Supplementary information

Device fabrication

The interdigitated transducers (IDTs) were fabricated by standard photolithography on a
1 mm thick 128° rotated Y-cut lithium niobate wafer using 20 nm chromium, 80 nm gold
deposition and lift-off. The widths of the electrode fingers and spacing were 75 um, resulting
in an acoustic wavelength of 300 um and theoretical operating frequency of 12.6 MHz. For
each IDT, 20 finger pairs have been used. The polydimethylsiloxane (PDMS) channel was
fabricated via soft lithography. The 2 cm long microchannel is 50 pm in height, 240 um in
width to allow for the presence of two acoustic pressure nodes. The width of the PDMS between
channel and the IDT is 2 mm on each side. The two parts of the device were bonded after a
mixed oxygen plasma treatment, using a corona gun and reactive ion etching.! The best bonding
performance was obtained when the substrate was treated in the reactive ion etch machine for
10 s at 60 W power and 100 mTorr pressure.? The surface of the PDMS channel was activated
for 30 s at medium power using the discharge gun. A small amount of methanol was applied on
the substrate prior to bonding to allow positioning of the PDMS.3

Radiation force in a surface acoustic wave device due to phase modulated acoustic fields

The velocity potential, @, of the two travelling waves in the fluid (@1 and @), is used to
obtain the acoustic pressure and acoustic velocity in the medium, and consequently the radiation
force. This potential can be expressed as:

d, = %exp (i(a)t —kyy — kZZ)) = %exp(ia) (1)
D, = %exp (i (a)t + kyy —k,z - s(t— ts))) = %GXP(iS) ()

where o is the amplitude of the velocity field. The wavenumbers are k = w/cy = \/k3 + k2,
k, = ksin @, and k, = k cos ;.. The rate, s, at which the phase of one of the travelling waves
is modulated is s = 21 /t;.gqmp OF s = 21 /tg10p. (depending on the pattern as shown in Fig. la

or b in the main body of the article). The start of the phase shift is defined as ts.
The acoustic force can be generally expressed for any acoustic field as:*
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where R is the particle radius, xo is the compressibility of the medium, f; and f, are constants
depending on the density and compressibility of the particles and medium. Re{z} denotes the
real part of a complex quantity z, and z* stands for the complex conjugate of z. Finally, the

pressure and velocity fields can be obtained from the velocity potential using p;,, = —p, 0P /0t
and v, = Vo.°

Therefore the pressures are
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and the total pressure is



Pin = Py + P =—i(paexp(icr) + pg exp(i5)) (6)
Similarly for the velocity field
V=Vg (7)
and substitution of (1) and (2) into (7) leads to

vy =V =ik, u?"exp(ia))?—ikz uroexp(ia)i (8)
V, =V, = iky“?(’exp(ia)y—ikz ”?(’exp(ia)z (9)

and therefore the total velocity field is
Vin =Vy +V, =ik, uro[exp(ia)—exp(id)])‘/ —ik, uro[exp(ia)Jr exp(is)g (10)

To evaluate the first term of (3) the complex conjugate and gradient of the pressure have to be
obtained from (6):

Pin =i(paexp(~ia)+ pg exp(-is)) (11)
Vpin =Ky (Paexplicr) - pg expl(i5))y —k, (paexplicr)+ pg exp(is))2 (12)

Furthermore note that
exp(ia)exp(~ia)=exp(id)exp(~is)=exp0=1 (13)

expl(icr)exp(-i5) = explilat —k, y—k,z - at—k, y+k,z+s(t—t, )= exp(-i(2k, y - st -t ))) (14)
xpl-ia)exp(id) = exp(- i) - explif2i, y—sft -, ) (15)

and therefore multiplying (11) by (12) and using identities from (13) to (15) gives
(PVPin ), =—ik, |2 — p3 + paPs exp(-i(2k,y—s(t—t, )~ paps expli(2k, y—s(t-t,)) (16)
(PinPin), =ik, [p3 + P& + Papg exp(-i(2k, y - s(t—t,)))+ paps explil2k,y —s(t-t))f  (17)

The well-known Euler’s formula, and the assumption that p, = p, = pg Since the modulation rate

is much smaller than the frequency, s<<w, gives the following simplified forms for (16) and
17):

(p;Vpin)y ~ -2k, p§ sin(2kyy —s(t—t, )))7 (18)
(P Vi ), = -2k, p3 L+ cos(2k, y—s(t—t, ) (19)

A similar procedure can be performed to obtain the second term of (3). Firstly the Jacobian
matrix of the partial derivatives can be expressed as
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Finally the complex conjugate of the velocity field (10) is
Vi, =ik, uro[exp(—ia)—exp(— i5) +ik, ”?O[exp(_ ia)+exp(~is)p (24)

Combining (20) to (23) with (24) and using again the identities (13) to (15) and the Euler’s
formula we have
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for the y component of the inner product. Since both (18) and (25) are real, when substituting
into (3), only the real parts of f; and f> will play a role:

Facy = —m° 2_§o i (— 2k, p§ sin(Zkyy —s(t—t, )))— 2o fzrzlli—é ky(k§ - kzz)sin(Zkyy —st-t,))| (26)

On rearranging and converting to velocity amplitude, and noting that x=1/(oc?)and = kc we
have
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for the radiation force in the horizontal direction.

For a bulk device with phase shift this equation would take the form®
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Particle trajectories in phase modulated acoustic standing wave fields

Using the formula obtained for the radiation force, and combined with the viscous force,
Newton’s second law can be written as

—Cac Sin(2kyy_s(t_ts ))_ Cviscy = my (28)

Applying the inertial approximation,’ the mj term can be neglected. Moreover since

%(Zkyy— s(t —ts))z 2k, y—s=-2k, cc\,ac sin(2kyy— s(t —ts))—s (29)

using the substitution u =2k, y-s(t-t;)and y =2k,c,. /c,the resulting differential equation

‘;—u:—ysinu—s (30)
can be separated and solved:
LN (31)
ysinu+s
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Afterwards direct rearrangement for y(t) yields

) itanl(y—otan((le—tQ)m)j (33a)
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where Q=4/s?—»? and the c; constant can be determined from the initial particle position. The

inverse tangent function is taken to be monotonic during the ramping. For the constant phase
shift case without the jump, ts is simply zero, for the 90° jump case it is quarter of the slope
time.

For the rest phase the particle trajectories can be described by?®
y(£) = --tan"}(czexp(—yt)) (33b)
y

where ¢ is a constant depending on initial conditions.

Numerical implementation of the differential equation of motion

The particle motion predicted by the analytical equations are compared with those obtained
by a finite-difference scheme. From the position y(t) of a given particle and its velocity u(t)
at time t, the position y(t + At) and the velocity u(t + At) after a small time step, At, are
calculated by solving the differential equation of motion using the Euler method:

y(t + At) = y(t) + u(t)At + %a(t)Atz (34)

u(t + At) = u(t) + a(t)At (35)



where the acceleration a(t) is given by:

a(t) — Fac(t)+Fdrag(t)

(36)

The parameters used in the numerical simulation can be seen in Table I.

TABLE |
PARAMETERS USED FOR NUMERICAL SIMULATIONS

Symbol Quantity Value
Kp compressibility of particle 2.16 x 1010 pat
Ko compressibility of medium 4.56 x 10°Pa’?
Dp density of particle 1.05 g-cm™®
0 density of medium 1g-cm3
Cs sound velocity on LiNbO3 surface 3780 m-s?
C sound velocity in medium (water) 1480 m-s?
medium dynamic viscosity of medium 1 mPa-s
f frequency 13.3 MHz
Po pressure amplitude 96 kPa
Ra, Rs particle radii 5and 7.5 um
At time step for numerical method 1 us
tslope slope time parameter 0.85s
tramp ramping time parameter 0.64s
trest rest time parameter 1s

Force measurement methodology

To measure the acoustic radiation force acting on the particles and to obtain the acoustic
energy density in the device, a modified version of the curve fitting method® is used. Firstly,
the two IDTs were activated, and the particles trapped at the pressure nodes. The phase of one
IDT was suddenly changed by 130°, and the particles translated with the shifted node. The
resulting trajectories follow (33b) and can be used to obtain the acoustic energy densities. A
phase jump of 130° was used instead of a phase jump of 180° to avoid the unstable position of
the particles at antinodes (Fig. 3c). The curve fitting was performed on the position-speed plots
that follow sinusoidal curves and offer easier fitting rather than on the time-position plots that
can be modelled by a more complex equation (33b) only.

Since the radiation force is balanced by the drag force, considering the absolute value of the
particle speed gives:

fac sin(Zkyy) =A sin(Zkyy) (37)

Cyisc
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and the speed was calculated as the central finite difference quotient w; = (yi41 — yi—1)/
(t;+1 — t;—1) at each point of the trajectory. The only fitting parameter is the amplitude A that
can be approximated by minimizing the overall squared error sum. From this approximated
maximum speed A, the acoustic energy density can be simply obtained by

Eac — MmediumA4 (38)
2R%ky ¢

where R is the radius of the particle, ky is the apparent wavenumber in the y direction, ¢ is the

acoustic contrast factor and #medium is the dynamic viscosity of the medium. Furthermore the
pressure amplitude within the cavity is given by*

Pa =~/ 4Eqc/Ko (39)
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