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The immune system has long been known to play a critical role in the body’s defence against
cancer, and there have been multiple attempts to harness it for therapeutic gain. Renal
cancer was, historically, one of a small number of tumour types where immune manipulation
had been shown to be effective. The current generation of immune checkpoint inhibitors are
rapidly entering into routine clinical practice in the management of a number of tumour types,
including renal cancer, where one drug, nivolumab, an anti-programmed death-1 (PD-1)
monoclonal antibody (mAb), is licensed for patients who have progressed on prior systemic
treatment. Ongoing trials aim to maximize the benefits that can be gained from this new
class of drug by exploring optimal timing in the natural course of the disease as well as
combinations with other checkpoint inhibitors and drugs from different classes.

Introduction
Renal cell cancer (RCC) accounts for 2–3% of all the adult cancers [1]. The incidence of RCC has been
steadily rising since the 1970s; with current U.K. incidence calculated to be 20 cases per 100000 indi-
viduals per year. In parallel, the 5-year survival rate has improved, likely as a consequence of superior
surgical and medical therapeutic options along with increased detection of earlier stage tumours [2,3].
With increasing use of cross-sectional imaging, incidentally detected RCC now represents half of all the
newly diagnosed RCC cases [4]. Despite these developments, a third of patients still present with locally
advanced or metastatic disease and a quarter of those who present with resectable, organ-confined disease
will subsequently progress to metastatic disease [5,6]. The median time to relapse post-surgical resection
for local disease is 1.9 years [7]. RCC, therefore, still has a poor prognosis with 5-year survival rates for
patients with locoregional and metastatic disease of 53% and 8% respectively [8,9].

Until recently, treatment options for metastatic RCC (mRCC) were limited, as it was characteristically
resistant to hormonal therapy, radiotherapy and chemotherapy [10,11]. In the 1980s, multiple cytotoxic
chemotherapy agents were assessed and found to have only marginal antitumour activity of less than
5–10% [12]. Over the past 20 years, significant advances have been made through greater insights into the
biology of RCC and identification of drug targets such as vascular endothelial growth factor (VEGF); a
key mediator in angiogenesis, platelet-derived growth factor (PDGF) and mammalian target of rapamycin
(mTOR). Standard of care therapies now include orally available, multitargeted tyrosine kinase inhibitors
(TKIs) such as sunitinib, pazopanib, axitinib and cabozantinib, and the mTOR inhibitors: everolimus and
temsirolimus [13,14]. While these treatments have improved palliative outcomes, they are limited by both
innate and acquired resistance which typically occurs within the first year of treatment [15]. Durable and
complete responses (CRs) to these targeted therapies are rare and, therefore, re-exploration of the role of
immunotherapy in this difficult-to-treat disease was necessary (Figure 1).

RCC has, historically, been recognized as an immune-regulated disease. Renal tumours are rich in im-
mune infiltrates and rarely observed spontaneous regression is thought to be mediated by immune pro-
cesses [16,17]. Prior to the advent of TKIs, immunotherapy with the cytokines interferon-α (IFN-α) and
interleukin-2 (IL-2) were widely used palliative treatments despite modest efficacy and high burden of
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Figure 1. Immune checkpoints and immune checkpoint inhibitors in RCC

Recognition of tumour cells and APCs via MHC–antigen interactions with TCRs activates T cells. IFN-γ released from T cells

results in up-regulation of PD-L1 expression. PD-1 is expressed on activated T cells and on interaction with PD-L1 on tumour

cells or APCs results in inhibition of T cell antitumour response. CTLA-4 is expressed on T cells and on interaction with its ligands

CD80/CD86 on APCs, T-cell proliferation and T-cell effector function is reduced. CD28 is a co-stimulatory T-cell molecule, which has

a lower affinity than CTLA-4 for their shared ligands; CD80/CD86. Blockade of PD-1, PD-L1 and CTLA-4 with mAbs stimulates an

enhanced antitumour response and has shown efficacy in aRCC. Abbreviations: aRCC, advanced renal cell cancer; APC, antigen

presenting cell; CD28, cluster of differentiation 28; CD80, cluster of differentiation 80; CD86, cluster of differentiation 86; CTLA-4,

cytotoxic T lymphocyte associated protein 4; IFN-γ, interferon-γ; IFN-γR, interferon-γ receptor; mAb, monoclonal antibody; PD-1,

programmed death-1; PD-L1, programmed death ligand 1; TCR, T-cell receptor.

toxicity [15,18,19]. Therefore, when relatively more tolerable immunotherapies in the form of immune checkpoint
inhibitors were developed, mRCC was one of the first solid tumours to be tested in clinical trials.

Immune checkpoint inhibitors account for the majority of immunotherapies in use today: with cytotoxic T lympho-
cyte (CTL) associated protein 4 (CTLA-4), programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) the
principal drug targets [20]. Tumour-associated PD-L1 expression has been detected in RCC and is associated with
a worse prognosis. Nivolumab, a PD-1 inhibitor, has received marketing authorization by, among other regulatory
authorities, the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) in the metastatic
setting [21].

In this review, we will discuss pertinent background of immunotherapy in renal cancer, including IFN- α and
IL-2 treatment, the biology of immune checkpoint pathways and evidence relating to current immune-checkpoint
inhibitors with respect to RCC. We will conclude with some potential future developments including novel combina-
tions and attempts to find the optimal position of immunotherapy in the disease pathway. With this shift in paradigm
to reincorporation of immunotherapy in the treatment of mRCC, the sequencing and combining of treatments will
also need to be explored.
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RCC
RCC is a heterogeneous disease with several histologic and molecular subtypes [22]. Subtype differentiation is an
important consideration when selecting treatment as each type can indicate a very different prognoses and responses
to therapy.

Clear cell RCC (ccRCC) represents the major histological subtype, accounting for approximately 75% of RCC
and is often specified in the inclusion criteria for large clinical trials. ccRCC is characterized by loss of function
of von Hippel–Lindau (VHL), a tumour suppressor gene. VHL is mutated in most hereditary ccRCC and in 52%
of sporadic ccRCC [23]. VHL plays a central role in the oxygen-sensing pathway, targeting hypoxia-inducible factor
(HIF) for degradation [24]. Mutationally inactivated VHL therefore results in intracellular accumulation of HIF and,
consequently, activation of downstream pathways involved in hypoxia signalling including the production of VEGF,
which stimulates angiogenesis, cell growth and survival. Other important somatic mutations found in ccRCC include
PBMR1 (40%), SETD2 (15%) and BAP1 (15%), which are involved in chromatin remodelling histone methylation
[23].

Non-ccRCC (nccRCC) includes two major histological subtypes, papillary RCC (type 1 and type 2) representing
10% of all RCCs and chromophobe RCC (accounting for 5% of all RCCs) [25,26], and a group of rarer histologies
including collecting duct carcinoma, renal medullary carcinoma and translocation carcinoma (each approximately
1%) [23,26]. Sporadic type 1 papillary RCCs are typically present as multifocal tumours, yet demonstrate slower
growth rates and metastatic potential comparative to ccRCC [27]. Type 1 papillary RCCs are closely associated with
mutations in the met oncogene (c-Met.) On the other hand, type 2 papillary RCCs follow a more aggressive course,
with greater metastatic potential and worse prognosis. Type 2 papillary tumours characteristically have alterations in
the NRF2-antioxidant response element [28]. Chromophobe RCCs harbour a fairly indolent behaviour and will only
rarely metastasize, with mutations found in TP53 (32% of cases) and phosphatase and tensin homologue (PTEN)
(9% of cases) [29]. Mutations in the mTOR pathway have been found in chromophobe tumours (23% of cases) [30].
The collecting duct subtype is histologically and genetically similar to urothelial tumours of the upper tract. This
subtype is highly aggressive, metastasizes early, and has poor response to treatment and poor prognosis. Collecting
duct tumours have been associated with loss of expression of the cyclin-dependent kinase CDKN2A and SMARCB1
(INI1), a component of chromatin remodelling complex [31].

The Memorial Sloan Kettering Cancer Center (MSKCC) developed a prognostic model based on the findings
from early immunotherapy clinical trials, which has been validated in the current era of TKIs. This includes five
factors: poor performance status, high serum lactate dehydrogenase (LDH), high serum calcium, low haemoglobin
and less than 1-year interval from diagnosis to treatment. Patients with none of these risk factors were defined as
favourable-risk, those with one or two factors as intermediate-risk and those with three or more as poor-risk. The
median survival for these groups was 30, 14 and 5 months respectively (P<0.001) [19]. The International Metastatic
Renal Cell Carcinoma Database Consortium expanded the criteria for patients who had received VEGF-targeted
therapies. They included four of the original five, replacing high LDH with high neutrophil count and high platelet
count [32-34]. In 2013, Heng et al. [33] reported an extended validation study of over 1000 patients where median
survival was 43, 22 and 8 months respectively in the favourable-, intermediate- and poor-risk groups respectively.

Treatment selection was based upon histological subtype, prognostic group and patient specific factors such as
prior treatments, co-morbidities and treatment-specific toxicities.

Cytokine immunotherapy in RCC
The cytokines IFN-α and IL-2 were at one stage the only systemic therapies to demonstrate significant clinical benefit
in metastatic renal cancer. Routine use ceased owing to their high toxicity and the arrival of TKIs such as sunitinib
and pazopanib.

IFN-α
IFN-α is a pleiotropic cytokine with immunomodulatory, antiviral, antiproliferative and anti-angiogenic properties
which can induce the differentiation of monocytes into highly activated dendritic cells (DCs.) These DCs (IFN-DCs)
are particularly effective in recognizing complex antigens and inducing T- and B-cell immunity and thus participate
in the generation of antitumour T-cell immunity [35].

In 1993, Minasian et al. [125] reported an overall response rate (ORR) of 10% in 159 patients with mRCC treated
with IFN-α. The median duration of response (DOR) was 12.2 months and the median overall survival (OS) was
11.4 months. Subsequent studies have reported ORRs at approximately 15% (range: 0–29%) [36]. A survival benefit
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was demonstrated in a randomized phase III trial comparing INF-α plus vinblastine with vinblastine monother-
apy (median OS: 67.6 and 37.8 weeks respectively (P=0.0049)) [37]. IFN therapy was often poorly tolerated with
influenza-like side effects including fatigue, fever, chills, myalgia and depression being common and often dose lim-
iting [38].

IL-2
IL-2 is a naturally occurring cytokine, which plays a central and multifaceted role in the immune system [39]. IL-2
was first identified in 1976 as a T-cell growth factor, a 15-kDa glycoprotein produced primarily by T-helper cells,
demonstrated to have potent capacity to enhance in vitro T-cell proliferation and differentiation [40]. Ligation of
IL-2 with the IL-2 receptor, which is normally highly expressed on activated T cells, results in proliferation and dif-
ferentiation of B and T cells and stimulation of a cascade of cytokines, including various interleukins, interferons and
tumour necrosis factors (TNFs) [12]. The anti-tumour effect of IL-2 is mediated by its ability to cause proliferation of
natural killer cells (NK), lymphokine-activated killer cells (LAK) and other cytotoxic cells [12]. IL-2 receptor activa-
tion initiates signal transduction through the Janus kinase 3 (JAK3), signal transduction activator of transcription 5
(STAT5), mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways. Activation
of these pathways effects gene expression altering cellular growth, death and immune function. While IL-2 is required
to mount and sustain adaptive T-cell responses, it is now also understood that it plays a critical role in immune reg-
ulation via its effects on regulatory T cells (Treg cells) [39].

In 2000, Fisher et al. [41] reported long-term survival results for high dose (HD) IL-2 treatment in 255 patients
with mRCC treated in seven phase II clinical trials. Recombinant IL-2 600000 or 720000 IU/kg was administered by
15-min intravenous infusion every 8 h for up to 14 consecutive doses over 5 days as clinically tolerated with maximal
support. A second cycle of treatment was scheduled after 5–9 days of break from treatment, and courses could be
repeated every 6–12 weeks in stable or responding patients. ORR was 15% with 7% experiencing CR. Median response
duration for all objective responders was 54 months (range: 3 to >131 months). Klapper et al. [18] reported an analysis
of 259 mRCC patients treated with HD IL-2 alone between 1986 and 2006. ORR was 20% with 8.8% experiencing CR.
At the time of last follow-up, all partial responders had developed disease progression but only 4 out of 23 complete
responders had experienced disease recurrence. A lower MSKCC prognostic factor score (P=0.02) was found to be
the variable most associated with response [18]. In a retrospective analysis of pathology specimens obtained from
163 patients who had received IL-2 therapy, the response rate to IL-2 was 21% for patients with ccRCC histology
compared with 6% for patients with nccRCC histology [42].

HD IL-2 received FDA approval for mRCC based upon results reporting durable responses [41]. Unfortunately, the
major limitation of HD IL-2 was the high incidence of severe toxicity. Grades 3/4 toxicities developed in most patients
treated with HD IL-2 and approximately 4% of patients died of treatment-related toxicity. The most common toxicities
resembled the symptoms of septic shock, including hypotension, which occurred in 96% of patients (grades 3/4, 74%)
[5]. HD IL-2 could therefore only be administered in hospitals which could provide the appropriate level of medical
care to support these severe cardiovascular toxicities [15].

In attempt to circumvent this issue, several clinical trials were performed investigating variable IL-2 regimens in-
volving lower doses either alone or in combination with interferon but failed to show comparable activity [43]. In an
attempt to improve the therapeutic index of IL-2, the Cytokine Working Group (CWG) designed and conducted the
HD IL-2 “Select” trial. The primary objective of this prospective study was to evaluate whether they could identify a
group of patients with advanced RCC and “good” predictive features who were significantly more likely to respond to
HD IL-2 than a historical, unselected patient population [44,45]. The trial failed to validate the proposed new tool or
other potential predictive biomarkers such as carbonic anhydrase IX (CAIX), SNP status, plasma VEGF or fibronectin
levels. The trial did, however, report durable remissions and prolonged survival in both “good” and “poor-risk” pa-
tients, which exceeded historical results: independently assessed ORR was 25% including 3 (2.5%) CRs among 120
patients. Thirteen (11%) remained progression free at 3 years and the median OS was 42.8 months. In addition, tu-
mour PD-L1 expression by immunohistochemistry (IHC) appeared to warrant future investigation. Through gene
expression profiling of tumour specimens, Pantuck et al. [46] were able to identify a set of 73 genes whose expres-
sion distinguished complete responders from non-responders after IL-2 therapy. Complete responders to IL-2 were
reported to have a signature gene and protein expression pattern that included CAIX, PTEN and chemokine C-X-C
receptor 4 (CXCR4) [46].
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Immune checkpoint pathways
Immune checkpoints consist of multiple co-stimulatory and inhibitory interactions, which sustain self-tolerance and
modulate physiological immune responses. The amplitude, duration and quality of a response are initiated through
antigen recognition by the T-cell receptor (TCR), then ligand–receptor interactions [20]. This modulation is to op-
timize targeting of unwanted cells and the preservation of normal tissue (i.e. to inhibit autoimmunity). Immune
checkpoint pathways such as PD-1/PD-L1 and CD28/CTLA-4 are co-opted by cancer, resulting in altered expression
of proteins to assist in the masking of cancer cells from immune surveillance and thus to evade immune destruction
[47,48].

Cancer cells and immune cells mutually influence each other, allowing cancer to escape immunosurveillance and
immune attack. The equilibrium between tumour and immune system is complex with immune checkpoint exploita-
tion is only one mechanism of many. Intrinsic mechanisms in tumour cells, such as down-regulation of MHC class I
and II molecules and/or tumour-associated antigens (TAAs), result in reduced presentation and subsequent targeting
by immune effector mechanisms [49]. Cancer cells also secrete immunosuppressive cytokines such as interleukin-10
(IL-10) and transforming growth factor-β (TGFβ) [50,51]. Furthermore, tumour infiltration by tumour-associated
macrophages (TAMs) and Tregs has been correlated with reduced survival. It is hypothesized that TAMs may drive
the infiltrating T cells towards a more regulated phenotype at the expense of protective effector functions [52].

T cells have several antitumour competencies: they can recognize peptides on the surface of cellular compartments
and kill antigen-expressing cells (by CD8+ effector T cells, also known as CTLs) and co-ordinate complex immune
interactions (by CD4+ helper T cells) [48,53]. Agents targeting the immune checkpoint pathways therefore aim to
amplify the antigen-specific T-cell responses. In general, it is soluble and membrane-bound receptor–ligand immune
checkpoints that are the most suitable targets for drug delivery – with agonist antibodies for co-stimulatory pathways
or antagonist antibodies for inhibitory pathways [47]. An important consideration is that, in comparison with most
oncological antibodies, many immune checkpoint targeting agents target lymphocyte receptors or ligands to augment
endogenous antitumour activity rather than targeting tumour cells directly. This may have important implications for
acquired drug resistance.

The CD28/CTLA-4 system
In 1996, Leach et al. [54] made the pivotal observation that blocking CTLA-4 could mediate tumour regression in
murine models. This work led to the development of anti-CTLA-4 antibodies, which have become a standard of care
for metastatic melanoma [55,56]. CTLA-4 is an inhibitory receptor expressed exclusively on T cells (both CD4+ helper
T cells and CD8+ cytotoxic T cells). CTLA-4 is predominantly expressed on CD4+ helper cells; therefore enhanced
CD8+ responses in anti-CTLA-4 treated patients are likely to be an indirect effect related to activation of CD4+ cells
[57]. In cancer, CTLA-4/CD28 engagement down-modulates helper T-cell activity and enhances Tregs immunosup-
pressive activity [58]. In vivo studies with CTLA-4-deficient mice have shown that they develop profound autoimmu-
nity and succumb to lymphoproliferative disease by 4 weeks of age [59,60]. In humans, CTLA-4 gene polymorphisms
have been associated with the onset of several autoimmune conditions including autoimmune hypothyroidism and
type 1 diabetes [61]. CTLA-4 inhibition has two main actions – inhibition of peripheral T-cell tolerance resulting in
autoimmunity and activation of antitumour immunity [47].

CTLA-4s main ligands CD80 and CD86 are expressed on antigen-presenting cells (APCs) (such as DCs and mono-
cytes) but not on non-haematologic tumour cells. Given the location of ligand expression, the suppression of anti-
tumour immunity by CTLA-4 is therefore considered to act, principally, in secondary lymphoid organs where T-cell
activation occurs [20]. Studies have also reported a possible direct inhibitory role of CTLA-4 on CD8+ T cells [57].
CTLA-4 also engages with the TCR ‘stop signal’, supporting the maintenance of the immunological synapse to allow
serial interactions between TCRs and APCs [62]. Näıve and resting memory T cells express CD28 but not CTLA-4.
At antigen recognition, CTLA-4 will however be quickly transported to the cell membrane from intracellular stores
to allow negative feedback. This usually occurs within an hour after antigen recognition [20]. CTLA-4 has also been
reported to enhance the suppressive action of Treg cells. Treg cells are focused in tumour tissues and inhibit effector
T-cell activity thus inhibit antitumour immunity locally [20,63].

In humans, anti-CTLA-4 therapy activates expression of stimulatory markers on T cells and can result in inflamma-
tory side effects. The fully human IgG1 anti-CTLA-4 monoclonal antibody (mAb) ipilimumab (Bristol-Myers Squibb)
and tremelimumab (AstraZeneca/MedImmune), a fully human IgG2 anti-CTLA-4 mAb are the leading CTLA-4 tar-
geted immune checkpoint inhibitors [55,64]. Ipilimumab received US-FDA and EMA’s approval in 2011 for advanced,
unresectable melanoma where it is now established as a standard of care.
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The PD-L1/PD-1 system
PD-L1 is highly expressed in tumour cells and tumour-infiltrating lymphocytes (TILs) within the tumour microen-
vironment [65]. In renal cancer, PD-L1 (also known as B7-H1, CD274) expression on either tumour cells or TILs
in primary tumours correlates with a worse prognosis, with reduced OS compared with PD-L1 negative tumours
[66-68]. PD-L1 seems to be the major ligand in solid tumours and PD-1’s alternative ligand, PD-L2, within subsets
of B-cell lymphoma [69,70]. PD-1 is expressed more diffusely than CTLA-4, being present on other, activated, non
T-lymphocyte subsets, such as B cells and NK cells, reducing their lytic capacity. As with CTLA-4, PD-1 is not present
on resting naı̈ve or memory T cells, yet is expressed at antigen recognition and TCR engagement [71]. PD-1 expres-
sion on activated T cells takes longer to surface than CTLA-4 as it requires transcriptional activation, usually taking
approximately 6–12 h. Chronic antigen exposure can produce persistently elevated PD-1 expression that culminates
in an exhausted antigen-specific T-cell colony. This state has been reported in both mice and humans and found to
be partially reversible with PD1 pathway blockade [72]. Mouse models with knockout of PD-1 and its known ligands
result in mild phenotypes, with organ-specific inflammation, which is a stark contrast with the CTLA-4 knockout
models where death occurs by 4 weeks of age [73].

PD-1 has a pivotal physiological role in T-cell inhibition in the peripheral tissues during inflammatory reactions,
therefore reducing autoimmunity and ‘collateral damage’. With up-regulation of PD-1 and PD-L1 expression in can-
cerous tissues, tumours develop an immune resistant phenotype within the tumour microenvironment. There are
several processes, including adaptive immune resistance, which involves enhanced ligation of PD-L1 to PD-1 on
antigen-specific CD8+ T cells, which inhibit cytotoxic activity against cells presenting tumour antigens. PD-1 activa-
tion directly inhibits TCR-mediated effects and increases T-cell migration within tissues, thus reducing the time that
a T cell has to evaluate the surface of cells for the presence of MHC–peptide epitopes. With reduced time for sur-
veying, T cells may fail to identify cells expressing lower levels of MHC–peptide complexes – thus cancer cells could
evade immune surveillance and immune destruction. PD-1 signalling exerts major effects on cytokine production by
T cells, inhibiting production of interferon-γ (IFN-γ), TNF-α and IL-2 [74]. PD-1 can also inhibit T-cell proliferation
and inhibit the up-regulation of Bcl-xL, an anti-apoptotic protein.

PD-L1 and PD-L2 are expressed by tumour cells and infiltrating leucocytes within the tumour microenvironment.
PD-L1 is expressed on haematopoietic cells and epithelial cells – stimulated by IFN-γ, the inflammatory cytokine,
which is produced by activated T and NK cells [74]. PD-L2 is expressed on activated DCs and some macrophages.
PD-L2 expression is induced by interleukin-4 (IL-4) and to a lesser extent by IFN-γ [69].

Targeted therapies against PD-1 receptor and its ligand PD-L1 have demonstrated impressive response rates with
minimal toxicity in several solid malignancies [66]. Early exploratory studies found that melanoma, ovarian and lung
cancer biopsies had high PD-L1 expression levels and multiple other solid tumours have subsequently been found
to have up-regulated expression. Two mechanisms are understood to account for PD-L1 up-regulation: innate or
tumour cell intrinsic and adaptive immune resistance, which can coexist in a single tumour microenvironment [48].

There are a number of drugs targeting either PD-1 or PD-L1. Notably, nivolumab and pembrolizumab (anti-PD-1)
are licensed to treat a number of tumour types including non-small-cell lung cancer (NSCLC), melanoma, head and
neck cancer, urothelial bladder cancer, RCC and Hodgkin’s lymphoma. Atezolizumab (anti-PD-L1) is licensed in the
treatment of advanced urothelial cancer. In addition, avelumab and durvalumab (anti-PD-L1) are in late-stage clinical
development in a number of indications [75].

Radiological response – immune-related response evaluation criteria in
solid tumours
In contrast with chemotherapy and TKIs, responses to CTLA-4 inhibitors and similarly, to PD-1/PD-L1 inhibitors
may be delayed (can be up to 6 months after treatment) [20]. Radiologically, tumour sites have been observed to
increase in size prior to regression. This is presumed to be due to initial immune infiltration causing early tumour
swelling. This phenomenon has been termed as pseudoprogression [76]. Given these fluctuations, an immune-related
Response Evaluation Criteria in Solid Tumours (ir-RECIST) has been developed to create a uniform approach to
response/progression assessment with these drugs [77].

Immune-related adverse events
Immune checkpoint inhibitors are also associated with a spectrum of treatment related adverse events (AEs), which
differs from that seen in other classes of drug. An augmented immune response driven by T-cell activation can result
in potential autoimmune-related inflammation of normal tissues. The most common AEs are fatigue, rash, nausea,
pruritus and diarrhoea [78]. Less common events include hepatitis, colitis, pneumonitis, nephritis, endocrinopathies
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Table 1 Single agent anti-PD-1, anti-PD-L1 and anti-CTLA-4 studies in aRCC

Trial Trial summary

Number of
patients
(RCC)

Dose of trial
drug ORR (%)

Median
progression-
free survival
(PFS) (months)

Median OS
(months)

Immune-related
G3/4 toxicities

Nivolumab (fully human IgG4 anti-PD-1 mAb)

NCT00730639
McDermott et al.
[87]

Phase I study in patients with
advanced solid tumours with
a RCC cohort

296 (34) 1 mg/kg 24% NR All patients: 22.4;
4-year survival rate:
38%

18%

10 mg/kg 31%

Every 2 weeks

NCT01354431
Motzer et al. [82]

Phase II study in aRCC.
Patients randomly assigned in
one of three dose groups

168 (168) 0.3 mg/kg 20% 2.7 18.2 11% (n=19)

2 mg/kg 22% 4.0 25.5

10 mg/kg 20% 4.2 24.7

Every 3 weeks Four-year survival rate:
29%

Checkmate 025
NCT01668784
Motzer et al. [83]

Randomized, open-label
phase III study of nivolumab
compared with everolimus in
patients with aRCC who had
received ≥1 prior regime of
anti-angiogenic therapy

Nivolumab
(406)

3 mg/kg 25% 4.6 m 25 19% (76/406)

Every 2 weeks Improved health
related QoL

All G3/4 AEs 20%

Everolimus
(415)

10 mg OD 5% 4.4 19.6 (P=0.002) NR

All G3/4 AEs: 37%

Atezolizumab (human IgG1 anti-PD-L1 mAb)

NCT01374842
McDermott et al.
[88]

Phase Ia dose-escalation and
dose-expansion study with a
RCC cohort.

(70) 10, 15,
20mg/kg every
3 weeks

All G3/4 AEs: 17%

ccRCC 63 15% 5.6 28.9 4%

nccRCC 7 0% NR NR NR

BMS-936559, MDX-1105 (fully human IgG4 anti-PD-L1 mAb)

NCT0072966
Brahmer et al. [89]

Phase I dose-escalation and
dose-expansion study in
patients with advanced solid
tumours including an RCC
cohort

207 (17) 10 mg/kg 12% Stabilization of
disease at 24
weeks in 41%

NR All G3/4 AEs: 5%

Ipilimumab (fully human IgG1 anti-CTLA-4 mAb)

Yang et al. [86] Single institution, phase II
study of patients with mRCC.
Patients were allowed to have
had prior treatment with IL-2

Cohort A (21) 3 mg/kg loading 5% NR NR Both groups: 33%

Then 1 mg/kg Colitis: 28%

Every 3 weeks Hypophysitis: 5%

Cohort B (40) 3 mg/kg all
doses

12.5% NR NR

Every 3 weeks

Tremelimumab (fully human IgG2 anti-CTLA-4 mAb)

Ribas et al. [90] Phase I dose escalation study
of patients with advanced
melanoma, RCC or colorectal
cancer (CRC)

39 (4) MTD: 15 mg/kg NR NR NR

Abbreviations: MTD, maximum tolerated dose; NR, not reached.

(such as hypophysitis, hypo/hyperthyroidism) and neurological conditions such as Guillain–Barré syndrome (GBS)
[78]. Side effects are generally manageable with supportive measures and corticosteroids in some cases; they can,
however, rarely, be fatal. Patient and staff education is therefore crucial and a high index of suspicion regarding
immune-related AEs (irAEs) should be maintained for all the patients on immune checkpoint inhibitors.

Current evidence in RCC
Over recent years, a multitude of clinical trials has investigated immune checkpoint inhibitors, principally: PD-1,
PD-L1 and CTLA-4 mAbs. We summarize data in advanced RCC (aRCC) from pivotal trials in Table 1.

PD-1 pathway inhibitors
Nivolumab (Bristol-Myers Squibb; New York, NY, U.S.A.) is a fully human monoclonal IgG4 mAb that is specific for
PD-1 and has received FDA and EMA approval in NSCLC, RCC and head and neck cancers [79].
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The first in-human phase I study of nivolumab (MDX-1106/BMS-936558/ONO-4538) was conducted in 39 pa-
tients with advanced metastatic melanoma, colorectal cancer (CRC), castrate-resistant prostate cancer, NSCLC or
RCC. Brahmer et al. [80] published their findings from this in 2010 – demonstrating tumour responses in melanoma,
RCC and CRC and a favourable toxicity profile. In response to this, 296 patients with various solid malignancies,
including 34 patients with RCC, were enrolled in a phase I multiple-dose basket trial. Objective responses were
reported in 29% (10/34) of patients with RCC. Responses were seen at both doses of nivolumab explored in the
present study (1.0 and 10.0 mg/kg). Another nine patients (27%) had stable disease for 24 weeks or more. The me-
dian progression-free survival (PFS) for RCC patients in this trial was 7.3 months, with 1-year PFS rate of 35% and
2-year PFS rate of 12% [81].

In a subsequent phase II trial, 168 patients with progressive, advanced or metastatic ccRCC were randomized to
receive doses of 0.3 mg/kg (n=60), 2.0 mg/kg (n=54) or 10.0 mg/kg (n=54) of nivolumab every 3 weeks until disease
progression or unacceptable toxicity. The median PFS (the primary end point) was 2.7 months in the 0.3 mg/kg group,
4.0 months in the 2 mg/kg group and 4.2 months in the 10 mg/kg group [82]. The median OS was 18.2, 25.5 and 24.7
months respectively with ORRs of 20, 22 and 20%. Thirty-five patients (54% of responders) had responses lasting
for at least 12 months. Grade 3/4 (G3/4) treatment related AEs were present in 5% of patients at the 0.3 mg/kg dose,
17% of patients at the 2 mg/kg dose and 13% of patients at the 10 mg/kg dose. Discontinuation of treatment due to
AEs was necessary in 2, 11 and 7% respectively. The present study concluded that nivolumab was well tolerated and
demonstrated sufficient activity to justify a randomized, phase III trial [82].

Motzer et al. [83] reported results from the open-label phase III CheckMate 025 trial in 2015. Eight hundred and
twenty one patients with advanced ccRCC who had received one or two prior regimens (including at least one tar-
geting VEGFR) were randomized to everolimus or nivolumab 3 mg/kg fortnightly. The primary end point was OS.
The hazard ratio for death was 0.73 (98.5% CI: 0.57–0.93; P=0.002), which met the prespecified criterion for supe-
riority (P≤0.0148). The median OS gain was 4.4 months (25.0 months for the nivolumab group and 19.6 months
for the everolimus group, P = 0.002). The ORR was greater with nivolumab than with everolimus (25 compared
with 5%; odds ratio: 5.98 (95% CI: 3.68–9.72); P<0.001) and the median PFS was 4.6 months (95% CI: 3.7–5.4) with
nivolumab and 4.4 months (95% CI: 3.7–5.5) with everolimus (hazard ratio: 0.88; 95% CI: 0.75–1.03; P =0.11). G3/4
AEs occurred in 20% of patients receiving nivolumab compared with 37% in the everolimus group. The most com-
mon G3/4 toxicity in the nivolumab group was fatigue (2%). In the everolimus group, 9% had G3/4 anaemia, 5% G3/4
hyperglycaemia, 4% G3/4 stomatitis, 3% G3/4 fatigue and 1% G3/4 rash. PD-L1 expression (≥1 or <1%) was not pre-
dictive of OS [83]. Using a Quality of Life (QoL) questionnaire tailored for renal cancer (Functional Assessment of
Cancer Therapy in Kidney Symptom Index-Disease Related Symptoms (FKSI-DRS)), the mean change in baseline
in the nivolumab group increased over time and differed significantly from the everolimus group at each assessment
through to week 76 (P<0.05) [84]. An updated report after 24 months follow-up found median OS benefit increased
to 6.3 months (hazard ratio =0.73; P=0.0006) [85]. Thus, nivolumab was shown to improve efficacy outcomes for
patients with metastatic ccRCC with a manageable toxicity profile and better QoL when compared with everolimus.

Anti-CTLA-4 mAbs
In 2007, Yang et al. [86] reported phase II results of ipilimumab administration in a cohort of 62 patients with mRCC.
With an ORR of just 10% and 33% of patients experiencing a G3/4 immune-mediated toxicity, ipilimumab was not
taken forward into further trials in RCC at that time. Notably, of the the 20 patients with significant immune-related
toxicity the response rate was 30%, yet among the 41 patients free of such toxicity was 0% (P=0.0007; both cohorts
combined). Within the cohort of patients who responded some had significant durable responses [86].

Anti-PD-L1 mAbs
Results on the efficacy of PD-L1 inhibitors in aRCC are more limited than PD-1 inhibitors due to their comparative
earlier stage of drug development.

BMS-936559 (MDX-1105; Bristol-Myers Squibb) is a fully human IgG4 mAb, which binds to PD-L1. A first
in-human phase I trial administered BMS-936559 twice weekly to 207 patients with solid cancers, 17 of whom had
aRCC. A maximum tolerated dose (MTD) was not reached. G3/4 toxicities were reported in 19 of 207 patients (9%),
with immune-mediated causality potentially in 10 of 207 (5%.) Objective response was observed in 2 of 17 patients
(12%); with durations of response being 4 months and 17 months. Seven of the seventeen patients (41%) had sta-
ble disease for more than 24 weeks. Objective responses were also demonstrated in patients with ovarian cancer,
melanoma and NSCLC [89]. The development of BMS-936559 in solid cancers has not been pursued. This drug is
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currently being investigated in HIV-infected patients and a recent phase I reported that a single low-dose infusion
appeared to enhance HIV-1 specific immunity in a subset of participants [91].

Atezolizumab (MPDL3280A (Genentech; South San Francisco, CA, U.S.A.)) is a human IgG1 mAb, with an engi-
neered fragment crystallizable (Fc) domain designed to inhibit antibody-dependent, cell-mediated cytotoxicity, and
therefore avoid cytotoxic activity against activated T cells expressing PD-L1. A phase I trial administered atezolizumab
every 3 weeks to 171 patients with advanced solid cancers, including 55 patients with RCC [92]. G3/4 AEs were ob-
served in 22 of 171 patients (13%), G3/4 irAEs occurred in 4 patients (2%.) Forty-seven RCC patients were evaluable
for efficacy, with objective responses in six patients (13%), this included one patient with nccRCC. An additional 32%
of the RCC cohort had stable disease for more than 24 weeks [93].

Atezolizumab was also investigated in phase Ia dose-escalation and dose-expansion trial of 70 patients with mRCC
(ccRCC, n=63 and nccRCC, n=7) on a 3-week schedule. Median OS was 28.9 months, PFS: 5.6 months and ORR:
15%. G3 treatment related and irAEs occurred in 17 and 4% of patients respectively. There were no grade 4 or 5
events. IrAEs were reported in 30 patients (43%), with the most common being grade 1 rash (20%) and grade 2 hy-
pothyroidism (10%.) Interestingly, patients with poor prognostic features such as poor MSKCC prognostic status,
high Fuhrman grade and/or sarcomatoid features demonstrated a higher ORR. The ORR for the 16 patients with
grade 4 tumours was 25% and ORR was 33% for those with a component of sarcomatoid histology. This trial also
investigated potential biomarkers including a panel of 94 circulating biomarkers assessed at baseline and on day 1
of cycle 3 in 63 patients to assess for association with OS. Plasma VEGFA was reported to decrease in responders
and stable in patients with stable or progressive disease. In addition, on treatment reduction in acute-phase proteins,
including ferritin, complement C3, vitamin D-binding protein and macrophage inflammatory protein-1α were sig-
nificantly associated with longer OS. Lower baseline levels of multiple acute-phase proteins, including von Willebrand
factor, serum amyloid P component, α-1-antitrypsin and fibrinogen (negative prognostic factors in RCC) were also
associated with longer OS. RNA from archival tumour biopsies was analysed for markers of tumour immune biology.
A higher ratio of effector T cells to Treg cells (represented by FOXP3 expression was associated with atezolizumab
response (P=0.035) [88].

PD-L1 expression
The role of PD-L1 expression, within tumour cells or immune cells within the tumour microenvironment, as a pre-
dictive biomarker in aRCC remains unclear. Data mirror the conflicting results seen across other tumour types, with
no validated correlation between PD-L1 expression and response to immune checkpoint inhibitors [94].

In CheckMate 025, 90% of patients in the nivolumab treatment arm (370 of 410 patients) had quantifiable tu-
mour PD-L1 status. This was categorized into PD-L1 expression <1% or ≥1%. Patients experienced survival benefit
from nivolumab irrespective of PD-L1 expression. Subgroup analysis of the nivolumab cohort demonstrated higher
response rates in patients with tumours with ≥1% PD-L1 expression. These patients however, had a lower median
OS (median OS: ≥1 compared with <1% PD-L1 expression, 21.8 months (95% CI: 16.5–28.1) compared with 27.4
months (95% CI: 21.4–NR) respectively), potentially indicating the more aggressive nature of tumours expressing
PD-L1 in aRCC [83]. Subgroups analysis of phase I data of atezolizumab in aRCC demonstrated that patients with
lower PD-L1 expression (<1%) associated with lower PFS and OS [88]. A recent hypothesis generating study sought
to investigate underlying mechanisms which resulted in failure of PD-1-targeted therapies in patients with aRCC
expressing PD-L1. RNA was isolated from PD-L1 positive tumour biopsy regions, before undergoing gene expres-
sion analysis and whole genome microarray. The study reported a potential association between genes involved in
metabolic and solute transport functions such as UGT1A family members and treatment failure in patients with
PD-L1-positive RCC. For biopsies from responding patients there was overexpression of some important immune
markers involved in CD4+ T-cell differentiation and leucocyte differentiation [95].

Further studies are necessary to investigate the role of PD-L1 expression as a predictive biomarker in aRCC.

Combination regimens
While the results from Checkmate 025 were very encouraging, only 1% of patients receiving nivolumab achieved CRs,
and 31% of patients achieved durable responses greater than 12 months [83]. Due to the complex and dynamic nature
of tumour immune response, there is a clear rationale in utilizing combination treatments to enhance antitumour
effect [96]. Combination treatment strategies with other checkpoint inhibitors or angiogenesis inhibitors are currently
being investigated in multiple trials in both treatments – näıve and previously treated aRCC patients and also in the
neoadjuvant and adjuvant settings (Table 2 includes some of these). Recent evidence suggests that anti-angiogenesis
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therapies have immunomodulating effects, such as promoting intratumoral T-cell infiltration or increasing tumour
antigenicity, which could potentiate the effect of immune checkpoint inhibitors [97].

Table 2 Ongoing combination phase I-III clinical trials with immune checkpoint inhibitors in aRCC

Trial Phase Trial summary Population Trial status
Estimated study
completion date

Checkmate 016
NCT01472081 [100,101]

I Nivolumab + ipilimumab Treated and untreated aRCC Study ongoing; not
recruiting

June 2018

Nivolumab + sunitinib

Nivolumab + pazopanib

NCT02210117 [102] Early
phase I

Experimental arm A – nivolumab Neoadjuvant pilot – mRCC (clear
cell) who are eligible for
cytoreductive nephrectomy,
metastasectomy or post-treatment
biopsy. Treated and untreated

Study currently recruiting November 2019

Experimental arm B – nivolumab +
bevacizumab

Experimental arm C – nivolumab +
ipilimumab

NCT02348008 [103] I/II Pembrolizumab + bevacizumab In first- and second-line treatment
for aRCC (clear cell)

Study ongoing; not
recruiting

March 2018

Arm A – phase Ib – dose escalation

Arm B – phase II

Keynote 018
NCT02014636 [104]

I/II Pembrolizumab + pazopanib Treatment naı̈ve patients with
aRCC

Study ongoing; not
recruiting

February 2019

Part 1 – dose escalation

Part 2 – randomized three arm

NCT02133742 [105] Ib Pembrolizumab + axitinib Treatment naı̈ve aRCC (clear cell) Study ongoing; not
recruiting

April 2018

Experimental: dose-finding and
dose-expansion phase

Keynote 29
NCT02089685 [106]

I/II Pembrolizumab + pegylated IFNα-2b
(PEG-IFN)

Previously treated aRCC (clear cell)
and treatment naı̈ve or treated
advanced melanoma

Currently recruiting
patients

June 2020

Pembrolizumab + ipilimumab

JAVELIN Renal 100
NCT02493751 [107]

Ib Avelumab + axitinib Treatment naı̈ve aRCC (clear cell) Currently recruiting
patients

February 2019

Experimental: dose-finding +
dose-expansion phase

NCT0197583 [108] I Durvalumab (MEDI4736) +
tremelimumab IV

Patients with advanced solid
tumours; RCC, colorectal, breast,
ovarian and cervical

Ongoing but not recruiting October 2017 (Primary end
point)

NCT01984242
IMmotion150 [109]

II Multicentre randomized, open-label
study

Treatment naı̈ve aRCC (clear cell
+/or sarcomatoid)

Ongoing but not recruiting August 2019

Experimental arm A – atezolizumab +
bevacizumab

Experimental arm B – atezolizumab

Comparator arm C – Sunitinib

Checkmate 214
NCT02231749 [110]

III Randomized, open-label study Treatment naı̈ve aRCC Ongoing but not recruiting September 2019

Experimental: arm A: nivolumab +
ipilimumab

Active comparator: arm B: sunitinib 50
mg

Keynote-426
NCT02853331 [111]

III Randomized, open-label study Treatment naı̈ve aRCC (clear cell
with or without sarcomatoid
features)

Currently recruiting January 2020

Experimental arm – pembrolizumab +
axitinib

Comparator arm – sunitinib
monotherapy

IMmotion151
NCT02420821 [112]

III Multicentre, randomized, open-label
study

Treatment naı̈ve aRCC (clear cell
and/or component of sarcomatoid)

Ongoing but not recruiting July 2020

Experimental: atezolizumab +
bevacizumab

Active comparator: sunitinib

JAVELIN Renal 101
NCT02684006 [113]

III Experimental: avelumab + axitinib Treatment naı̈ve aRCC (clear cell) Currently recruiting
patients

September 2020

Active comparator: sunitinib

Abbreviations: Atezo, atezolizumab; BD, twice daily; Bev, bevacizumab; D1, day 1; Ipi, ipilimumab; Nivo: nivolumab, OD, once daily; Pembro, pem-
brolizumab; QD, four times daily.
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Combination regimens – immune checkpoint inhibitors
Checkmate 016 was a three-armed phase I study, exploring different dose combinations of nivolumab and ipilimumab
in previously treated or treatment-näıve mRCC patients (n=44). The provisional analysis of the secondary end points
has reported an ORR of 43% in patients treated with nivolumab 3 mg/kg and ipilimumab 1 mg/kg every 3 weeks
(nivo3 and ipi1) (four treatments) followed by nivolumab every 2 weeks until progression (n=21). This regime how-
ever incurred G3/4 treatment related AEs in 38% (nivo3 + ipi1) and 62% (nivolumab 1 mg/kg plus ipilimumab 3
mg/kg, (nivo1 + ipi3)) of patients. The most common of these were gastrointestinal and hepatic, including elevated li-
pase (15 compared with 28%), elevated ALT (4 compared with 21%), diarrhoea (4 compared with 15%), elevated AST
(4 compared with 13%), and colitis (0 compared with 15%). The median DOR in the nivo3 and ipi1 group was 42
weeks and the median OS had not yet been reached. This dose combination appeared to be no less active but less
toxic than nivolumab 1 mg/kg plus ipilimumab 3 mg/kg, while nivolumab 3 mg/kg plus ipilimumab 3 mg/kg (nivo3
and ipi3) proved unacceptably toxic in this population. The nivo3 and ipi3 arm (n=6) therefore did not proceed to
expansion [98]. Updated results with 2-year follow-up reported ORR of 40% in both treatment arms (nivo3 and ipi1,
nivo1 and ipi3) and median DOR of 20.4 weeks (nivo3 and ipi1, n=47) and 19.4 weeks (nivo1 and ipi3, n=47) [99].

Checkmate 214 compares the nivo3 and ipi1 regimen with sunitinib in a phase III trial in advanced ccRCC. The trial
plans to recruit 1070 patients with locally advanced or mRCC, previously untreated with any systemic therapy and
randomize them between sunitinib and nivolumab and ipilimumab (nivo3 and ipi1) every 3 weeks for four treatments
following by nivolumab 3 mg/kg every 2 weeks until progression. Primary results are expected in late 2017 [99].

Combination regimens – immune checkpoint inhibitors and angiogenesis
inhibitors
Encouraging early results from JAVELIN Renal 100, a phase 1b, dose-finding study, demonstrated durable responses
in six of six treatment-näıve patients evaluable for response to avelumab (MSB0010718C), a PD-L1 inhibitory mAb,
given in combination with axitinib. The trial aims to recruit up to 55 patients, who will receive avelumab (10 or 5
mg/kg, every 2 weeks) plus axitinib (5 or 3 mg twice daily) in dose-finding and dose-expansion cohorts [114]. A
follow-on phase III trial of avelumab plus axitinib compared with sunitinib monotherapy as first-line treatment of
aRCC is also underway [115].

In addition to the trials listed in Table 2, the combination of pembrolizumab plus pazopanib was investigated in
a phase I/II trial and unfortunately results presented at the American Society of Clinical Oncology (ASCO) Confer-
ence in June 2017 deemed it unsafe and reported significant concerns regarding hepatotoxicity. After a dose-escalation
phase, 20 patients were enrolled in expansion cohorts. The combination regime resulted in 90% of patients reporting
G3/4 AEs; resulting in 50% of patients permanently discontinuing treatment and 80% requiring dose interruptions or
reductions. The combination did exhibit early antitumour efficacy however the toxicity profile was intolerable. When
sequential therapy was explored, other G3/4 AEs developed including diarrhoea, increased amylase, perforation of the
large intestine, pneumonitis and confusion [116]. CALYPSO is a phase I/II clinical trial investigating durvalumab (an
anti-PD-L1 mAb) in combination with tremelimumab (anti-CTLA-4 mAb) and/or savolitinib (AZD6094; a highly
selective MET TKI) in ccRCC and papillary RCC. The trial aims to recruit 195 patients with the estimated study com-
pletion date in September 2019 [117]. Pembrolizumab plus axitinib is currently being investigated in KEYNOTE-426
a phase III trial in the first-line setting, with the standard of care comparator arm as sunitinib [118]. The combination
of lenvatinib (a multitarget TKI) with pembrolizumab is being compared in a three-arm phase III trial with lenvatinib
plus everolimus or sunitinib in the first-line setting [119].

Atezolizumab is currently under evaluation in IMmotion 151, a phase III clinical trial with bevacizumab. The trial
plans to recruit 900 patients with aRCC (sarcomatoid or ccRCC.) Patients are randomized to atezolizumab plus beva-
cizumab, atezolimuzab or sunitinib in the first-line setting. Preliminary results have reported responses in 25–46%.
Median PFS was highest in the subgroup who were PD-L1-positive on tumour testing [120].

Adjuvant trials
ADAPTeR is a phase II adjuvant study currently ongoing, where nivolumab is administered as pre- and post-operative
therapy in mRCC [121]. Pembrolizumab is similarly being investigated with patients (planned accrual, n=36) pro-
posed to receive pembrolizumab every 3-weeks for up to three cycles followed by standard of care surgical resection;
and then may receive post-resection pembrolizumab every 3 weeks for up to 1 year (17 cycles). In the alternate ex-
perimental arm, patients will undergo surgical resection then commence pembrolizumab for up to 1 year (17 cycles)
[122]. At present, there are no adjuvant immunotherapy phase III trials in recruitment.
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nccRCC
This review does not cover in depth nccRCC. A phase II clinical trial, Keynote 427, is currently recruiting both
ccRCC and a prespecified cohort of nccRCC patients to treatment with pembrolizumab every 3 weeks for up to 35
doses (approximately 24 months) [123]. SUNIFORECAST is a randomized phase II trial comparing ipilimumab plus
nivolumab with sunitinib in the non-clear cell population, which is ongoing [124].

Conclusion
Nivolumab has been rapidly adopted into the routine care of patients with aRCC who have failed prior therapy where
it has proven a magnitude of clinical benefits not seen with previous systemic therapies in this disease. Emerging data,
including the prolonged DOR observed with this intervention and experiences with similar drugs in other diseases,
suggest that, for some patients with incurable mRCC, immune checkpoint inhibition may present the opportunity of
long term survival. Current trials should help maximize these benefits by bringing therapy into the front-line setting
as an alternative or a complement to TKIs, and to explore their benefits in the adjuvant setting where there is the
prospect of increasing the cure rate from surgery. Future research focuses on the discovery and development of newer
and better ways of manipulating the immune system for therapeutic gain and on finding ways of better stratifying
patients to select and prioritize these treatments for those where they will offer the maximum gain.
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