follows.

In Section 2 we setup the fluid-structure interaction

problem between the poroelastic compartment and the

fluid network. In Section 3 we perform a nondimen-

sional analysis and enforce appropriate physical argu-

ments to justify the asymptotic behavior of the model

parameters. In Section 4 we introduce the asymptotic

homogenization technique and formulate the two-scale

setting of the problem. In Section 5 we apply the asymp-

totic homogenization technique to systematically derive

the new model. In Section 6 we discuss the computa-

tional feasibility and the physical meaning of the model.

The double porosity model [34, 41] is recovered as a par-

ticular case for rigid solid structures. In Section 7 we

draw conclusions and highlight further perspectives.

2 Governing equations

We consider a set Ω ⊂ R3, such that Ω̄ = Ω̄p ∪ Ω̄n,

where Ωp and Ωn represent the poroelastic and fluid

network compartment, respectively. We assume that

the typical pore scale r is much smaller than the dis-

tance between two adjacent vessels/channels d. Thus,

on the scale d, we account for an already smoothed out

geometry of the porous structure (see Figure 1), and

it is therefore appropriate to account for a poroelastic

modeling of the solid porous compartment, rather than

considering the interaction between two distinct fluid

phases and the elastic matrix. A similar argument is

exploited in [41] (page 1466, Section 2.1), where the in-

teraction between a (rigid) tumor mass and its blood

vessels’ network is addressed assuming that the tumor

can be modeled as a porous medium (satisfying Darcy’s

law). In that case, the authors assume that the typical

pore scale (i.e. the inter-cell separation in the tumor)

is much smaller than the intercapillary distance char-

acterizing the network of blood vessels.

We assume that the intervessel distance d is, in turn,

much smaller than the average size of the domain L, i.e.,

we define a small parameter ε satisfying

ε =
d

L
� 1. (1)

The difference between the scales characterizing the

problem is highlighted in Figure 1.

1 These two paper differ in some scaling assumptions con-
cerning the drug transport analysis, but the double porosity
fluid transport models, for a purely Newtonian blood vessels’
rheology and for macroscopically uniform media, coincide, as
actually demonstrated in [34].
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Fig. 1 A 2D schematic of the pore scale, microscale, and macroscale, which satisfy r � d� L. On the left, the typical pore
scale r, which is much smaller than the intervessel distance d. On the right, the asymptotic homogenization block shows the
difference between the microscale d, where the difference between the vessels and the porous solid can be clearly identified,
and the typical macroscale L, which characterizes the homogenized domain ΩH where the network geometry is smoothed out.

We first state the governing equations for the poroe-

lastic and the fluid compartments, and then close the re-

sulting system of partial differential equations (PDEs)

via appropriate interface conditions on the interface

Γ = ∂Ωp ∩ ∂Ωn. Every variable is in general a func-

tion of space x and time t.

2.1 The poroelastic compartment

We assume that linear, isotropic, and homogeneous Biot’s

poroelasticity holds in the compartment Ωp.

We consider a quasi-static regime (as done, for ex-

ample in [29]), and neglect body forces for the sake of

simplicity. The stress balance equation in the poroelas-

tic compartment then reads

∇ · Tp = 0 , in Ωp, (2)

where the poroelastic stress tensor Tp is defined by

Tp = C : ∇u− α̃ppI, (3)

where u is the displacement of the porous matrix, pp is

the interstitial pressure of the fluid in the pores, α̃ is the

Biot coefficient, that depends on the porosity, geome-

try of the porous structure and the elastic constants of

the elastic phase, and C is the stiffness tensor of the

poroelastic medium. The operation “ : ” represents the

standard double contraction, by components notation

C : ∇u reads

Cijkl
∂uk
∂xl

, (4)

where i, j, k, l = 1, 2, 3 and summation over repeated in-

dices is understood. The elasticity tensor C is equipped

with the standard major and (left and right) minor

symmetries (see, e.g. [19]), the latter implying

C : ∇u = C : ξ(u), (5)

where

ξ =
∇u+ (∇u)

T

2
(6)

is the strain tensor associated with the displacement u.

Assuming an isotropic constitutive relationship we have

C : ξ(u) = λ(∇ · u)I + 2µeξ(u). (7)

Here, λ and µe denote the Lamé constants of the poroe-

lastic material. In particular, λ is the so called drained

Lamé constant (i.e. that of an equivalent elastic mate-

rial with empty pores, that is, setting pp = 0) and µe
the shear modulus. Both constants are related to the

elastic properties of the comprising matrix, but they

differ, in general, from the latter, as they also depend

on the interstitial porosity and geometry of the pore

scale structure.

The pressure in the pores pp and the interstitial

(pore) fluid velocity vp are related to each other via

Darcy’s law

wp = −k
µ
∇pp, (8)
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where k is the permeability of the poroelastic medium,

µ the fluid viscosity, and wp denotes the relative inter-

stitial velocity, i.e.

wp = φ (vp − u̇) , (9)

where the ˙( r) operator denotes the time derivative and

φ is the interstitial porosity, i.e. the ratio between the

interstitial fluid volume and the volume of the whole

poroelastic compartment. 2 The mass conservation re-

lationship for the poroelastic compartment reads:

ṗp = −α̃M∇ · u̇−M∇ ·wp, (10)

where M denotes the Biot modulus.

Remark 1 (On the relationship between pore pressure

and fluid content)

Relationship (10) combines the balance of fluid content

with the standard constitutive equation which relates

the pore pressure to the change in fluid content and

volume of an isotropic Biot’s porous medium (see, e.g.,

[16, 32]). In our notation, such a constitutive relation-

ship reads

pp = −α̃M∇ · u+MΞ, (11)

where Ξ represents the fluid content. The latter can be

in turn related to the fluid flux (which is here denoted

by wp and referred to as the relative interstitial veloc-

ity) via the standard continuity equation which holds

in absence of external fluid sources (see, e.g., [16])

Ξ̇ +∇ ·wp = 0. (12)

Finally, differentiating relationship (11) with respect to

time and then substituting the continuity equation (12)

yields equation (10). 2

The Biot modulus M can be viewed as the inverse of

the variation of the fluid volume in response to a vari-

ation of pore pressure, for constant strain (that is, the

lower M , the higher the variation of fluid volume in re-

sponse to the pore pressure variations is). It is a poroe-

lastic coefficient that depends on the pore scale geom-

etry and porosity, on the properties of the comprising

elastic matrix, and on the fluid bulk modulus [13]. The

coefficient M is proportional to the fluid bulk modu-

lus when the solid phase only is incompressible (see,

2 The vector field wp that satisfies Darcy’s law (8) actually
represents the average relative fluid velocity in the porous
medium and is also referred to as the discharge, flux, or fil-
tration velocity. It is indeed related to the specific relative
velocity vp− u̇ via the interstitial porosity φ. However, since
we conveniently carry out our analysis in terms of wp here-
inafter, we simply refer to wp as the relative interstitial ve-
locity.

e.g. [16]), whereas, when the fluid phase only is incom-

pressible, M solely depends on the pore scale geome-

try, porosity, and properties of the comprising elastic

matrix (see, e.g. [13] and the no-growth limit section

of [35]). Whenever both the fluid and the solid phase

are intrinsically incompressible, M → +∞. From equa-

tion (10), we can also deduce the physical meaning of

the Biot coefficient α̃, which can be interpreted as the

ratio of increase (decrease) of interstitial fluid volume

to solid volume changes. The upper bound α̃ = 1 is

reached whenever both the solid and the interstitial

fluid phase are intrinsically incompressible. In such a

case, M → +∞ and the two volume variations exactly

balance, so α̃ = 1 and relationship (10) reads

∇ ·wp +∇ · u̇ = 0, (13)

or, if the interstitial porosity φ can be considered ho-

mogeneous

φ∇ · vp + (1− φ)∇ · u̇ = 0. (14)

Here, we allow for compressibility of the solid phase, i.e.

0 < α̃ ≤ 1. Concerning the interstitial fluid phase, since

we are coupling it with the incompressible Newtonian

fluid phase in the network, we then consider that also

the fluid phase in the pores is intrinsically incompress-

ible for the sake of consistency. However, a potential

dependency of Biot’s modulus M on the fluid bulk mod-

ulus would not appear in the derivation that follows in

the next sections.

Remark 2 (On the assumption of isotropy) The assump-

tion of isotropy can be easily relaxed and is enforced

here solely (a) to clearly highlight the physical mean-

ing of parameters (b) to reduce the number of input

parameters that are eventually needed to solve the de-

rived homogenized model presented in the next sections

(c) to avoid complicating the notation, also considering

that anisotropic values for poroelastic parameters are

rarely provided by the experimental literature. How-

ever, whenever this is the case, or, alternatively, the

latter are known directly from the pore scale structure,

then the more general anisotropic setting should be con-

sidered. It is worth noting that we actually never ex-

plicitly enforce isotropy of C in the analysis that follow

(although it is considered isotropic for the sake of con-

sistency with the other parameters), and that the Biot

modulus reads as a scalar also for anisotropic poroelas-

tic media. Hence, from the technical point of view, the

framework provided here can be readily generalized to

anisotropy considering that the term α̃∇ · u̇ reads as

(following [13] in our notation)

(φI− D) : ∇u̇, (15)
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where D is a second rank tensor that depends on the

elasticity tensor of the solid matrix and on the pore

scale structure in terms of porosity and geometry. 2

2.2 The fluid network

We consider an incompressible Newtonian fluid phase in

the network Ωn and neglect inertial effects and volume

forces, such that the following Stokes’ problem holds

∇ · Tn = 0 (16)

∇ · vn = 0, (17)

where Tn denotes the fluid network stress tensor defined

by

Tn = −pnI + µ
(
∇vn + (∇vn)

T
)

(18)

and vn, pn are the fluid network velocity and pressure,

respectively.

2.3 Interface coupling

We assume continuity of poroelastic and fluid network

stresses (which is to be enforced as a consequence of

global conservation of momentum), i.e.

Tnn = Tpn on Γ, (19)

where n is the unit outward vector normal to the fluid

network surface. The normal component of the relative

fluid velocity at the interface between the poroelastic

compartment and the fluid network is related to that

of the solid phase by the following relationship

vn · n = (α̃u̇+wp) · n on Γ, (20)

or equivalently

(vn − u̇) · n = ((α̃− 1)u̇+wp) · n on Γ. (21)

The condition (20) reads as the correct admissibility

constraint on the interface Γ for normal fluid fluxes to

ensure mass conservation when possible compressibility

of the solid matrix is considered. Such a compatibility

condition is enforced, for example, in the study [42],

where the fluid-structure interaction between a Biot’s

poroelastic system and the Stokes’ flow is analyzed.3

Whenever the interstitial fluid and solid matrix phases

of the poroelastic compartment are intrinsically incom-

pressible, α̃ = 1, so that

(vn − u̇) · n = wp · n on Γ, (22)

3 Our admissibility constraint (20) is equivalent to equation
(2.a), page 7, [42], setting their β = 0 and considering that c0,
v1, v2, and q are denoted by α̃, u̇, un, wp in our manuscript.

as shown for example in [17].

We now discuss the appropriate prescriptions for the

normal and tangential component of the fluid network

stress to account for fluid transport between the two

compartments and fluid slip over a porous surface, re-

spectively.

2.3.1 Fluid transport across the interface

We aim to describe fluid transport across the interface

between the poroelastic and the fluid network compart-

ment. We embrace the non-equilibrium thermodynam-

ical approach derived by Kedem and Katchalsky [26]

and adopted in [34], where the fluid flux Φn is related to

the pressure drop across the interface between the two

compartments. The original formulation also involves a

contribution related to the jump of osmotic pressures

due to possible solute, which is not considered here as

we are not dealing with passive scalar transport (such

as drugs) in this work. We therefore seek for an heuris-

tic relationship (also called Starling’s law as in [24, 41])

of the type

Φn ∝ S(pn − pp), (23)

where S is the total surface of the vessels/channels

forming the network. According to the considerations

carried out in [34] (where the authors deal with fluid

and drug extravasation across the tumor vessels’ net-

work), the physics encoded in the relationship of the

type (23) should be formalized as an interface condi-

tion that relates the normal component of the fluid

network velocity to the difference between the fluid

network normal stress and the fluid pressure in the

porous compartment. We therefore assume the follow-

ing non-equilibrium interface condition, that describes

fluid transport across the interface between the poroe-

lastic matrix and the fluid network

(vn − u̇) · n = −Lp (n · (Tnn) + pp) , (24)

where Lp quantifies the leakage of fluid from the ves-

sels/channels and is also referred to as the hydraulic

conductivity of the microvascular walls in the biophys-

ical literature concerning solid tumors, as in [24].

Now we ensure that the total fluid flux (proportional

to the pressure drop across the interface multiplied by

the total vessels surface) stays finite whenever more and

more vessels/channels are considered in a fixed portion

of the domain (or, equivalently when considering the

limit ε → 0, cf. (1)). According to [34] (Remark 2.3,

page 9), this issue can be tackled considering that the

parameter Lp (and, in general, any parameter describ-

ing transport across the interface) is typically measured

considering the total fluid flux. Since the latter is in
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turn proportional also to the total vessels surface, which

scales with the number of vessels (i.e. ∝ 1/ε), it is as-

sumed that the specific (per unit surface) flux scales as

O(ε). We account for this asymptotic behavior of the

fluid flux redefining

εL∗ = Lp, (25)

Substituting (25) in (24) and rearranging terms yields

n · (Tnn) +
1

εL∗
(vn − u̇) · n = −pp, (26)

which reads, in our notation, as the corresponding inter-

face condition assumed in [34] for vascularized tumors,

adapted considering that the solid matrix is moving and

that no drug transport is taken into account here.

2.3.2 Slip over a porous surface

We account for the fluid slip over a porous surface

assuming the Beavers-Joseph-Saffman conditions (see

[4, 25, 38]), rearranged as done in [17] to relate the

tangential components of the fluid network stress and

relative velocity, i.e.

τβ · (Tnn) = −αµ√
k

(vn − u̇) · τβ , on Γ, (27)

where β = 1, 2, α is the non-dimensional Beavers and

Joseph parameter which depends on the properties of

the porous interface, the τβ denote the unit vectors

tangent to the interface and k is the permeability of

the poroelastic compartment that appears in the Darcy

equation (8).

3 The non-dimensional system of PDEs

Equations (2, 3), (8), (10) for the poroelastic compart-

ment Ωp, together with relationships (16, 18), (17) for

the fluid network compartment Ωn, and the interface

conditions (19), (21), (26), (27) on Γ , represent a closed

system of PDEs on the whole domain Ω in terms of the

variables u, wp, vn, pp, pn, provided that appropriate

initial conditions and external boundary conditions on

∂Ω are prescribed, depending on the specific physical

system at hand.

Now we non-dimensionalize variables as follows:

x = Lx′, u = Lu′, vp =
Cd2

µ
v′p, pp = CLp′p,

C = CLC′, t =
Lµ

Cd2
t′, vn =

Cd2

µ
v′n, pn = CLp′n, (28)

where C is a reference pressure gradient. We then non-

dimensionalize the poroelastic and fluid network stress

tensors Tp and Tn, as well as the relative interstitial

velocity wp, consistently with (28), i.e.

Tn = CLT′n, Tp = CLT′p, wp =
Cd2

µ
w′p. (29)

Since ∇( r) =
1

L
∇′( r), neglecting the primes for the

sake of simplicity of notation yields the following non-

dimensional system of PDEs, for every x ∈ Ω and for

every t ∈ (0, T ), T ∈ R+

∇ · Tp = 0, in Ωp (30)

Tp = C : ∇u− α̃ppI (31)

wp = −k̄∇pp, in Ωp (32)

ṗp = −α̃M̄∇ · u̇− M̄∇ ·wp in Ωp (33)

∇ · Tn = 0, in Ωn (34)

Tn = −pnI + ε2
(
∇vn + (∇vn)

T
)

(35)

∇ · vn = 0, in Ωn, (36)

supplemented by the following interface conditions

Tnn = Tpn on Γ, (37)

(vn − u̇) · n = ((α̃− 1)u̇+wp) · n on Γ, (38)

τβ · (Tnn) = −ε α√
k̄

(vn − u̇) · τβ , on Γ, (39)

n · (Tnn) +
1

εL̄p
(vn − u̇) · n = −pp on Γ. (40)

The newly introduced non-dimensional numbers read

k̄ =
k

d2
, L̄p =

L∗Lµ

d2
=
LpL

2µ

d3
, M̄ =

M

CL
. (41)

Here, L̄p, k̄, and M̄ are the non-dimensional interface

hydraulic conductivity, porous compartment permeabil-

ity, and Biot’s modulus, respectively.

Remark 3 (The characteristic Stokes’ velocity profile)

We have scaled velocities with respect the Stokes’-

type characteristic velocity profile

U =
Cd2

µ
. (42)

The latter choice preserves the asymptotic behavior of

the relative pore velocitywp when the distance between

the vessels/channels in the network decreases (i.e. when

ε → 0), as done in [34] for the interstitial flow coupled

to the blood vessels network. The same scaling is ap-

plied to the network velocity and to the solid velocity

u̇ (as the time is non-dimensionalized with respect to

the time scale dictated by U (cf. (28))), consistently

with definition (9) and continuity condition (38). This

choice formally leads to the typical ε2 scaling which

arises when upscaling Newtonian-type flow (cf. equa-

tion (35)), as also noted in [35]. 2
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Every non-dimensional number arising in the sys-

tem (30-40) is considered fixed in the limit ε→ 0 to ac-

count for the greatest possible number of physical phe-

nomena in the analysis that follows, as done in [34]. The

non-dimensional permeability k̄ and L̄p are formally

analogous to their counterpart in the works [34, 41],

where the effective governing equations for fluid trans-

port in vascularized rigid tumors are derived and dis-

cussed.

4 Two-scale homogenization

We now apply the asymptotic homogenization tech-

nique (see, for example, [20, 21, 27, 31, 39, 40]) to derive

a new set of macroscale governing equations for the sys-

tem of PDEs (30-40) that describes vascularized poroe-

lastic materials. In the light of the sharp length scale

separation between the microscale and the macroscale,

i.e.

ε� 1 (43)

we introduce a new spatial variable

y =
x

ε
(44)

to map microscopic variations of the fields. We decou-

ple spatial variations, such that x and y are consid-

ered formally independent variables that account for

macroscale and microscale spatial variations, respec-

tively. We assume that the fields pp, pn, wp, vn, u, Tp,
Tn are functions of both x and y. As a consequence,

differential operators transform according to

∇ → ∇x +
1

ε
∇y. (45)

We employ the following power series representation for

every field (denoted collectively by f̃)

f̃ ≡ f̃ ε(x,y, t) =

∞∑
l=0

f̃ (l)(x,y, t)εl. (46)

Each component f̃ (l) is defined for every x belonging

to the macroscale domain ΩH , while y maps microscale

variations in the appropriate subdomain where f̃ is de-

fined. Finally, we account for appropriate regularity as-

sumptions for the fields with respect to the newly in-

troduced microscale variable y. Although boundedness

with respect to the local spatial variable y would be in

principle sufficient to derive the new set of governing

equations (see, e.g. the derivation of the Biot’s poroe-

lasticity carried out in [13]), we aim to provide suit-

able prescriptions for the coefficients of the macroscale

model that can be practically computed on a reduced

portion of the domain. Hence, following the commonly

exploited approach in the multiscale asymptotics litera-

ture, we assume that every field is periodic with respect

to the local variable y.

Exploiting the representation (46) and the spatial

scale decoupling (45), equations (30-40) read (after mul-

tiplying each of them by a suitable power of ε)

∇y · Tεp + ε∇x · Tεp = 0 in Ωp, (47)

εTεp = C∇yu
ε + εC∇xu

ε − εα̃pεpI, in Ωp, (48)

εwε
p = −k̄∇yp

ε
p − εk̄∇xp

ε
p in Ωp, (49)

εṗεp = −α̃M̄∇y · u̇ε − M̄∇y ·wε
p

− εα̃M̄∇x · u̇ε − εM̄∇x ·wε
p in Ωp, (50)

∇y · Tεn + ε∇x · Tεn = 0 in Ωn, (51)

Tεn = −pεnI + ε
(
∇yv

ε
n + (∇yv

ε
n)

T
)

+ ε2
(
∇xv

ε
n + (∇xv

ε
n)

T
)
, (52)

∇y · vεn + ε∇x · vεn = 0, in Ωn, (53)

Tεnn = Tεpn on Γ, (54)

(vεn − u̇ε) · n =
(
(α̃− 1)u̇ε +wε

p

)
· n on Γ, (55)

τβ · (Tεnn) = −ε α√
k̄

(vεn − u̇ε) · τβ , on Γ, (56)

εn · (Tεnn) +
1

L̄p
(vεn − u̇ε) · n = −εpεp on Γ, (57)

where the fields wε
p, v

ε
n, pεp, p

ε
n, uε, Tεp, Tεn are the

power series counterparts (cf. equation (46)) of wp, vn,

pp, pn, u, Tp, Tn, respectively. Since y-periodicity is

assumed, it is sufficient to consider the above conditions

on the periodic cell (which we also call Ω). We further

identify Ωp and Ωn with their corresponding periodic

cell’s portion.

In the following section, we equate the same power

of ε in the relationships (47-57) for ε(l) = l = 0, 1....

We obtain a number of conditions that is used to de-

termine (a) a new system of PDEs that describe the

behavior of vascularized poroelastic materials on the

macroscale x in terms of the leading (zero-th) order

fields, (b) a new constitutive relationship that charac-

terize the macroscale mechanical response of such a ma-

terial, and (c) microscale cell problems which are to be

solved to determine the coefficients of the resulting ho-

mogenized model.

5 Derivation of the homogenized model

The aim of this section is the derivation of a closed sys-

tem of PDEs for the leading order variables w
(0)
p , v

(0)
n ,
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p
(0)
p , p

(0)
n , u(0) over the macroscale domain spanned by

the variable x. This is done exploiting the conditions

that arise equating the same power of ε(0) and ε1 in

(47–57).

Since we aim at obtaining a system of PDEs that

holds on the macroscale only, it is useful to define the

following cell average operator

〈( r)〉κ =
1

|Ω|

∫
Ωκ

( r) dy κ = p, n, (58)

where |Ω| and |Ωk| are the volumes of the periodic cell

and its κ-portion. The specific cell average operator is

defined as

〈( r)〉k =
1

|Ωκ|

∫
Ωκ

( r) dy κ = p, n, (59)

and the two operators are related by

〈( r)〉κ = φκ〈( r)〉κ, (60)

where

φκ =
|Ωκ|
|Ω|

κ = p, n, (61)

is the volume fraction of the poroelastic (fluid network)

compartment.

Remark 4 Note that the medium is not, in general,

macroscopically uniform, i.e. the periodic cell can also

exhibit variations with respect to the macroscale x (see

e.g. [13, 20, 34, 35] and [12, 15]). However, investigation

of such variations is not the primary aim here, there-

fore, we simply assume that Ωκ = Ωκ(y), such that

∇x ·
∫
Ωκ

( r) dy =

∫
Ωκ

∇x · ( r) dy, (62)

and the volume fractions φκ defined by (61) are con-

stants. 2

We equate the same powers of ε0 in the system (47-57)

to obtain:

∇y · T(0)
p = 0 in Ωp, (63)

C : ∇yu
(0) = 0 in Ωp, (64)

∇yp
(0)
p = 0 in Ωp, (65)

α̃M̄∇y · u̇(0) + M̄∇y ·w(0)
p = 0 in Ωp, (66)

∇y · T(0)
n = 0 in Ωn, (67)

T(0)
n = −p(0)I, (68)

∇y · v(0)n = 0 in Ωn, (69)

T(0)
n n = T(0)

p n on Γ, (70)

(v(0)n − u̇(0)) · n =
(

(α̃− 1)u̇(0) +w(0)
p

)
· n on Γ, (71)

τβ · (T(0)
n n) = 0 on Γ, (72)

(v(0)n − u̇(0)) · n = 0 on Γ, (73)

while the conditions obtained equating the same

powers of ε1 read:

∇y · T(1)
p +∇x · T(0)

p = 0 in Ωp, (74)

T(0)
p = C : ∇yu

(1) + C : ∇xu
(0) − α̃p(0)p I, in Ωp, (75)

w(0)
p = −k̄∇yp

(1)
p − k̄∇xp

(0)
p , in Ωp, (76)

ṗ(0)p = −α̃M̄∇y · u̇(1) − M̄∇y ·w(1)
p

− α̃M̄∇x · u̇(0) − M̄∇x ·w(0)
p , in Ωp, (77)

∇y · T(1)
n +∇x · T(0)

n = 0 in Ωn, (78)

T(1)
n = −p(1)n I +

(
∇yv

(0)
n + (∇yv

(0)
n )

T
)

(79)

∇y · v(1)n +∇x · v(0)n = 0, in Ωn, (80)

T(1)
n n = T(1)

p n on Γ, (81)

(v(1)n − u̇(1)) · n =
(

(α̃− 1)u̇(1) +w(1)
p

)
· n on Γ, (82)

τβ · (T(1)
n n) = − α√

k̄
(v(0)n − u̇(0)) · τβ on Γ, (83)

n ·
(
T(0)
n n

)
+

1

L̄p

(
v(1)n − u̇(1)

)
· n = −p(0)p on Γ, (84)

where we notice that, by means of condition (68), rela-

tionship (72) is actually just an identity. Equations (65)

and (67-68) imply that p
(0)
p and p

(0)
n are y-constant, re-

spectively, i.e.

p(0)p = p(0)p (x, t), (85)

p(0)n = p(0)n (x, t). (86)

Equation (64) implies that ∇yu
(0) is skew-symmetric,

i.e, u(0) is a rigid body motion. The only periodic solu-

tion of this type is y-constant, that is

u(0) = u(0)(x, t). (87)

Enforcing condition (87) relationship (66) for the poroe-

lastic compartment reduces to

∇y ·w(0)
p = 0 in Ωp. (88)

We now derive the effective governing equations for

the vascularized poroelastic material systematically. We

first describe the macroscale fluid dynamics in both the

poroelastic and the fluid network compartments. We

relate the cell average (cf. operator (58)) of the zero-

th order velocities w
(0)
p and v

(0)
n , respectively, to the

leading order pressures p
(0)
p , p

(0)
n , and the macroscale

displacement of the solid part u(0). We then derive the

homogenized stress balance equation and constitutive

relationship for the material in terms of the leading or-

der pressures and elastic displacement. Finally, we close

the system of macroscale PDEs via two scalar equations

for p
(0)
p and p

(0)
n , highlighting the role of mass exchange

between the two compartments.
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5.1 Interstitial flow

We start substituting relationship (76) into the local di-

vergence free constraint (88) to obtain a Laplace prob-

lem for p
(1)
p (x,y, t)

∇2
yp

(1)
p = 0 in Ωp. (89)

The problem (89) is supplemented by y-periodic con-

ditions on ∂Ωp/Γ and the non-homogeneous Neumann

interface condition

∇yp
(1)
p · n = −

(
∇xp

(0)
p + (α̃− 1)u̇(0)

)
· n on Γ. (90)

The above condition is obtained accounting for rela-

tionship (73), and then substituting (76) into the equa-

tion dictating continuity of the leading order normal

component of relative velocities (71). The compatibil-

ity condition for the Laplace problem (89) reads∫
Γ

(
∇xp

(0)
p + (α̃− 1)u̇(0)

)
· ndSy = 0, (91)

and it is fulfilled as the vector valued function

fm: = ∇xp
(0)
p + (α̃− 1)u̇(0) (92)

does not depend on the microscale variable y by means

of relationships (87) and (85), so that∫
Γ

fm · n dSy =

∫
∂Ωp

fm · ndSy =

−
∫
Ωp

∇y · fm dy = 0, (93)

where we have used y-periodicity to transform the in-

terface integral into a surface integral, have applied the

divergence theorem with respect to y, and exploited the

fact that fm is y-constant.

Since the problem (89-90) is linear and (85), (87)

hold, the following solution ansatz

p(1)p = −P p(y) · (∇xp
(0)
p (x, t) + (1− α̃)u̇(0)(x, t)), (94)

is its actual (up to a y-constant function) solution, pro-

vided that the auxiliary vector P p solves the following

cell problem:

∇2
yP p = 0 in Ωt (95)

(∇yP p)n = n on Γ. (96)

The problem (95-96) is equipped with y-periodic con-

dititions on ∂Ωp/Γ and is to be closed by an additional

constraint in order to ensure uniqueness, for example

〈P p〉p = 0. (97)

We substitute ansatz (94) into relationship (76) and ap-

ply the average operator (58) to obtain the macroscale

governing equations for the global average leading order

relative velocity in the poroelastic compartment, i.e.〈
w(0)
p

〉
p

= −k̄G∇xp
(0)
p + k̄(α̃− 1) 〈P〉p u̇

(0), (98)

where the second rank tensor G reads

G = φpI− 〈P〉p (99)

or, componentwise

Gij = φpδij − 〈Pij〉p (100)

and we defined

P =
〈

(∇yP p)
T
〉
p
, (101)

that is, by components

Pij =

〈
∂P jp
∂yi

〉
p

, (102)

i, j = 1, 2, 3. In terms of the specific average (cf. (59))

equation (98) reads〈
w

(0)
p

〉
p

= −k̄G̃p∇xp
(0)
p + k̄(α̃− 1)〈P〉pu̇

(0), (103)

where

G̃ = I−〈P〉p. (104)

According to equation (98), the poroelastic interstitial

flow is driven by both the macroscopic pressure gra-

dient and the leading order elastic velocity. The (non-

dimensional) second rank tensor k̄G given by the rela-

tionship (99) reads as an effective hydraulic conductiv-

ity for the poroelastic compartment. The leading order

relative interstitial velocity is further corrected by an

anisotropic contribution that is proportional to (α̃−1),

i.e. it reduces to zero when the comprising solid matrix

is incompressible.

5.2 Network flow

We start substituting the leading and first order fluid

network stress tensor components (68) and (79), re-

spectively, into the balance equation (78), such that,

accounting for the leading order incompressibility con-

straint (69), we obtain the following relationship for

(v
(0)
n , p

(1)
n )

∇2
yvn −∇yp

(1)
n −∇xp

(0)
n = 0 in Ωn. (105)

The above equation, together with the incompressibility

constraint (69) and interface conditions (83) and (71),

can be rewritten as a Stokes’ problem for (w
(0)
n , p

(1)
n ),
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where w
(0)
n is the relative fluid network leading order

velocity defined by

w(0)
n : = v(0)n − u̇

(0). (106)

Thus we have

∇2
yw

(0)
n −∇yp

(1)
n −∇xp

(0)
n = 0, in Ωn (107)

∇y ·w(0)
n = 0, in Ωn (108)

τβ ·
((
∇yw

(0)
n + (∇yw

(0)
n )

T
)
n
)

=

− α√
k̄
w(0)
n · τβ , on Γ (109)

w(0)
n · n = 0, on Γ, (110)

where we have enforced that u(0) is y-constant (cf.

equation (87). The solution of the PDEs system (107-

110) can be deduced exploiting linearity and consider-

ing that the leading order pressure p
(0)
n is y-constant

(cf. equation (86)). In fact, we have

w(0)
n (x,y, t) = −W(y)∇xp

(0)
n (x, t) (111)

p(1)n (x,y) = −P n(y) · ∇xp
(0)
n (x, t), (112)

and the ansatz (111-112) is the solution of the prob-

lem provided that the auxiliary variables (W,P n) solve

the following Stokes’-type cell problem:

∇yPn = ∇2
yW

T + I in Ωn (113)

∇y ·WT = 0 in Ωn (114)

WTn = 0 on Γ (115)

[
(
∇yW

T + (∇yW
T)

T
)
n]τβ = WTτβ on Γ. (116)

The system (113-116) is equipped with y-periodic con-

ditions on ∂Ωn/Γ . In order to guarantee uniqueness for

the auxiliary vector P n, we need a further vector con-

dition, for example

〈P n〉n = 0. (117)

The macroscale flow in the fluid network, which is de-

scribed by relative fluid network average velocity, is ob-

tained averaging (111)〈
w(0)
n

〉
n

= −K∇xp
(0)
n , (118)

where K is the fluid network hydraulic conductivity ten-

sor defined by

K = 〈W 〉n (119)

or, by components

Kij = 〈Wij〉 i, j = 1, 2, 3. (120)

In terms of the specific average (cf. (59)) equation (118)

reads〈
w

(0)
n

〉
n

= K̃∇xp
(0)
n , (121)

where

K̃ = 〈W 〉n. (122)

The relative macroscale flow in the network is governed

by an anisotropic Darcy’s law and it is driven by the

zero-th order fluid network pressure p
(0)
n , with (non-

dimensional) hydraulic conductivity K given by (119).

5.3 Effective poromechanics

We now aim to determine the effective stress balance

equation and constitutive relationship for vascularized

poroelastic materials. Since the leading order poroelas-

tic stress tensor also depends on the first order displace-

ment u(1), we first recover the latter as a function of

leading order fields only. We start from the zero-th or-

der stress balance equation substituting (75) into (63).

We then obtain a linear elastic-type problem for the

variable u(1). We then enforce that u(0), p
(0)
p (cf. (85),

(87)) are y-constant and substitute the leading order

characterization of the poroelastic and fluid network

stress tensors (75) and (68), respectively, into interface

conditions (70) to obtain the following linear elastic-

type boundary value cell problem equipped with non-

homogeneous Neumann interface conditions

∇y ·
(
C : ∇yu

(1)
)

= 0 (123)

(C : ∇yu
(1))n =

− (C : ∇xu
(0))n+ α̃p(0)p n− p(0)n n on Γ, (124)

supplemented by y-periodic conditions on ∂Ωp/Γ . The

right hand side of equation (123) reduces to zero as

u(0), p
(0)
p , and the coefficients (in particular C) are y-

constant.

Here, u(1) is y-periodic and the solution is unique

up to an arbitrary y-constant vector field. We exploit

linearity of the problem (123-124), together with (85),

(86), and (87) to formulate the following ansatz

u(1)(x,y, t) = A(y)∇xu
(0)(x, t)+

a(y)
(
p(0)n (x, t)− α̃p(0)p (x, t)

)
(125)

in terms of the auxiliary third rank tensor and vector

A (represented componentwise as Aijk, i, j, k = 1, 2, 3)

and a, respectively.
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The above ansatz solves the problem (123-124), pro-

vided that A and a are the solutions of the following

periodic cell problems

∇y · (C : ∇ya) = 0 in Ωp (126)

(C : ∇ya)n = −n on Γ, (127)

∂

∂yj

(
Cijkl

∂Akνγ
∂yl

)
= 0 in Ωp (128)

Cijkl
∂Akνγ
∂yl

nj + Cijνγnj = 0, on Γ, (129)

where i, j, k, l, ν, γ = 1...3 and Einstein convention for

summation over repeated indices is understood. The

cell problems for the third rank tensor Aijk and vectors

a, b are to be closed by a further condition, e.g.

〈a〉p = 0, 〈Aijk〉p = 0 ∀ i, j, k = 1...3. (130)

The leading order poroelastic stress tensor, substituting

(125) into (75), reads

T(0)
p = (CM + C) : ∇xu

(0)

+ (C : Q)p(0)n − α̃ (C : Q + I) p(0)p , (131)

where the fourth rank tensor M and the second rank

tensor Q are defined as

M = ∇yA, Q = ∇ya, (132)

where M reads, by components

Mklνγ =
∂Akνγ
∂yl

, k, ν, γ, l = 1, 2, 3. (133)

Note that M is equipped with both minor symmetries,

as it can be verified enforcing the corresponding minor

symmetries of the tensor C in (128-129), and that the

periodic cell problems, as written in the compact form

(128-129) correspond to six elastic-type periodic cell

problems, for each fixed (ν, γ), ν ≥ γ, ν, γ = 1, 2, 3.

Remark 5 Since we are assuming that the coefficients,

and in particular C, are just constants, they are in

particular y-constant and the solution for u(1) can be

equivalently written as

u(1)(x,y, t) = Ã(y)(C : ∇xu
(0))(x, t)+

a(y)
(
p(0)n (x, t)− α̃p(0)p (x, t)p

)
, (134)

where the third rank tensor Ã solves the following cell

problem (up to a further condition, as for A)

∂

∂yj

(
Cijkl

∂Ãkνγ
∂yl

)
= 0 in Ωp (135)

Cijkl
∂Ãkνγ
∂yl

nj + δiνδjγnj = 0, on Γ, (136)

where i, j, k, l, ν, γ = 1...3, Einstein convention for sum-

mation over repeated indices is understood. Defining

L = ∇yÃ (137)

and comparing the y-gradient of the equivalent ansatzes

(125) and (134) we obtain

M = LC. (138)

We further note, although the presence of both pres-

sure fields plays a role in determining the solution for

u(1), the functional form of the cell problems (126-127)

and (128-129) is the same as the standard poroelastic

setting (up to the volume force contributions propor-

tional to the derivatives of C that do not appear here

as we are in the homogeneous setting), see [13, 27]. In

particular, the following relationship holds:

〈trM〉p = 〈C : Q〉p , (139)

that is, by components

〈Mkkij〉p = 〈CijlmQlm〉p . (140)

Relationship (139) can be deduced exploiting the prop-

erties of the cell problems (126-127) and (128-129), and

applying (several times) the divergence theorem with

respect to the local variable y, exactly as done in the

appendix of [13], where the due steps are (equivalently)

carried out assuming local boundedness instead of pe-

riodicity.4 2

We now proceed in determining the homogenized stress

balance and constitutive equation for the vascularized

poroelastic material. We perform global average (58) of

the first order stress balance equations (74) and (78) on

the corresponding cell portions Ωp and Ωn, obtaining

the following macroscale equations

− 1

|Ω|

∫
Γ

T(1)
p n dSy +∇x ·

〈
T(0)
p

〉
p

= 0, (141)

1

|Ω|

∫
Γ

T(1)
n ndSy +∇x ·

〈
T(0)
n

〉
n

= 0, (142)

where, in both cases, we have applied the divergence

theorem in y and y-periodicity to cancel the surface

contributions on ∂Ωp and ∂Ωn. Furthermore, we have

applied, in both cases, macroscopic uniformity (62). We

now sum up equations (141) and (142) and account for

order one continuity of stresses (81) to finally obtain

4 Note that in the appendix reported in [13] the third rank

tensor vijp is equivalent to our A and its gradient to our M.
However, the latter is always identified to LC, although rela-
tionship (138) actually rigorously holds only when C is locally
constant.
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the homogenized stress balance equation for the vascu-

larized poroelastic material

∇x · Tvp = 0, (143)

where Tvp =
〈
T
(0)
n

〉
n

+
〈
T
(0)
p

〉
p
. Accounting for the

leading order relationships for the fluid network and

poroelastic stress tensors (68) and (131), yields

Tvp = 〈(CM + C)〉p : ∇xu
(0) +

(
〈C : Q〉p − φnI

)
p(0)n

− α̃(〈C : Q〉p + φpI)p
(0)
p . (144)

The new constitutive equation for the material (144)

dictates the mechanical response of the whole medium

on the macroscale. The effective stress tensor Tvp en-

codes both an elastic-type contribution (proportional

to the leading order displacement gradient) and role of

the interstitial and network pressures.

We have now derived Darcy’s macroscale equations

for the interstitial flow (98) and the network flow (118),

as well the stress balance equations for the medium

(143-144). Therefore, we have specified nine equations

for the behavior of the leading order relative intersti-

tial velocityw
(0)
p , network velocityw

(0)
n , and elastic dis-

placement u(0). To close the system of macroscale PDEs

we derive two scalar differential equations that deter-

mine the pressures p
(0)
p and p

(0)
n and account for the

contribution due to fluid transport between the poroe-

lastic and fluid network compartments.

5.4 Effective governing equations for vascularized

poroelastic materials

We start averaging the order one fluid network con-

straint (80) to obtain

∇x ·
〈
v(0)n

〉
n

= − 1

|Ω|

∫
Γ

v(1)n · ndSy, (145)

where we have applied macroscopic uniformity (62) on

the left hand side of (145) and the divergence theorem

(together with periodicity to cancel out surface contri-

bution on ∂Ωn) with respect to y on the right hand

side. Substituting relationship (84) into (145) yields

∇x ·
〈
v(0)n

〉
n

= −|Γ |L̄p
|Ω|

(p(0)n − p(0)p )

− 1

|Ω|

∫
Γ

u̇(1) · n dSy, (146)

where we have considered (85-86), and |Γ | is the total

surface of the interface Γ . We now apply back the di-

vergence theorem (and y-periodicity) with respect to y

on the right hand side of (146), obtaining

− 1

|Ω|

∫
Γ

u̇(1) · ndSy =
1

|Ω|

∫
Ωp

∇y · u̇(1) dy, (147)

where we have considered that n is pointing out of the

fluid network region. We substitute the solution (125)

for u(1) and exploit the auxiliary tensors definitions

(132) to obtain

∇x ·
〈
v(0)n

〉
n

= −|Γ |L̄p
|Ω|

(p(0)n − p(0)p ) + f̂(x, t), (148)

where we have defined

f̂ = 〈trM〉p :∇xu̇
(0) + 〈trQ〉p ṗ

(0)
n − α̃ 〈trQ〉p ṗ

(0)
p , (149)

enforcing the identity∇y ·u̇(1) = tr(∇yu̇
(1)). The scalar

constraint in terms of pressures and elastic displace-

ment only is obtained exploiting Darcy’s relationship

(118) and (106) and reads

∇x · (K∇xp
(0)
n )− φn∇x · u̇(0) =

|Γ |L̄p
|Ω|

(p(0)n − p(0)p )− f̂ . (150)

We are now left with the last equation to close the final

system of macroscale PDEs. Averaging the constraint

(77) over Ωp yields

∇x ·
〈
w(0)
p

〉
p

= −φp
ṗ
(0)
p

M̄
− α̃f̂ +

1

|Ω|

∫
Γ

w(1)
p · n

− φpα̃∇x · u̇(0), (151)

where we have applied again macroscopic uniformity

on the left hand side of (151), and the divergence the-

orem in y (together with y-periodicity) to obtain the

interface integral involving w
(1)
p . Finally, we exploit the

interface condition (82) together with mass exchange

dictated by (84), and exploit the corrected Darcy re-

lationship (98) to formulate the last scalar differential

equation as follows

∇x · (k̄G∇xp
(0)
p ) = k̄(α̃− 1) 〈P〉p∇x · u̇(0) + φp

ṗ
(0)
p

M̄

+ f̂ +
|Γ |L̄p
|Ω|

(p(0)p − p(0)n ) + φpα̃∇x · u̇(0). (152)

Equations (152) and (150) close the systems of effec-

tive governing equations for the vascularized poroelas-

tic material.

In the next section, we perform a thorough discus-

sion concerning the new model we have derived and we

illustrate key particular cases which may be of interest

for practical applications.
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6 Discussion and interpretation of the results

In Section 5 we have derived the new system of PDEs

that describes the macroscopic behavior of vascularized

poroelastic materials. It consists of the two scalar equa-

tions (150), (152) and the three vector-valued equa-

tions (equivalent to nine scalar equations) (98), (118),

and (143) in terms of the leading order pressure fields

p
(0)
n (x, t), p

(0)
p (x, t), relative velocities

〈
w

(0)
n

〉
n

(x, t),〈
w

(0)
p

〉
p

(x, t), and elastic displacement u(0)(x, t).

These PDEs can be rearranged, for every x ∈ ΩH
and for every t ∈ (0, T ), T ∈ R+, as follows

∇x · Tvp = 0 (153)

ṗ
(0)
n

Mvp
= −∇x ·

〈
w(0)
n

〉
n
− (φnI− 〈C : Q〉p) : ∇xu̇

(0)

+
α̃

Mvp
ṗ(0)p −

|Γ |L̄p
|Ω|

(p(0)n − p(0)p )

(154)

ṗ(0)p

(
φp
M̄

+
α̃

Mvp

)
= −∇x ·

〈
w(0)
p

〉
p

+
ṗ
(0)
n

Mvp

− (α̃φpI + 〈C : Q〉p) : ∇xu̇
(0) − |Γ |L̄p

|Ω|
(p(0)p − p(0)n )

(155)

〈
w(0)
n

〉
n

= −K∇xp
(0)
n (156)〈

w(0)
p

〉
p

= −k̄G∇xp
(0)
p + k̄(α̃− 1) 〈P〉p u̇

(0), (157)

where we recall that the global constitutive relationship

is given by (144), i.e.

Tvp = 〈(CLC + C)〉p : ∇xu
(0) +

(
〈C : Q〉p − φnI

)
p(0)n

− α̃(〈C : Q〉p + φpI)p
(0)
p ,

where we set

Mvp = − 1

〈trQ〉p
. (158)

Equations (153-157) constitute a closed macroscale sys-

tem of PDEs.

Remark 6 (Cell problems and computational feasibility)

The model is capable to account for a large variety of

physical phenomena at a reduced computational cost.

In fact, given the input, homogeneous parameters and a

suitable prescription of the geometry of the periodic cell

Ω, the coefficient are as well homogeneous, and are to

be computed solving periodic cell problems which solely

depend on the microscale local variable y. In particu-

lar, the hydraulic conductivity K (cf. equation (119))

and second rank tensor 〈P〉p (which is in turn required

to compute the interstitial conductivity G, cf. equation

(99)) involve the solution of the cell problems (113-116)

and (95-96), respectively. The Stokes’-type cell prob-

lem in the compact tensorial form (113-116) is analo-

gous to that derived for rigid structures in [34, 41] and

actually corresponds, in general, to three Stokes’ prob-

lems, as noted in [35]. In the latter work, the authors

solve the model [41] in three dimensions and provide

an example of numerical solution of these cell prob-

lems for a prototypical tortuous geometry representa-

tive of the tumor microvasculature. They also solve the

cell problems on the interstitial complementary geom-

etry, which formally coincide with the problems (95-

96). These correspond, in general, to three standard

Laplace’s problems. The fourth and second rank auxil-

iary tensors L and Q (cf. relationships (132) and (137))

are to be computed solving the elastic-type cell prob-

lem (126-127) and the six elastic-type cell problems

given corresponding to (135-136), or equivalently (128-

129), as in our case (138) holds. The systems of PDEs

(128-129) and (126-127) actually correspond to those

arising in standard poroelasticity [13, 27], specialized

for homogeneous coefficients. An example of a suitable

computational approach for the solution of three di-

mensional periodic, elastic-type cell problems for com-

posite materials (which possess a similar structure, but

are more complex as they involve discontinuity of the

elastic constants across the interface between phases)

is given in [36], and applied to the bone hierarchical

structure in [37]. Once the coefficients are computed

solving the cell problems only once and independently

of the macroscale, then it suffices to insert the Darcy-

type relationships (156-157) into their corresponding

scalar relationships (154-155), and the constitutive rela-

tionship (144) into (153) to obtain a coupled system of

five scalar differential equations for the five unknowns

p
(0)
p , p

(0)
n , and the three components of u. The solu-

tion can be finally computed on the macroscale domain

ΩH where microscale variations are smoothed out, pro-

vided that appropriate initial conditions and boundary

conditions on ∂ΩH are prescribed, and the velocities

recovered back via (156-157). 2

The system of effective governing equations for a vascu-

larized poroelastic material (153-157) formally reads as

an anisotropic double poroelastic model equipped with

source terms. It globally accounts for the mutual in-

terplay of (a) fluid flow in the network, (b) interstitial

flow in the pores, (c) strains of the comprising elas-

tic matrix, (d) fluid transport between the poroelastic

and fluid network compartment. We discuss the physi-

cal meaning of the various terms and parameters arising

in the next sections below.
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6.1 Effective elasticity tensor for the vascularized

poroelastic material

The effective constitutive relationship (144) accounts

for the mechanical response of the whole material. It

comprises both a linear elastic contribution, and the

mechanical response due to the pores and network pres-

sures. The relative importance of the latter is also dic-

tated by the microstructure geometry, which is encoded

in the second rank tensor 〈C : Q〉p. The effective elas-

ticity tensor for a vascularized poroelastic material is

given by

Cvp = 〈(CLC + C)〉p , (159)

where C is the elasticity tensor of the poroelastic phase

and L is given by (137). The latter is to be computed

solving microscale cell problems that depend on both

the elastic properties of the poroelastic phase and on

the microscale geometry. The effective elastic tensor for

a poroelastic material is in general anisotropic also for

an isotropic poroelastic elasticity tensor (see (7)) and

it retains the same functional form as the poroelastic

elasticity tensor that is obtained applying asymptotic

homogenization to a standard fluid-structure interac-

tion problem between a Newtonian fluid and a linear

elastic solid in a porous structure [13]. However, the

cell problems which are indeed formally analogous to

those of standard poroelasticity) are to be computed

on the microscale, where only geometric variations of

the network are relevant, as the pore scale variations

are already smoothed out by means of the poroelas-

ticity assumption, and the dependency on the latter is

encoded in the poroelastic elasticity tensor C.

6.2 A double Darcy model for the relative velocities

The macroscale fluid network and interstitial veloci-

ties (relative to the actual and corrected solid veloci-

ties) are described by Darcy’s laws (156-157), with non-

dimensional hydraulic conductivities given by K and

k̄G, respectively. In particular, the relationship for the

relative interstitial velocity (157) is equipped with a

correction term which depends on the microstructure

and vanishes whenever both the fluid phase and the

solid phase in the poroelastic compartment are intrin-

sically incompressible, i.e. for α̃ = 1. In the latter case,

(157) just reads as a standard Darcy’s law for the in-

etrstitial velocity, further averaged over the whole do-

main. Relationship (156) is the Darcy law for the av-

erage velocity in the network, relative to solid velocity,

and it formally appears as the standard Darcy’s rela-

tive velocity profile that would be experienced by fluid

velocity in a porous, linear elastic material, although

the solid velocity is affected by the both the network

and the interstitial flow in this case.

6.3 Effective coefficients of the double poroelastic

model

The two scalar equations (155-154) that close the global

system of PDEs physically represent the balance of in-

terstitial and fluid network volumes variations, which

are affected by the strains of the (potentially compress-

ible) elastic matrix and by the fluid transport between

the two compartments as a consequence of fluid ex-

travasation from the vessels/channels network. The struc-

ture of these relationships is analogous to that of a mass

balance constraint (with sources) in poroelasticity, as

it comprises, in both cases, pressure variations in time,

variations of fluid and solid volumes, and source terms

which provide the coupling between the two. Hence, the

model can be formally regarded as double poroelastic.

However, the physical meaning of the coefficient multi-

plying a particular contribution in the governing equa-

tion of one fluid phase does not necessarily coincide with

its corresponding counterpart in the governing equa-

tion of the other fluid phase. Furthermore, the coupling

source term for one fluid phase is both related to the

fluid transport between compartments (proportional to

the pressure jump, as in the double porosity fluid trans-

port models [34, 41]) and to the influence of pressure’s

time variations in the other fluid phase. These features,

which arise mathematically as a natural consequence of

the upscaling process, uniquely characterize this partic-

ular model, which is therefore different from standard

phenomenological double poroelastic models which can

be found in the literature (see, e.g. [2] as an example

of double poroelastic model for the coupling of fluid

flow through deformable fractures and elastic matrix.

In this case, the only source term is proportional to the

fluid pressure difference and the physical interpretation

of parameters is that of a single poroelastic model for

each fluid phase). However, the arising parameters (and

terms) have a clear physical interpretation, as we dis-

cuss below.

The coefficient Mvp (cf. (158)) is the opposite of the

inverse of 〈trQ〉p, where the latter is given by (132)

and is to be comptuted solving the elastic type cell

problem (126-127). The latter cell problem, as well as

the functional form of Mvp as a function of the aux-

iliary tensor Q, are analogous to that found in stan-

dard poroelasticity for the characterization of the Biot

modulus in terms of the pore structure (when the fluid

flowing in the pores is incompressible). However, its de-

pendencies and physical meaning do not coincide with
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those of the standard Biot’s modulus, although a con-

nection can be found. In fact, even though the Biot

modulus can be in principle computed solving a cell

problem formally identical to (126-127)[13], the latter

is to be solved on the pore scale geometry and en-

forcing the elastic properties of the matrix. The co-

efficient Mvp defined here encodes, instead, geometric

information on the microstructure (which is dictated

by the interaction between the poroelastic medium and

the fluid network vessels/channels), and the poroelastic

elasticity tensor C. In analogy with the standard Biot’s

modulus, Mvp can be interpreted as the variation of

fluid network volume in response to an increase of the

difference between the network and pore pressures, as

though the elastic phase were intrinsically incompress-

ible (α̃ = 1, M → +∞), at constant strains and up

to the fluid extravasation between compartments (cf.

(154)). The coefficient Mvp can be equivalently defined

through equation (155) as the negative variation of the

interstitial fluid volume under the same conditions de-

scribed above and for the same increase of pressure dif-

ference (cf. (154), reflecting the balance of total fluid

volume that is expected in such a case. It is worth re-

marking that the coefficient 1/Mvp = −〈trQ〉p mul-

tiplying the time derivatives of the pressures in (154-

155) is different from zero also for incompressiblity of

the solid phase, as opposed to its classical Biot’s coun-

terpart. This is due to the fact that the second rank

tensor Q depends on the elasticity tensor of the poroe-

lastic material, which is filled by the fluid in the pores,

and is not globally incompressible also when the elas-

tic matrix and the interstitial fluid individually are (cf.

constraint (14)). However, whenever solid deformations

can be neglected, Q = 0 (cf. equation (168)), and in

turn 1/Mvp = −〈trQ〉p = 0. Therefore, our model au-

tomatically accounts for the mutual influence of time

pressures’ variations due to structure’s deformations.

The second rank tensor φnI−〈C : Q〉p that appears

in (154) has the same functional form as its standard

poroelastic counterpart (see, e.g. [13] and relationship

(15)). In order to highlight its physical meaning, we

specialize the term (φnI− 〈C : Q〉p) : ∇xu̇ that appear

in (154) in the case of macroscale isotropy, obtaining

(φnI− 〈C : Q〉p) : ∇xu̇ = αv∇xu̇
(0), (160)

where

αv = φn −
1

3
tr 〈C : Q〉p . (161)

The coefficient αv is an effective Biot’s coefficient re-

lating fluid network volume and solid variations, as it

represents the ratio of network fluid volume variations

to solid volume variations for constant pressures and

up to fluid extravasation. Its anisotropic counterpart is

represented by the second rank tensor φnI−〈C : Q〉p. As

for the coefficient Mv, αv is in general different from one

also when assuming that the solid phase is intrinsically

incompressible, as opposed to its classical counterpart,

as (C : Q), and in particular Q, is to be computed by

means of C (cf. cell problem (126-127)), which repre-

sents the elastic stiffness of the poroelastic material.

The form of equations (155-154) ensures that a poroe-

lastic mass balance of the type (10) is reached with re-

spect to the macroscopic relative fluid velocity averaged

over the whole domain (i.e. the sum of the average of the

interstitial and fluid network velocities. The latter reads

as the exact counterpart of relationship (14) whenever

incompressibility of the solid phase is assumed, as in

this case, the solid and fluid phases are intrinsically in-

compressible. We comment and justify these statements

below.

6.4 Global mass conservation for the vascularized

poroelastic material

We now show that a global mass conservation rela-

tionship of poroelastic-type holds for the vascularized

poroelastic material. We sum equations (155) and (154)

obtaining

φp
M̄
ṗ(0)p = −∇x ·wvp − (α̃φp + φn)∇x · u̇(0), (162)

where we defined the global fluid velocity in the vascu-

larized poroelastic material as

wvp =
〈
w(0)
p

〉
p

+
〈
w(0)
n

〉
n
, (163)

which has the same form as its analogous for a standard

poroelastic material (cf. (10)) in terms of the global

fluid velocity (163). Whenever the elastic phase is in-

trinsically incompressible, we then obtain the mass con-

servation constraint for the vascularized poroelastic ma-

terial as a perfect balance of interstitial fluid, network

fluid, and solid variations of volumes, as follows

φn∇x ·
〈
v
(0)
n

〉
n

+ φφp∇x ·
〈
v
(0)
p

〉
p
+

(1− φn − φφp)∇x · u̇(0) = 0, (164)

where we have enforced incompressibility of the solid

matrix (α̃ = 1 and M̄ → +∞), and have exploited back

the definitions of the network and interstitial relative

fluid velocities (106) and (9), respectively, together with

the specific average operators (59) and porosity defini-

tions (61). The constraint (164) represents the global
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mass conservation constraint when the three phases in-

teracting in the medium are intrinsically incompress-

ible. The volume fraction φφp represents the ratio be-

tween the volume of interstitial fluid flowing in the

pores and the volume of the whole vascularized poroe-

lastic material.

6.5 Comparison with the double porosity model

derived in [34, 41]

We now show that the double porosity model derived in

[41] and recovered as a particular case (for macroscop-

ically uniform structures and purely Newtonian blood

flow) in [34] coincides with our system of PDEs given

by (154-157), for p
(0)
p , p

(0)
n ,

〈
w(0)
p

〉
p
,
〈
w(0)
n

〉
n
, when

the solid matrix comprising the porous compartment is

rigid. In this case, for every l = 0, 1, ..., u(l) = 0. In

particular,

u(0) = 0, (165)

that implies

w(0)
p = φv(0)p , (166)

and

w(0)
n = v(0)n (167)

according to definitions (9) and (106), respectively. Since

also u(1) = 0, we obtain

Q = 0, (168)

see (125), which also implies

C : Q = 0. (169)

Applying conditions (165-169) to equations (154-157)

we obtain, accounting for the specific averages (cf. def-

initions (59)):

−∇x ·
〈
v
(0)
n

〉
n

=
|Γ |L̄p
|Ωn|

(p(0)n − p(0)p ) (170)

−∇x ·
〈
φv

(0)
p

〉
p

=
|Γ |L̄p
|Ωp|

(p(0)p − p(0)n ) (171)〈
v
(0)
n

〉
n

= −K̃∇xp
(0)
n (172)〈

φv
(0)
p

〉
p

= −G̃∇xp
(0)
p . (173)

The model in terms of pressures p
(0)
p , p

(0)
n only reads,

substituting (172-173) into (170-171):


∇x ·

(
K̃∇xp

(0)
n

)
=
|Γ |L̄p
|Ωn|

(p(0)n − p(0)p ) (174)

∇x ·
(
G̃∇xp

(0)
p

)
=
|Γ |L̄p
|Ωp|

(p(0)p − p(0)n ). (175)

The double porosity model (174-175), with Darcy’s ve-

locities given by (172-173) and specific interstitial and

network hydraulic conductivities defined by (104) and

(122), respectively, exactly coincides, up to the nota-

tion5 with the system of PDEs derived in [41] and ob-

tained as a special case of [34] for the capillary and in-

terstitial blood pressures and velocities in vascularized,

rigid tumors.

Our model (153-157) for vascularized poroelastic ma-

terials therefore reads as the generalization of the dou-

ble porosity model [41] to deformable solid structures.

Remark 7 (Vascularized tumors) In the context of tu-

mor modeling, our new system of PDEs describes the

macroscopic behavior of a vascularized deformable tu-

mor mass with blood leakage from the vessels walls to

the tumor mass. The model accounts for the depen-

dency of both the pore (interstitial) and vascular pres-

sures (as well as the corresponding velocities) on the

complex interplay between tumor strains (potentially

also for an intrinsically compressible elastic phase), blood

extravasation, and microstructural properties of the blood

vessels’ network. The role and relative importance of

the latter phenomena on the time-dependent pressures

and velocities profiles can help in elucidating implica-

tions on drug delivery, providing novel hints for the de-

signed of improved anti-cancer therapies based on in-

formed injection conditions, thus extending the analysis

carried out in [30]. In the latter work, the implications

of tumor strains on the vascular pressure drop (which is

assumed to drive drug delivery) is analyzed via a stan-

dard biphasic (i.e. the solid and interstitial fluid phase

in the pores are assumed intrinsically incompressible)

model for the porous compartment, whereas the mi-

crovasculature merely plays the role of a source term

for the interstitial compartment. The role of the mi-

crostructural properties of the network, as well as that

of spatio-temporal variations of the vascular pressure

(which is assumed to be constant), are neglected. 2

5 See Section 4.3.1, pages 24-25, [34], and the model (4.100-
4.103) therein, which is in turn proved to be equivalent to eqs.

(54), (56), (70), (75) in [41]. In [34], the quantities K̃, G̃, pp,
vn, φvp, |Ωp|, |Γ | are denoted by K, E, pt, un, ut, |Ωt|, S,
respectively. Both in [41] and [34], only specific averages are
used, and they are denoted as we denote non-specific aver-
ages, i.e. 〈 r〉k.
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In the next section, we conclude our manuscript

summarizing the results and highlighting further per-

spectives.

7 Conclusions

We have presented a novel model that describes the

behavior of vascularized poroelastic materials, i.e. de-

formable porous solids encoding a network of vessels

or channels. These media represent real-world physical

systems, such as vascularized tumors, hard biological

tissues (e.g. bone and tendons), and fractured porous

rocks. We have considered the (non-dimensional) fluid-

structure interaction problem between an isotropic and

homogeneous Biot’s poroelastic compartment (30-33)

and an incompressible Newtonian fluid network phase

(34-36), in a quasi-static setting and in absence of body

forces. The two compartments are coupled via the in-

terface conditions (37-40), that arise from global con-

servation of momentum and fluid mass, slip of fluid over

a porous surface and transport of fluid across the inter-

face between the network and the porous interstitium.

Next, we have enforced the length scale separation be-

tween the intervessels’ distance (microscale) and the av-

erage medium size (macroscale) to apply the asymptotic

homogenization technique and derive the new model

(153-157). The results are systematically derived in sec-

tion 5 and discussed in section 6.

The functional form of these equations is different

from previously adopted, perfectly symmetric, double

poroelastic phenomenological models (see, e.g., [2]), and

it explicitly accounts for the mutual influence of the

time variations of the pressures due to deformations of

the porous matrix. Although the resulting anisotropic

model can be formally regarded as double-poroelastic,

it posesses specific peculiarities and coefficients that

mathematically arise from the upscaling process, and

physically account for the different influence of elas-

tic deformations on the (pore) interstitial and network

fluid phases, in a globally mass conserving setting.(cf.

equations (162) and constraint (164) for intrinsically

incompressible phases.)

The homogenized double poroelastic model (153-

157) accounts for a large variety of physical phenomena

at a reduced computational cost, as it is a linear system

of PDEs to be solved on the macroscopic domain ΩH ,

where microscale variations are smoothed out, see Fig-

ure 1. Nevertheless, information on the microstructure

is encoded in the coefficients of the model, which are

to be computed solving classical periodic cell problem

solely on the microscale.

We have derived the model under a number of sim-

plifying assumptions, although we have employed most

of them to avoid complicating the notation and better

highlight the physical significance of the model.

Our results can be readily generalized to linearized

inertia and body forces in both the fluid network and

the poroelastic compartment, as these contributions would

appear in the stress balance equation (153) only as ap-

propriate leading order time variations and body forces

(similarly to [13]), but would neither modify the struc-

ture of the model’s coefficients, nor the constitutive re-

lationship (144) that dictates the mechanical response

of the material. Following [13], compressibility of the

fluid phases could be achieved introducing the fluid bulk

modulus (thus admitting that Biot’s modulus M also

depends on the latter).

We have assumed that the poroelastic phase is ho-

mogeneous and that the fluid viscosity is constant. The

poroelastic coefficients depend on the pore scale struc-

ture and geometry, as well as on the elasticity tensor of

the solid comprising matrix; since these coefficients can

be considered averaged on such a pore scale, they can

exhibit inhomogeneities only if the latter are encoded

in the elastic phase stiffness tensor and are relevant on

the scale of the whole poroelastic compartment [13].

These variations can, in turn, be relevant both on the

microscale and on the macroscale in our current formu-

lation, as both these scales are much larger than the

pore scale. Thus, our model can be generalized admit-

ting that every parameter is inhomogeneous (as each of

them retains a dependency on the solid elastic matrix).

Macroscale variations of the poroelastic coefficients

would not formally affect any of the results presented

here. The cell problems (126-127) and (128-129), and,

in turn, the poroelastic coefficients, would retain a para-

metric dependence on the macroscale. As a consequence,

the solution of the macroscale model would require the

solution of these cell problem for each macroscale point,

i.e., the computational cost would greatly increase. This

argument also applies to the fluid network cell prob-

lem (113-116 when macroscale variations of the vis-

cosity are permitted, as in [34]. This issue also arises

when the structure is not macroscopically uniform (i.e.

when macroscale variations of the microscale geometry

are permitted) and suitable strategies are emerging in

the literature to minimize the computational effort, see,

e.g., [15].

Microscale variations of the coefficients would not

result in an increase of the computational cost, although

the structure of the cell problems would be affected by

such changes. In particular, the standard volume force

term accounting for microscale variations of the poroe-

lastic stiffness tensor would appear on the right hand

side of cell problem (128-129), whereas a new elastic-

type cell problem would arise as a consequence of mi-
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croscale variations of the Biot coefficient. Furthermore,

variations of the latter would be required to satisfy the

compatibility condition (91). We believe that the in-

vestigation of the effects of local inhomogeneities could

be an interesting further development of the present

model, at the time realistic variations of the elastic stiff-

ness of the solid matrix are experimentally provided.

According to remark 2, the model can be readily

generalized to anisotropic poroelastic compartments.

Since experimental values of anisotropic poroelastic pa-

rameters are rarely provided in the literature, this ex-

tension would be particularly interesting whenever also

the pore scale geometry is known. According to the lat-

ter scenario, the generalization of our main result (153-

157) would read as a three scale model (macroscale, mi-

croscale, pore scale), as the effective coefficients would

retain both the information on the microscale and on

the pore scale explicitly, the latter being encoded in

the input poroelastic parameters as shown in [13, 27].

An interesting alternative approach to account for the

three scale explicitly relies on the so called reiterated

homogenization, see, e.g. [28] as an example of appli-

cation concerning poroelastic materials. In this case, it

is not necessary to embrace effective mechanical mod-

els (such as poroelasticity) as a starting point, as two

local variables are introduced to account explicitly for

the length scale separation among the three scales in-

volved in the problem. It would be an interesting task

to derive an homogenized model for vascularized poroe-

lastic materials via this approach (and compare results

on cases of practical interest), and the challenge would

reside in accounting for transport of fluid from the ves-

sels walls, which can be more naturally handled starting

from a fluid-structure interaction problem on the phys-

ical scale.

Our new model is further open to improvements in

a number of areas. From a theoretical standpoint, the

extension of such a model to growing poroelastic struc-

ture ([35]), as well transport of passive scalars, such

as macromolecule drugs and nanoparticles (see, e.g.,

[34, 45, 46]) would represent challenging extensions to

the model, that could be extremely relevant to sev-

eral real-world physical systems, such as vascularized

tumors.

Finally, the next natural step is to compare model

predictions obtained via prescribed realistic geometries

against experimental data related to an actual vascu-

larized poroelastic material. This will not only enable

model validation (via comparison against experimen-

tal data), but could highlight the interplay between the

vessels’ microstructure and the fluid transport in a de-

forming structure.

In the case of vascularized tumors, predictions from

our model could elucidate the role of the microvascular

structure on the spatio-temporal pressures’ profile and

suggest optimized injection conditions for anti-cancer

therapies that rely on drug advection.
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