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Plasma lipid levels are modifiable risk factors for atherosclerotic cardiovascular disease. In 

>300,000 participants, we screened DNA sequence variants on an exome-focused array and 

identified 444 independent variants in 250 loci significantly associated with total cholesterol 

(TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-

C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice 

revealed TC and TG changes, respectively, consistent with the human data. We utilized 444 

mapped variants to address several questions of clinical relevance and found the following: (1) 

beta-thalassemia trait carriers displayed lower total cholesterol and were protected from coronary 

artery disease; (2) multiple CETP variants each consistently associated with not only higher 

HDL-C but also elevated risk for age-related macular degeneration; (3) only some mechanisms 

of lowering LDL-C seemed to increase risk for type 2 diabetes; and (4) at TG genes involved in 

hepatic production of TG-rich lipoproteins (e.g., TM6SF2, PNPLA3), the plasma TG-lowering 

allele tracked with higher liver fat, higher risk for type 2 diabetes, and lower risk for coronary 

artery disease whereas at TG genes involed in peripheral lipolysis (e.g., LPL, ANGPTL4), the 

plasma TG-lowering allele had no effect on liver fat but lowered risks for both type 2 diabetes 

and coronary artery disease. 

 



 

Main Text 

Association studies testing common DNA sequence variation have uncovered 175 genetic 

loci that affect lipid levels in the population1-7, with most variants residing in the non-coding 

portion of the genome. These findings have informed biology of lipoproteins and elucidated the 

causal roles of lipid levels on cardiovascular disease8-11. Here, we build on these previous efforts 

to: 1) perform an exome-wide association screen for plasma lipids in >300,000 individuals; 2) 

evaluate discovered alleles experimentally in mouse models; and 3) test the inter-relationship of 

mapped lipid variants with four diseases – coronary artery disease (CAD), age-related macular 

degeneration (AMD), fatty liver, and type 2 diabetes. 

We tested the association of genotypes from the HumanExome BeadChip (i.e., exome 

array) with lipid levels in each of 73 studies encompassing >300,000 participants 

(Supplementary Material, Tables S1-S3) across several ancestries (European, African, South 

Asian, Hispanic, and other). The maximal sample sizes from each ancestry were 237,050 for 

European, 16,935 for African, 37,613 for South Asian, and 5,082 for Hispanic or other. A 

companion manuscript describes results for 47,532 East Asian participants12. A total of 242,289 

variants were analyzed after quality control (Supplementary Methods). About one-third of the 

genotyped variants are non-synonymous with minor allele frequency (MAF) < 0.1% (Table S4).  

Single-variant association statistics and inter-marker linkage disequilibrium information 

summarized across 1 megabase sliding windows were generated from each cohort using 

RAREMETALWORKER or RVTESTS13,14 software. Meta-analyses of genetic associations 

were performed using the R-package rareMETALS (version 6.0). In addition to testing each 

variant individually for association, we also performed gene-level association tests, which 

aggregate multiple rare coding variants in each of 16,798 protein-coding genes. Genomic control 

values for meta-analysis results were between 1.09 and 1.14 for all four lipid traits (Fig. S1), 

suggesting that population structure in our analysis is well-controlled3,15. Genomic control values 



 

scale with sample size16 and as such, our genomic control values are in line with previous reports 

including similar sample sizes15. 

In single-variant association analyses, we identified 1,445 variants associated at P < 2.1 × 

10–7 (Bonferroni correction of 242,289 variants analyzed) (Fig. S2; full association results are 

available at http://csg.sph.umich.edu/abecasis/public/lipids2017/). Of these, 75 were ‘novel’ (i.e., 

located in previously unreported loci): 35 of these were protein-altering variants and 40 were 

non-coding variants (Table 1, Table S5 & S6). These 75 new loci are each located at least 1 

megabase from previously reported genome-wide association study (GWAS) signals (Table S7). 

The lead variant was common (MAF > 5%) in 61 of these 75 loci. When analyzed separately by 

ancestry, European ancestry participants provided the most significant associations for the 75 

novel variants, except for two noncoding variants associated with LDL (rs201148465 and 

rs147032017) which were driven by the South Asian participants (Table S8). Gene-level 

association analyses revealed an additional five genes where the signal was driven by multiple 

rare variants (P < 4.2 × 10–7, Bonferroni correction threshold for performing 5 tests on ~20,000 

genes, Table S9).  

We tested the new single variant association findings for replication in an independent set 

of up to 286,268 participants from three studies – Nord-Trøndelag Health Study17, (HUNT; max 

n = 62,168), Michigan Genomics Initiative (MGI; www.michigangenomics.org; max n = 6,411) 

and the Million Veteran Program18 (MVP; max n = 218,117). Of the novel primary trait 

associations, 73/73 associations were directionally consistent (Table S10); two SNPs were not 

available for replication (rs201148465, rs75862065). Furthermore, we were able to replicate the 

associations of 66/73 (90%) at an alpha of 0.05.  

At any given genetic locus, multiple coding and non-coding variants may contribute to 

plasma lipid levels in an independent fashion. We quantified this phenomenon by iteratively 

performing association analyses conditional on the top variants at all lipid loci (175 previously 

identified and 75 newly identified). With this procedure, we identified 444 variants 

independently associated with one or more of the four lipid traits in 250 loci (Fig. S3; Table S11 

http://csg.sph.umich.edu/abecasis/public/lipids2017/
http://www.michigangenomics.org/


 

and Table S12). Collectively, these 444 variants explain 9%-12% of the overall phenotypic 

variance for plasma lipid levels; previously mapped variants explain about 5%-9% of the 

variance in the current dataset. 

The identification of lipid-associated coding variants using the exome array may help 

refine association signals at previously identified GWAS loci. We were able to evaluate this 

possibility in 131 of the 175 previously reported GWAS loci where the index variant or a proxy 

was available on the exome array, and associated with lipids levels with P < 2.1 × 10–7 (Table 

S13 and Table S14). For example, rs11136341, an intronic SNP close to the PLEC gene reported 

to be associated with LDL-C, was the original lead SNP in its GWAS locus (P = 2 × 10–13). In 

the current study, a protein-altering variant in PARP10 is the top variant in the same locus 

(rs11136343; Leu395Pro; P = 7 × 10–26). After conditioning on PARP10 Leu395Pro, the 

evidence for rs11136341 diminished (P = 0.02); in contrast, PARP10 Leu395Pro remained 

significant (P = 9 × 10–13) after conditioning on rs11136341. PARP10 has been shown to affect 

the hepatic secretion of apolipoprotein B (apoB) in human hepatocytes19; these results prioritize 

PARP10 as a causal gene at this locus. 

Experimental analysis of discovered mutations in model systems is a powerful approach 

to validate human association findings. This approach holds particular appeal in following up the 

results of our exome array analysis, in which hundreds of protein-altering variants were robustly 

associated with circulating lipids. We prioritized two coding mutations for experimental analysis:  

JAK2 (Janus Kinase 2) p.Val617Phe and A1CF (APOBEC1 complementation factor) 

p.Gly398Ser.   

JAK2 p.Val617Phe is a recurrent somatic mutation arising in hematopoietic stem cells 

which can lead to myeloproliferative disorders or clonal hematopoiesis of indeterminate 

potential20-24. We recently showed that carriage of p.Val617Phe increases with age and confers 

higher risk for CAD25. Surprisingly, the 617Phe allele which increases risk for CAD is associated 

with lower LDL-C. Mice knocked in for Jak2 p.Val617Phe were created as reported 

previously26. Hypercholesterolemia-prone mice that were engrafted with bone marrow obtained 



 

from Jak2 p.Val617Phe transgenic mice displayed lower total cholesterol than did mice that had 

received control bone marrow (Fig. S4). These data are consistent with our human genetic 

observations. The mechanism by which JAK2 p.Val617Phe leads to lower plasma TC/LDL-C but 

higher risk for CAD requires further study. 

Another strong new association to emerge from genetic analyses was between A1CF 

p.Gly398Ser and TG [0.10-standard deviation (SD) increase in TG per copy of alternate allele, P 

= 4 × 10–11]; this rare variant (MAF = 0.7%) was also associated with increased circulating TC 

(P = 4 × 10–7) and nominally associated with increased risk of CAD (OR 1.12; P = 0.02). A1CF 

encodes APOBEC1 complementation factor, an RNA-binding protein which facilitates the RNA-

editing action of APOBEC1 on the APOB transcript27,28. We performed CRISPR-Cas9 deletion, 

rescue, and knock-in experiments to assess whether A1CF p.Gly398Ser is a causal mutation that 

alters TG metabolism. 

CRISPR-Cas9-induced deletion of A1CF led to 72% and 65% reduction in secreted 

APOB100 compared to control cells in Huh7 and HepG2 human hepatoma cells, respectively 

(Fig. 1A-1C; Fig. S5). These findings are consistent with previous studies in rat primary 

hepatocytes that also showed significantly decreased apoB secretion after RNAi-based depletion 

of A1CF29. Additionally, cellular APOB100 levels were significantly reduced in A1CF-deficient 

cells (Fig. S5B and S5C). A subsequent “rescue” experiment involving overexpression of wild-

type or p.Gly398Ser A1CF in Huh7 cells with or without endogenous A1CF expression 

confirmed that significantly more APOB100 secretion was noted in cell lines expressing A1CF 

p.Gly398Ser (Fig. 1D). 

We sought to further validate the A1CF gene and the p.Gly398Ser variant through the use 

of CRISPR-Cas9 to generate knock-in mice. Using a guide RNA targeting A1cf exon 9, the site 

of the codon for p.Gly398, and a 162-nucleotide single-strand DNA oligonucleotide repair 

template containing the p.Gly398Ser variant as well as extra synonymous changes to prevent re-

cleavage by CRISPR-Cas9, we generated mice of the C57BL/6J inbred background with an A1cf 

Gly398Ser allele (hereafter referred to as KI) (Fig. S6A, S6B). We bred the KI allele to 



 

homozygosity and found that KI/KI mice were viable and healthy. We compared wild-type and 

KI/KI colony mates (n = 9, 8) with respect to TG levels (Fig. S6C). We found that KI/KI mice 

had 46% increased TG compared to wild-type mice (P = 0.05). In sum, these results indicate that 

A1CF is a causal gene for TG in humans and that the p.Gly398Ser variant is a causal mutation, 

with possible relevance to CAD. 

Next, we used the 444 identified DNA sequence variants to address four questions 

relevant to clinical medicine, focusing on one question for each of the four traits:  TC, HDL-C, 

LDL-C, and TG. First, a rare null mutation in the beta-globin gene (HBB; c.92+1G>A, 

rs33971440) associated with lower total cholesterol (Table S15), raising the question of the 

relationship between beta-thalassemia and risk for CAD. Approximately 80 to 90 million 

individuals worldwide are estimated to carry a heterozygous loss-of-function HBB mutation, 

termed beta-thalassemia trait30. Observational epidemiologic studies several decades ago showed 

that beta-thalassemia trait associates with lower blood cholesterol level31,32. We find that HBB 

c.92+1G>A is not only associated with lower hematocrit but also with a 17 mg/dl decrease in 

LDL-C (-17 CI -23, -11; P = 2.7 x 10-8) and a 21 mg/dl decrease in TC (-21 CI -27, -14; P = 8.9 

x 10-11) (Fig. S7). In an analysis of 31,156 CAD cases and 65,787 controls, carriers of loss-of-

function variants in HBB were protected against CAD (odds ratio for CAD, 0.70; 95% CI 0.54, 

0.90; P = 0.005, Fig. S8).  

Second, DNA sequence variants in the CETP gene which associate with higher HDL-C 

also correlate with higher risk for age-related macular degeneration (AMD), a leading cause of 

blindness around the world33-37; here, we ask if any way of increasing plasma HDL-C will 

predictably lead to increased AMD risk. Across 168 independent HDL-C variants at 109 distinct 

loci with MAF > 1%, we tested the association of each independent HDL-C variant with AMD 

risk. The effect size of variant on HDL-C was positively correlated with its effect on AMD risk 

(correlation in effect sizes, r = 0.41, P = 4.4× 10–8; Table S16, Fig. S9). However, this effect was 

driven by the 10 independent HDL-C associated variants in the CETP gene (heterogeneity across 

the different HDL-C-raising mechanisms (τ2 = 0.91, Phet = 1.8 x 10-15) (Table S17). A one-SD 



 

increase in HDL-C via a genetic risk score of the 10 CETP variants robustly associated with 

increased AMD risk (OR = 2.01, 95% CI = 1.88-2.14, 16,144 AMD cases, 17,832 controls, P = 

3.4x10-97). When these 10 CETP variants were removed, there was no longer a relationship 

between genetically-altered HDL-C and AMD risk (P = 0.17). These genetic results suggest that 

outside of the CETP locus, there is not a predictable relationship between plasma HDL-C and 

risk for AMD. 

Third, will lowering LDL-C with lipid-modifying medicines always increase risk for type 

2 diabetes? This question is motivated by the fact that in randomized controlled trials, statin 

therapy increases risk for type 2 diabetes26,27 and recent reports of PCSK9 variants associating 

with higher risk for type 2 diabetes38-40. We confirmed the association of PCSK9 p.Arg46Leu 

(R46L) with risk for type 2 diabetes among 222,877 participants (Table S18). We found that the 

46Leu allele associated with lower LDL-C confers a 13% increased risk for type 2 diabetes (OR 

1.13; 95% CI 1.06 – 1.20; P=6.96 x 10-5) (Fig. S10). In addition, across 113 independent LDL-C 

variants at 90 distinct loci, we compared each variant’s effect on LDL-C with its subsequent 

effect on risk for type 2 diabetes. Across the 113 variants, there is a weak inverse correlation 

between a variant’s effects on LDL-C and type 2 diabetes (r= -0.21, p=0.025); however, there is 

evidence for heterogeneity in this relationship (τ2 = 0.50, Phet = 2.5 x 10-9). Five LDL-C 

lowering genetic mechanisms had the most compelling evidence for association with higher risk 

for type 2 diabetes (TM6SF2 p.Glu167Lys, APOE chr19:4510002, HNF4A p.Thr136Ile, 

PNPLA3 p.Ile148Met, and GCKR p.Leu446Pro) (P < 4.0 × 10–4 for each, Bonferroni correction 

threshold for performing tests at 113 variants, Table S19; Fig. S11). These results suggest that 

only some ways of lowering LDL-C are likely to increase risk for type 2 diabetes.  

 Finally, two key processes – hepatic production and peripheral lipolysis – contribute to 

the blood level of TG. We asked how genes involved in hepatic production of TG-rich 

lipoproteins (PNPLA3, TM6SF2) differed from lipolysis pathway genes (LPL, ANGPTL4) in 

their impact on related metabolic traits - blood lipids, fatty liver, type 2 diabetes, and CAD 

(Table 2). The alternative alleles at PNPLA3 p.Ile148Met, TM6SF2 p.Glu167Lys, LPL 



 

p.Ser474Ter, and ANGTPL4 p.Glu40Lys all associated with lower blood triglycerides and 

reduced risk for CAD. However, the blood TG-lowering alleles at PNPLA3 and TM6SF6 led to 

more fatty liver and higher risk for type diabetes. In contrast, the blood triglyceride-lowering 

alleles at LPL and ANGPTL4 were neutral with respect to fatty liver and led to lower risk for 

type 2 diabetes. We confirmed the LPL observation using a phenome-wide association study 

approach in the UK Biobank, a population-based cohort study (Table S20). In UK Biobank, a 

one-SD decrease in TG mediated by LPL variants reduced risks for both type 2 diabetes and 

CAD (Fig. 2). 

In summary, combining large-scale human genetic analysis with experimental evidence, 

we demonstrate: (1) 444 independent coding and non-coding variants at 250 loci as associated 

with plasma lipids; (2) the use of mouse models and genome editing to pinpoint causal genes and 

protein-altering variants, as with example of A1CF p.Gly398Ser; and (3) that LPL activation can 

be expected to lower triglycerides and reduce risks for both CAD and type 2 diabetes without 

increasing liver fat and thus be advantageous for patients with metabolic risk factors. 
  



 

ONLINE METHODS 

Study samples and phenotypes 

Seventy-three studies contributed association results for exome chip genotypes and plasma lipid 

levels. The outcomes were fasting lipid values in mg/dL [TC, HDL-C, LDL-C, TG] from the 

baseline, or earlier exam with fasting measures. If a study only had non-fasting levels then it 

contributed only to the TC and HDL-C analyses. LDL-C and TG analyses were only performed 

on fasting lipid values. Lipid lowering therapy with statins was not routinely used prior to the 

publication of the 4S study in 1994 which demonstrated the clinical benefit of statin therapy. 

Therefore, for data collected before 1994, no lipid medication adjustment was applied. For data 

collected after 1994, we adjusted the TC values for individuals on lipid medication by replacing 

their total cholesterol values by TC/0.8; this adjustment estimates the effect of statins on TC 

values. No adjustment was made on HDL-C or TG. LDL-C was calculated using the Friedewald 

equation for those with TG < 400 mg/dl (LDL-C = TC – HDL-C – (TG/5)). If TC was modified 

as described above for medication use after 1994, then modified TC was used in this formula. If 

only measured LDL-C was available in a study, we used LDL/0.7 for those on lipid-lowering 

medication when data were collected after 1994. TG values were natural log transformed. For 

each phenotype, residuals were obtained after accounting for age, age2, sex, principal 

components (as needed by each study, up to four), and inverse normal transform residuals were 

created for analysis. For studies ascertained on CAD case/control status, the two groups were 

modeled as separate studies. 

 

Genotyping and quality control 



 

All studies assayed the Illumina or Affymetrix Human Exome array v1 or v1.1. Genotypes were 

determined from Zcall41 or joint calling42. Individual studies performed the following quality 

control: call rate, heterozygosity, gender discordance, GWAS discordance (if GWAS data 

available), fingerprint concordance, if available, and PCA outliers. 

 

Association analyses 

Each contributing cohort analyzed the ancestries within their cohorts separately and studies 

collected on case/control status analyzed cases separately from the controls. We performed both 

single variant and gene-level association tests. In the association analysis, we obtain residuals 

after controlling for sex, age, age2 and up to 4 principal components as covariates. Studies that 

had related samples analyzed the association using linear mixed models with relatedness 

estimated from genome-wide SNPs or from pedigrees.  

From each study, we collected single variant score statistics and their covariance matrix 

for variants in sliding windows across the genome. Summary association test statistics were 

generated using RAREMETALWORKER or RVTESTS. Using summary association statistics 

collected from each study, we performed meta-analysis of single variant association tests using 

the Mantel-Haenszel test and constructed burden, SKAT and variable threshold tests using the 

approach by Liu et al14. For burden and SKAT, we used minor allele frequency thresholds of 1% 

and 5% and for VT, we applied minor allele frequency threshold of 5%. In the SKAT test, 

variants are weighted according to their minor allele frequencies, using the beta kernel 𝛽(1,25).  

Using covariance matrices between single variant association statistics, we were also able 

to perform conditional association analyses centrally, which distinguishes genuine signals from 

“shadows” of known loci. Details of the methods can be found in Liu et al14. 



 

We centrally performed quality control for the data. We aligned study reported reference 

and alternative alleles with alleles reported in the NHLBI Exome Sequencing Project43 and 

remove mis-labelled variant sites that can be strand ambiguous. For variant sites in each study, 

we removed variants that had call rate < 0.9 or had Hardy Weinberg P values < 1 × 10−7 . 

Finally, as additional checks, we visually inspected for each study the scatter plot of variant 

allele frequency against frequencies from ethnicity-matched populations in the 1000 Genomes 

Project44, and made sure that the strand and allele labels were well calibrated between studies.  

Single variant associations with P < 2.1 x 10-7 (0.05/242,289 variants analyzed) and gene-

based associations with P < 4.2 x 10-07 (0.05/[20,000 genes * 6 tests]) were considered 

significant. Novel loci were defined as being not within 1 megabase of a known lipid GWAS 

SNP. Additionally, linkage disequilibrium information was used to determine independent SNPs 

where a locus extended beyond 1 megabase.  All novel loci reported in this manuscript are > 1 

megabase from any previously reported locus and independent (r2 < 0.2 was required for variants 

within 3 megabases). 

 

Sequential forward selection 

To identify independently associated variants for each known and newly identified locus, we 

performed sequential forward selection. We initialized the set of independently associated 

variants (denoted by Φ), starting with the top association signal in the locus. For each iteration, 

conditioning on variants in Φ, we performed conditional association analyses for all remaining 

variants. If the top association signal after the conditional analysis remained significant, we 

added the top variant to the set Φ, and then repeated the conditional association analysis. If the 

top variant after the conditional analysis was no longer significant, we stopped and reported 



 

variants in the set Φ as the final set of independent variants for that locus. We used the same 

single variant significance threshold (P < 2.1 x 10-7) to determine statistical significance with the 

sequential forward selection results (Fig. S3).  

 

Annotation 

Sequence variants were annotated according to refSeq version 1.9, using the SEQMINER 

software (version 5.7)45. Transcript level annotations were obtained and prioritized. When 

multiple transcript level annotations were available, they were prioritized according to their 

functionality and deleteriousness. To implement gene-level association tests, the annotation with 

the highest priority was used (along with other filtering criteria such as minor allele frequencies) 

to determine the set of variants that are included.  

 

Heritability and proportion of variance explained estimates 

We estimated the proportion of variance explained by the set of 444 independently associated 

variants. The joint effects of variants in a locus were approximated by 𝛽̂𝐽𝑂𝐼𝑁𝑇 = 𝐕𝐌𝐄𝐓𝐀
−𝟏 �⃗⃗⃗�𝑀𝐸𝑇𝐴, 

where �⃗⃗⃗�𝑀𝐸𝑇𝐴 is the single variant score statistics and 𝐕𝐌𝐄𝐓𝐀
−𝟏  is the covariance matrix between 

them. The covariance between single variant genetic effects was approximated by the inverse of 

the variance-covariance matrix of score statistics, i.e. 𝐕𝐌𝐄𝐓𝐀
−𝟏 . The phenotypic variance explained 

by the independently associated variants in a locus is given by 𝛽̂𝑗𝑜𝑖𝑛𝑡
𝑇 cov(G)𝛽

̂
𝐽𝑂𝐼𝑁𝑇, where G is 

the genotypes of the analyzed variants.  

 

Refinement of genome-wide association signals 



 

We sought to quantify what proportion of GWAS loci might be due to a protein-altering variant 

and, therefore, directly identify a functional gene. We made the assumption that a protein-

altering variant is the most likely causal variant for each region if it is the top signal, explains the 

signal, or is independent of the original signal. To identify putative functional coding variants 

accounting for the effects at known lipid loci, we performed reciprocal conditional analyses to 

control for the effects of known lipid GWAS or coding variants within 500kb, as this was the 

maximum distance for variants within the covariance matrix. Loci where coding variants are the 

most significant signals were considered as “coding as top”. Loci where the initial GWAS 

variants had conditional P > 0.01 were considered to be explained by the coding variants. Loci 

where the coding variants had conditional P < 2.1 x 10-7 were considered to be independent of 

the initial GWAS signals.   

 

JAK2 p.Val617Phe and plasma cholesterol in a mouse model  

Jak2 p.Val617Phe MxCre mice were created and reported previously26. Bone marrow cells from 

the WT or JAK2 p.Val617Phe MxCre mice, both treated with poly I:C, were transplanted into 

irradiated Ldlr−/− recipients. After four weeks of recovery, the Ldlr−/− recipient mice were fed a 

Western diet (TD88137, Harlan Teklad) for 8 weeks. Plasma was collected and 250 microliter of 

polled plasma from 7 WT→Ldlr-/- or 7 Jak2 Val617Phe→Ldlr-/- recipient was subjected to fast 

protein liquid chromatography on Sepharose CL-6B size exclusion column. Total cholesterol 

content in each fraction was assessed by Cholesterol E kit (Wako Diagnostics).   

 

Validation of A1CF with CRISPR-Cas9 in human cells 



 

To knock out A1CF in Huh7 and HepG2 human hepatoma cells, three CRISPRs (sgRNA 

sequences are as follows: 5’-GGATGCCCCCAACAAATAAT-3’; 5’- 

TTGGTTTTATCTGCAGCGCT-3’ and 5’-ATGACTCTCATACTCCACGA-3’) targeting exon 

4 of the A1CF gene were constructed by using the lentiviral vector lentiGuide-Puro. Packaged 

viruses were used to transduce the cells expressing Cas9 for 16 hours. Subsequently, cells were 

cultured in the presence of 5 g/ml puromycin for five days before splitting for assays. Cells for 

APOB secretion assay were cultured for 18 hours in serum-free medium, then the amount of 

APOB100 in medium was measured using an ELISA kit (MABTECH) according to the 

manufacturer’s instructions.  

In a rescue experiment, to avoid cutting of the A1CF coding region on the recombinant 

plasmids by previously designed exon-targeting CRISPRs, four new CRISPRs targeting introns 

flanking exon 4 were applied to deplete endogenous A1CF. The sequences for those sgRNAs are 

as follows: 5’-GGTTGAAAATGTATGGCTGT-3’; 5’-TGATTGATGAGAATCCTTGT-3’; 5’-

TTTTCTTTGCGGAGGCAGGC-3’ and 5’-GCAGAGAAGTCTCATCTTTG-3’. The A1CF 

p.Gly398Ser variant was generated by using overlapping PCR and confirmed by Sanger 

sequencing. Both wild-type and the A1CF p.Gly398Ser variant were constructed into lentiviral 

plasmids, respectively. After transduction, cells were cultured for 48 hours in the presence of 100 

ng/ml doxycycline to induce recombinant expression of A1CF or p.Gly398Ser variant before 

performing different assays.    

 

A1cf p.Gly390Ser knock-in mice 

All procedures used for animal studies were approved by Harvard University’s Faculty of Arts 

and Sciences Institutional Animal Care and Use Committee and were consistent with local, state, 



 

and federal regulations as applicable. Knock-in mice were generated using a guide RNA 

designed to target the orthologous site of the A1CF p.Gly390Ser variant. In vitro transcribed 

Cas9 mRNA (100 ng/μL; TriLink BioTechnologies) and guide RNA (50 ng/μL) were co-injected 

with 100 ng/μL single-strand DNA oligonucleotide (Integrated DNA Technologies): (5’-

GTTTGATTCAGTTTAATGCCTTCTTACATTCCTAGAAATTTACATGAATGTCCCTGTA

GGGGCTGCGGG 

GGTGAGAGGTCTGGGCAGCCGTGGCTATTTGGCATACACAGGCCTGGGTCGAGGAT

ACCACGTCAAAGGAGACAAGAGAGAAGACAAACTCTA-3’) into the cytoplasm of 

fertilized oocytes from C57BL/6J mice. Genomic DNA samples from founder mice were 

screened for knock-in mutations by PCR and confirmed by Sanger sequencing. Positive mice 

were bred with C57BL/6J mice to generate wild-type and homozygous knock-in mice. Male 

colony mates at 12 weeks of age were used for lipid measurements. Blood samples were 

collected from the lateral tail vein following an overnight fast. Plasma triglyceride levels were 

measured using Infinity Triglycerides Reagent (Thermo Fisher) according to the manufacturers’ 

instructions. 

 

Intersection of lipid association signals with AMD, CAD, and T2D 

To estimate the association of loss-of-function variants in HBB with cholesterol levels, 

participants from the following two consortia were studied: the Global Lipids Genetics 

Consortium and the Myocardial Infarction Genetics Consortium (MIGen, 27,939 participants in 

12 cohorts). A rare loss-of-function variant in HBB (c.92+1G>A, rs33971440) was genotyped in 

participants from the Global Lipids Genetics Consortium Exome consortium. This variant was 

pooled with sequence data for the HBB gene in MIGen, available in 19,434 participants with 



 

blood cholesterol measurements. The association of loss-of-function variants with cholesterol 

was estimated using linear regression with adjustment for age, sex and up to five principal 

components of ancestry. Estimates from genotyped and sequence data were pooled using inverse 

variance weighted fixed effects meta-analysis. 

To estimate the association of loss-of-function variants in HBB with CAD, participants 

from the following two consortia were studied: the CARDIoGRAM Exome Consortium (69,087 

participants from 20 studies) and MIGen (12384 CAD cases and 15547 controls from 12 

studies). 69,086 individuals who were genotyped for the c.92+1G>A variant in CARDIoGRAM 

Exome were pooled with sequence data for HBB from 27,931 individuals in MIGen. The 

association of loss-of-function variants with CAD was estimated using logistic regression with 

adjustment for age, sex and up to five principal components of ancestry. Estimates were pooled 

using inverse variance weighted fixed effects meta-analysis. To estimate the association of loss 

of function variants in HBB with hemoglobin and hematocrit levels, estimates from an exome 

chip analysis of red blood cell traits (24 814 individuals) were used8.  

For 168 variants independently and significantly associated with HDL-C and a MAF > 

1%, we looked up the association evidence in 16,144 age-related macular degeneration cases and 

17,832 controls with exome chip genotypes46.  

For 132 independently and significantly associated LDL-C variants and MAF > 1%, we 

looked up the association evidence in: (1) up to 120,575 individuals with and without CAD and 

exome chip genotypes (42,335 cases and 78,240 controls)47; and (2) up to 69,870 individuals 

with and without type 2 diabetes. Only 113 of the 132 LDL variants were available in the type 2 

diabetes results. We used a Bonferroni correction for 132 variants to determine significance of 

the results (alpha = 4.0 x 10-4). 



 

 

Association of PCSK9 R46L with type 2 diabetes  

For evaluating the association of PCSK9 R46L with risk of type 2 diabetes, we considered a total 

of 42,011 type 2 diabetes cases and 180,834 controls from 30 studies from populations of 

European ancestry (Table S17). The variant was directly genotyped in all studies using the 

Metabochip or the Exome array. Sample and variant quality control was performed within each 

study as described previously48-51. Within each study, the variant was tested for association with 

type 2 diabetes under an additive model after adjustment for study-specific covariates, including 

principal components to adjust for population structure. Association summary statistics for the 

variant for each study was corrected for residual population structure using the genomic control 

inflation factor as described previously48-50. We then combined association summary statistics for 

the variant across studies via fixed-effects inverse-variance weighted meta-analysis. 

 

TG variants, lipids, fatty liver, type 2 diabetes, and CAD 

Exome chip results for four variants (LPL p.Ser474Ter [rs328], ANGPTL4 p.Glu40Lys 

[rs116843064], PNPLA3 p.Ile148Met [rs738409], and TM6SF2 p.Glu167Lys [rs58542926]) 

were obtained from the following sources: 

1.  lipids:  current analysis 

2.  fatty liver:  Between 2002 and 2005, 1,400 individuals from the Framingham Offspring Study 

and 2,011 individuals from third generation underwent multi-detector computed tomograms (CT) 

on which we evaluated liver attenuation as previously described52. We tested the association of 

TG variants with CT liver fat after inverse normal transformation. Covariates in the regression 

models included age, age2, and gender. A similar analysis was conducted in 3,293 participants of 



 

European ancestry from BioImage study53. Association results for liver attenuation from the 

Framingham and BioImage studies were combined through fixed-effects inverse-variance 

weighted meta-analysis (Table S20).  

3.  type 2 diabetes:  ExTexT2D Consortium54  

4.  CAD:  published results from the Myocardial Infarction Genetics and CARDIoGRAM Exome 

Consortia study47. 

 

 



 

Fig. 1: A1CF p.Gly398Ser mutant leads to increased APOB100 secretion. A, Western blot 
showing the depletion of endogenous A1CF levels via CRISPR/Cas9 system in both Huh7 and 
HepG2 cells. B and C, Lack of A1CF leads to reduced APOB100 secretion in Huh7 (B) and 
HepG2 (C) human hepatoma cells. D, Recombinantly overexpressed A1CF p.Gly398Ser variant 
led to significantly increased APOB100 secretion compared to A1CF or GFP control in both 
Huh7 wild-type and A1CF knockout cells (labeled as A1CF KO), respectively. The error bars 
show SD from experiments with biological replicates, N=6 for B, C and D. Statistically 
significant differences are marked (*p<0.05, **p<0.01). 
 
 

 

 

 

  



 

Fig. 2: Association of genetically-lowered triglycerides by LPL variants with a range of 

phenotypes. Estimates were derived in UK Biobank using logistic regression, adjusting for age, 
sex, ten principal components of ancestry and an indicator variable for array type. Effect 
estimates are for a 1 standard deviation lower plasma triglycerides. Definitions for all outcomes 
are provided in Table S16. 
 
 

 



 

Table 1: Protein-altering variants at novel loci associated with lipid levels 

Chromosome:

position (hg19) 

rs ID Alleles 

(reference/ 

alternative)  

Gene Protein change N Frequency 

alternative allele 

Trait P value Beta±SE 

Total Cholesterol 

2:101627925 rs1062062 C/T TBC1D8 p.Gly954Arg 292898 0.12 TC 1×10-7 -0.021±0.0040 
4:69343287 rs976002 A/G TMPRSS11E p.Tyr303Cys 293961 0.23 TC 

LDL-C 
5×10-20 
3×10-12 

0.029±0.0031, 
0.023±0.0033 

4:155489608 rs6054 C/T FGB p.Pro206Leu 307997 0.0038 TC 
TG 

5×10-12 
3×10-11 

0.14±0.021, 
0.14±0.021 

9:5073770 rs77375493 G/T JAK2 p.Val617Phe 188412 0.0011 TC 
LDL-C 

1×10-11 
2×10-9 

-0.32±0.047, 
-0.30±0.049 

9:117166246 rs2274159 A/G DFNB31 p.Val400Ala 319677 0.48 TC 2×10-7 0.013±0.0026 
17:8216468 rs871841 T/C ARHGEF15 p.Leu277Pro 298725 0.52 TC 2×10-8 0.015±0.0026 

19:18304700 rs874628 A/G MPV17L2 p.Met72Val 319677 0.26 TC 2×10-7 0.015±0.0029 
LDL Cholesterol 

1:155106227 rs4745 A/T EFNA1 p.Asp137Val 291361 0.49 LDL-C 5×10-8 -0.015±0.0027 
4:187120211 rs13146272 C/A CYP4V2 p.Gln259Lys 295826 0.62 LDL-C 1×10-7 -0.015±0.0027 
5:176520243 rs351855 G/A FGFR4 p.Gly388Arg 233058 0.29 LDL-C 4×10-8 -0.018±0.0033 
9:139368953 rs3812594 G/A SEC16A p.Arg1039Cys 293723 0.24 LDL-C 2×10-8 -0.018±0.0031 
10:118397971 rs10885997 A/G PNLIPRP2 p.Gln387Arg 258146 0.41 LDL-C 9×10-8 0.015±0.0029 
10:124610027 rs1891110 G/A FAM24B p.Pro2Leu 295826 0.55 LDL-C 

TC 
8×10-15 
2×10-13 

0.021±0.0026, 
0.019±0.0025 

12:72179446 rs61754230 C/T RAB21 p.Ser224Phe 292762 0.015 LDL-C 1×10-7 0.057±0.011 
14:94844947 rs28929474 C/T SERPINA1 p.Glu366Lys 290263 0.015 LDL-C 

TC 
4×10-14 
6×10-14 

0.081±0.011, 
0.078±0.010 

17:26694861 rs704 G/A VTN p.Thr400Met 295826 0.49 LDL-C 
TC 

6×10-16 
1×10-8 

0.021±0.0026, 
0.015±0.0025 

19:42584958 rs201596848 C/T ZNF574 p.Arg734Cys 273744 0.0014 LDL-C 5×10-12 -0.255±0.037 
Triglycerides 

2:202122995 rs3769823 A/G CASP8 p.Lys14Arg 295956 0.69 TG 1×10-9 0.017±0.0028 
5:131008194 rs26008 T/C FNIP1 p.Gln620Arg 305699 0.92 TG 5×10-9 -0.028±0.0048 
10:52573772 rs41274050 C/T A1CF p.Gly398Ser 299984 0.0072 TG 

TC 
4×10-11 
1×10-7 

0.10±0.015, 
0.08±0.015 

13:45970147 rs138358301 A/G SLC25A30 p.Phe280Leu 301087 0.0035 TG 3×10-11 0.15±0.022 
15:40751555 rs3803357 C/A BAHD1 p.Gln298Lys 305699 0.55 TG 1×10-10 -0.017±0.0026 
17:17409560 rs7946 C/T PEMT p.Val212Met 304420 0.67 TG 1×10-8 -0.016±0.0029 
20:56140439 rs41302559 G/A PCK1 p.Arg483Gln 299984 0.0021 TG 9×10-8 -0.154±0.029 
22:17625915 rs35665085 G/A CECR5 p.Thr149Met 302582 0.050 TG 5×10-8 0.032±0.0059 

HDL Cholesterol 

2:272203 rs11553746 C/T ACP1 p.Thr95Ile 313148 0.33 HDL-C 5×10-8 0.015±0.0027 
2:54482553 rs17189743 G/A TSPYL6 p.Arg246Cys 314415 0.029 HDL-C 2×10-7 0.040±0.0076 

2:179309165 rs75862065 G/A PRKRA p.Pro116Leu 105490 0.29 HDL-C 2×10-7 0.026±0.0050 
3:48229366 rs146179438 C/A CDC25A p.Gln25His 288306 0.020 HDL-C 3×10-11 -0.063±0.0095 

5:176637576 rs28932178 T/C NSD1 p.Ser457Pro 310567 0.17 HDL-C 8×10-9 0.020±0.0035 
11:64031241 rs35169799 C/T PLCB3 p.Ser778Leu 314415 0.060 HDL-C 

TG 
4×10-13, 
3×10-12 

-0.039±0.0054, 
0.038±0.0055 

11:68703959 rs622082 A/G IGHMBP2 p.Thr671Ala 316391 0.31 HDL-C 6×10-10 -0.017±0.0028 



 

16:4755108 rs78074706 G/A ANKS3 p.Arg286Trp 315298 0.022 HDL-C 1×10-9 -0.053±0.0087 
16:69385641 rs76116020 A/G TMED6 p.Phe6Leu 310822 0.033 HDL-C 7×10-9 -0.041±0.0071 
17:40257163 rs2074158 T/C DHX58 p.Gln425Arg 244331 0.19 HDL-C 1×10-7 -0.020±0.0038 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2. Impact of genes involved in hepatic production of triglyceride-rich lipoproteins (PNPLA3, 

TM6SF2) verus lipolysis pathway genes (LPL, ANGPTL4) on related metabolic traits - blood lipids, 
fatty liver, type 2 diabetes, and coronary artery disease. 
Gene LPL  ANGPTL4  PNPLA3  TM6SF2 

Variant p.Ser474Ter  p.Glu40Lys  p.Ile148Met  p.Glu167Lys 
Effect Allele 
Frequency 

X 
10% 

 K 
2% 

 Met 
23% 

 K 
7% 

Blood triglycerides 

Effect Direction        
Beta  
(SE) 
P 

-0.18  
(0.004)   

P < 1 x 10-323 
 

-0.27  
(0.010)  

P = 4 x 10-175 
 

-0.018  
(0.003)  

P = 4 x 10-9 
 

-0.12  
(0.005)   

P = 4 x 10-125 
Blood LDL cholesterol 

Effect Direction -       
Beta  
(SE) 
P 

0.013  
(0.004) 

P = 0.005 
 

-0.004  
(0.010) 

P = 0.70 
 

-0.018  
(0.003) 

P = 1 x 10-8 
 

-0.103  
(0.005) 

P = 7 x 10-93 
Fatty liver 

Effect Direction -  -     
Beta*  
(SE) 
P 

0.026  
(0.031) 

P = 0.41 
 

0.112  
(0.068)  
P = 0.10 

 
-0.247  
(0.022) 

 P = 2 x 10-30 
 

-0.250  
(0.036)  

P = 5 x 10-12 
Type 2 diabetes 

Effect Direction        
Beta  
(SE) 
P 

-0.049 
(0.01)  

P = 7 x 10-9 
 

-0.097  
(0.040)  

P = 1 x 10-4 
 

0.039 
 (0.005)  

P = 2 x 10-10 
 

0.07  
(0.01) 

P = 5 x 10-12 
Coronary artery disease 

Effect Direction        
Beta  
(SE) 
P 

-0.074  
(0.014)  

P = 4 x 10-7 
 

-0.160  
(0.026)  

P = 2 x 10-10 
 

-0.044  
(0.008)  

P = 4 x 10-8 
 

-0.047  
(0.013)  

P = 3 x 10-4 
*A negative beta reflects liver attenuation on computed tomography which is indicative of higher liver fat 
Association results for lipids are derived from present study 
Association results for type 2 diabetes are from54 
Association results for coronary artery disease are from47 
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