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Abstract
We introduce and examine a collection of unusual electromagnetic disturbances. Each of these is an
exact,monochromatic solution ofMaxwell’s equations in free spacewith looped electric andmagnetic
field lines offinite extent and a localised appearance in all three spatial dimensions. Included are the
first explicit examples ofmonochromatic electromagnetic knots.We also consider the generation of
our unusual electromagnetic disturbances in the laboratory, at both low and high frequencies, and
highlight possible directions for future research, including the use of unusual electromagnetic
disturbances as the basis of a new formof three-dimensional display.

1. Introduction

Light is usually thought of as being localised in two spatial dimensions but not three: onemight imagine a ray of
sunshine or a laser beam, for example. A pulse of light, which is necessarily polychromatic, can be fully localised
in space at a given time, but spans an extended region as it propagates.

In thepresentpaperwe show that it is, in fact, possible formonochromatic light to appear fully localised in free
space at afixed location and, furthermore, that such light can takeonavarietyof remarkable forms. Specifically,we
introduce andexamine a collectionof ‘unusual electromagnetic disturbances’, eachofwhich is an exact,
monochromatic solutionofMaxwell’s equations in free space [1–4]with loopedelectric andmagneticfield linesof
finite extent anda localised appearance in all three spatial dimensions. Includedare thefirst explicit examplesof
monochromatic electromagnetic knots (seebelow).Wealso consider the generationof ourunusual electromagnetic
disturbances in the laboratory, at both lowandhigh frequencies, andhighlight possible directions for future research,
including theuseofunusual electromagnetic disturbances as thebasis of anew formof three-dimensional display.

Within optics the closest field of research is, perhaps, that of so-called electromagnetic knots, which has its
origins in thework of Rañada [5–10] and is nowbeginning to grow, rapidly [11–32]. The term ‘electromagnetic
knot’was introduced by Rañada to refer to electromagnetic disturbances for which ‘the electromagnetic field as a
whole is tied to itself’ [7] in that ‘any pair ofmagnetic lines or any pair of electric lines are a link’ [9]. It has since
been usedmore broadly (and accurately), however, to describe, in addition, electromagnetic disturbances for
which the electric andmagnetic field lines exhibit legitimately knotted topologies.We refer to any
electromagnetic disturbance forwhich the electric and/ormagnetic field lines exhibit non-trivial topologies as
an electromagnetic knot. Note that our focus here is notupon threads of darkness [33–37] or polarisation
singularities [37–41], which can also exhibit non-trivial topologies.

The present paper represents a new contribution to the field of electromagnetic knots in that some of our
unusual electromagnetic disturbancesmight be regarded as the first explicit examples ofmonochromatic
electromagnetic knots: the electromagnetic knots introduced explicitly by others to date are polychromatic
[5–32]. An obvious advantage ofmonochromaticity over polychromaticity is that it facilitates generation in the
laboratory using lasers. It should be noted, however, that our unusual electromagnetic disturbances are
qualitatively distinct from the electromagnetic knots introduced by others [5–32]. In particular, some of our
unusual electromagnetic disturbances can be thought of as (exotic) electromagnetic standingwaves, which do
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not propagate, whereasmost of the electromagnetic knots introduced by others can be regarded as
electromagnetic pulses, propagating at the speed of light whilst distorting [5–32].

The total energy and other such properties of allmonochromatic solutions toMaxwell’s equations in free
space diverge. Our unusual electromagnetic disturbances are no exception: for each disturbance the electric and
magnetic fields exhibit a ‘ r1 ∣ ∣’ fall off as onemoves away from the region of primary interest (as described in
section 3.1.2), but this is not sufficient to render the total energy and other such properties of the disturbance
finite. The total energy and other such properties can be rendered finite without dramatically altering the basic
character of the disturbance, however, by introducing a distribution of frequencies with a small spread, inwhich
case the disturbance is quasi-monochromatic rather than strictlymonochromatic.We consider these subtleties
inmore detail in section 4.

Wework in the classical domain, imagining ourselves to be in an inertial frame of reference described by
right-handedCartesian coordinates x, y and zwith associated unit vectors x̂, ŷ and ẑ and time t. E0 is an electric
field strength, T ck c2 20 0 0 0w p p l= = = is an angular frequency, l and l¢ are integers, 0f is a geometrical
angle and 0d is a phase.

2.Motivation and overview

In the strict absence of charge, the electricfield E andmagneticfield B obeyMaxwell’s equations in the form [1–4]

E 0, 1 =· ( )

B 0, 2 =· ( )

E B 3 ´ = - ˙ ( )

B E, 40 0 m ´ = ˙ ( )

where  is the del operatorwith respect to x y zx y zr = + +ˆ ˆ ˆ and an overdot indicates partial differentiation
with respect to t. Gauss’s law (1) together with the divergence theorem [42] states that theflux of E through any
closed surface  at any given time is zero [3, 4]:

E rd 0. 52

ò =· ( )

This permits two distinct possibilities: an electric field linemust extend indefinitely or else form a closed loop of
finite extent. Similarly for B.

Electromagnetic disturbanceswith indefinitely extending electric (andmagnetic)field lines arewell known,
a plane electromagnetic wave being a clear example. The electric field E of the linearly polarised planewave

xE k z tE cos , 60 0 0
 w= -ˆ ( ) ( )

y
E

c
k z tB cos 70

0 0
 w= -ˆ ( ) ( )

is depicted infigure 1 to illustrate this: in any given plane of constant z at any given time
t z c l T1 2 20¹ + +( ) the electric field lines are straight lines of indefinite extent, parallel to the x axis.

Electromagnetic disturbanceswith looped electric (andmagnetic)field lines offinite extent are less well
understood:many interesting results have been presented, in particular with regards to electromagnetic knots
[5–32], but there remainsmuch to be done. The author’s desire to help explore this avenue led to the present
paper.

The basic structure of the present paper is as follows. In section 3we introduce our unusual electromagnetic
disturbances and describe some of their properties. In section 4wemake some general observations with regards
to the energies and temporal dependencies of our unusual electromagnetic disturbances. In section 5we
consider the generation of our unusual electromagnetic disturbances in the laboratory. In section 6we highlight
some possible directions for future research.

The key features common to our unusual electromagnetic disturbances are as follows.

• Each of our unusual electromagnetic disturbances is an exact solution ofMaxwell’s equations (1)–(4) and can
thus exist as an entity unto itself.

• Each of our unusual electromagnetic disturbances ismonochromatic. Owing to the scale invariance of (1)–(4)
[43], our unusual electromagnetic disturbances are valid in any region of the electromagnetic spectrum: they
can be thought of equally in the radiowave domain [44] or the gamma-ray domain [45–47], for example. Our
unusual electromagnetic disturbances are not electromagnetic pulses. Polychromatic variants of our unusual
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electromagnetic disturbances can be constructed. Save for the discussions in section 4, we refrain from
pursuing these further in the present paper, however.

• Each of our unusual electromagnetic disturbances has looped electric (andmagnetic)field lines of finite extent.
Our unusual electromagnetic disturbances are notmerely regions of heightened ‘intensity’ as in a caustic [48],
for example. Indeed, they cannot be understoodwithin the framework of ray optics: interference is vital to the
formation of our unusual electromagnetic disturbances, with thewavevectors, amplitudes, phases and
polarisations of the plane electromagnetic waves that comprise a given disturbance all playing important roles.

• Each of our unusual electromagnetic disturbances appears to bewell localised in all three spatial dimensions in
that the electric (andmagnetic)field strengths in the regions described are significantly larger than those found
anywhere else. Our unusual electromagnetic disturbances are not propagating beams of structured light [37],
for example.

We centre our explicit discussions upon the electric field rather than themagnetic field as the electric field is
often of greater importancewhen one comes to consider basic interactions between light andmatter.Moreover,
it is the looped character of the (free) electric field lines rather thanmagnetic field lines that is novel: E 0 ¹·
in the presence of chargewhereas B 0 =· in general, it seems [3, 4, 49]. As (1)–(4) place B on equal footing
with E, the electric andmagnetic properties of a disturbance can nevertheless be interchanged by performing a
duality transformation: cE B , cB E - [4, 50–53].

We use the following superscript labels to distinguish between our explicit solutions of (1)–(4):

LABEL NAME

 Plane electromagnetic wave (section 2)
ɑ Electric ring (section 3.1.3)
ɓ Electric globule (section 3.1.4)
ƈ Electromagnetic tangle (section 3.1.5)
ɗ Electric loop (section 3.2.2)
ə Electric link (section 3.2.3)

Straight electric line (section 3.2.4)
ɠ Curved electric line (section 3.2.4)
ɦ Electric torus knot (section 3.2.5)
i Electric non-torus knot (section 3.2.5)
ʝ Electromagnetic cloud (section 3.2.6)
 Random superposition of plane electromagnetic waves (section 3.2.6)

and the superscript label LF to denote the radiation generated by our electric-ring antenna (section 5).Magnetic
versions of our electric ring, our electric globule, our electric loop, our electric link, our electric lines and our
electric knots can be obtained via duality transformations.

Figure 1.The electricfield E of a linearly polarised plane electromagnetic wave (section 2), depicted as a three-dimensional vector
plot at an instant of time: each blue arrow represents an electric field vector, colour-coded and scaled bymagnitude.
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3.Unusual electromagnetic disturbances

In the present sectionwe introduce our unusual electromagnetic disturbances and describe some of their
properties.We distinguish between two different ‘kinds’ of unusual electromagnetic disturbance, with the first
described in section 3.1 and the second described in section 3.2.Our unusual electromagnetic disturbances of
the second kind aremore elaborate than those of the first kind.

Our approach is heuristic andwemake no serious claims of completeness. Indeed, it seems clear that our
unusual electromagnetic disturbances represent but a small subset of the possibilities on offer, withmyriad
different topologies and temporal dependencies waiting to be explored. The reader is invited to extend our
approach and construct their ownunusual electromagnetic disturbances, which can be shared via the online
repository at www.ytilarihc.com/ued.

3.1. Thefirst kind
In the present subsectionwe introduce our unusual electromagnetic disturbances of the first kind. Any one of
these can be regarded as amonochromatic superposition of plane electromagnetic waves propagating in every
direction, each of equal amplitude, equal phase at the origin andwith an equivalent polarisation, as described in
more detail below.

In section 3.2wewill employ our unusual electromagnetic disturbances of the first kind as building blocks
for our unusual electromagnetic disturbances of the second kind.

3.1.1. Construction
First, we recall that any electromagnetic disturbance can be regarded as a superposition of plane electromagnetic
waves: the general solution toMaxwell’s equations (1)–(4) can be cast as

k kE e d sin d d , 8kk tr

0

2

0 0

i 2B Aò ò ò j J J J j= +
p p

w
¥

-
⎡
⎣⎢

⎤
⎦⎥( ˆ ˜ ˆ ˜ ) ( )( ˆ· )R

c
k kB

1
e d sin d d , 9kk tr

0

2

0 0

i 2A Bò ò ò j J J J j= -
p p

w
¥

-
⎡
⎣⎢

⎤
⎦⎥( ˆ ˜ ˆ ˜ ) ( )( ˆ· )R

wherej,ϑ and k cw= are spherical coordinates in reciprocal space;

x ysin cos , 10j j j= - +ˆ ˆ ˆ ( )

x y zcos cos sin cos sin , 11J j J j J J= + -ˆ ˆ ˆ ˆ ( )

k x y zcos sin sin sin cos 12j J j J J= + +ˆ ˆ ˆ ˆ ( )

are associated unit vectors and Ã and B̃ are complex functions ofj,ϑ and k. A particular disturbance is
determined by specifying Ã and B̃, which is equivalent to specifying the so-called normal variables:
‘ 2i e t3

0
iB A a j Jp w= - + w-˜ ( ˆ ˜ ˆ ˜ ) ’ according to the formalismdescribed in [2], for example. An

alternative expansion of the electromagnetic field, in terms ofmultipolar rather than planewaves, is outlined in
the appendix.

Next, we specialise tomonochromatic disturbances by taking E k k k20 0 0
2A A d p= ¢ -˜ ˜ ( ) and

E k k k20 0 0
2B B d p= ¢ -˜ ˜ ( ) without further loss of generality, where A¢˜ and B¢˜ are complex functions ofj andϑ

only and Kd ( ) is theDirac delta function: each planewave has the same angular frequency ck0 0w = .
Equations (8) and (9) thus reduce to

E
E

2
e sin d d e , 13kk tr0

0

2

0

i i0 0B Aò ò j J
p

J J j= ¢ + ¢
p p

w-
⎡
⎣⎢

⎤
⎦⎥( ˆ ˜ ˆ ˜ ) ( )ˆ·R

E

c
B

2
e sin d d e . 14kk tr0

0

2

0

i i0 0A Bò ò j J
p

J J j= ¢ - ¢
p p

w-
⎡
⎣⎢

⎤
⎦⎥( ˆ ˜ ˆ ˜ ) ( )ˆ·R

Aparticularmonochromatic disturbance is determined by specifying A¢˜ and B¢˜ .
Finally, we obtain our unusual electromagnetic disturbances of the first kind by taking 0A A¢ = ¢˜ ˜ and

0B B¢ = ¢˜ ˜ , where 0A¢˜ and 0B¢˜ are complex constants, independent ofj andϑ: planewaves propagating in every
direction, each of equal amplitude, equal phase at the origin andwith an equivalent polarisation relative to ĵ
and Ĵ. Equations (13) and (14) thus reduce to

s zE f g hE i, , , , , , , , , , , , , , , e , 15t
0 0 0

i 0B Af= ¢ + ¢ + w-⎡⎣ ⎤⎦{ }˜ ˆ ˜ ( ˆ ˆ ) ( )R
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s z
E

c
f g hB i e 16t0

0 0
i 0A Bf= ¢ - ¢ + w-⎡⎣ ⎤⎦{ }˜ ˆ ˜ (ˆ ˆ ) ( )R

with themodulating scalar fields

f J k s k zsin cos cos sin d , 17
0

1 0 0ò J J J J=
p

( ) ( ) ( )

g J k s k zsin sin cos sin cos d , 18
0

1 0 0ò J J J J J= -
p

( ) ( ) ( )

h J k s k zsin cos cos sin d , 19
0

0 0 0
2ò J J J J= -

p
( ) ( ) ( )

where J Xa ( ) is the Bessel function of thefirst kind of orderα andf, s and z are cylindrical coordinates defined
such that

x s cos , 20f= ( )

y s sin 21f= ( )

with associated unit vectors

x ysin cos , 22f f f= - +ˆ ˆ ˆ ( )

s x ycos sin . 23f f= +ˆ ˆ ˆ ( )

Aparticular unusual electromagnetic disturbance of the first kind is determined by specifying 0A¢˜ and 0B¢˜ .We
give explicit examples in sections 3.1.3–3.1.5.

3.1.2. Themodulating scalar fields f, g and h
The forms of our unusual electromagnetic disturbances of thefirst kind (and, by extension, our unusual
electromagnetic disturbances of the second kind (section 3.2)) derive from those of themodulating scalar fields f,
g and h as seen in (15) and (16).We therefore examine f, g and h here for reference inwhat follows.

f, g and h are cylindrically symmetric: they do not depend onf. Furthermore, it can be seen by inspecting
(17)–(19) that f is even in z: f z f z= -( ) ( ), g is odd in z: g z g z= - -( ) ( ) and h is even in z: h z h z= -( ) ( ).
More generally, the variation of f, g and hwith s and z can be explored by numerical integration. The results
obtained near the origin for f are depicted in figure 2, those for g are depicted infigure 3 and those for h are
depicted infigure 4.Note the following features.

• The z axis is a nodal line of f: f s z0, 0= =( ) . The highest peak of f∣ ∣can be found at s 0.34 ... 0l= ( ) and
z=0, where f 1.06 ...= . The second highest peaks of f∣ ∣can be found at s 0.78 ... 0l= ( ) and
z 0.52 ... 0l= ( ) , where f 0.41 ...= - . The third highest peak of f∣ ∣can be found at s 0.97 ... 0l= ( ) and
z=0, where f 0.28 ...= .

• The z axis is a nodal line of g and the z=0 plane is a nodal plane: g s z g s z0, , 0 0= = = =( ) ( ) . The highest
peaks of g∣ ∣can be found at s 0.41 ... 0l= ( ) and z 0.34 ... 0l= ( ) , where g 0.44 ...=  . The second highest
peaks of g∣ ∣can be found at s 0.75 ... 0l= ( ) and z 0.85 ... 0l= ( ) , where g 0.25 ...=  . The third highest
peaks of g∣ ∣can be found at s 1.00 ... 0l= ( ) and z 1.34 ... 0l= ( ) , where g 0.18 ...=  .

• The highest peak of h∣ ∣can be found at s=0 and z=0, where h 1.57 ...= - . The second highest peak of h∣ ∣
can be found at s 0.69 ... 0l= ( ) and z=0, where h 0.47 ...= . The third highest peak of h∣ ∣can be found at
s 1.22 ... 0l= ( ) and z=0, where h 0.26 ...= - .

Further numerical investigation reveals that f, g and h each tend towards a form that is at least qualitatively
similar to a sinusoidal undulationmodulated by a r1 ∣ ∣ fall off as r  ¥∣ ∣ in any non-trivial direction. This is
more dramatic than the analogous X1 fall off inherent to each of the J Xa ( ) seen in the integrands of
(17)–(19).

f, g and h are related by

k f
g

z

h

s
, 240- =

¶
¶

-
¶
¶

( )

k g
f

z
, 250- = -

¶
¶

( )
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Figure 3.A two-dimensional density plot of themodulating scalarfield g in greyscale, with contours for which g 0> overlaid in
white, contours for which g = 0 overlaid in blue and contours for which g 0< overlaid in black.

Figure 2.A two-dimensional density plot of themodulating scalarfield f in greyscale, with contours forwhich f 0> overlaid inwhite,
contours for which f=0 overlaid in blue and contours forwhich f 0< overlaid in black.
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k h
s

f
f

s

1
, 260- = +

¶
¶

( )

in accordwith the Faraday–Lenz law (3) and the Ampère–Maxwell law (4).

3.1.3. Electric ring
Taking 00A¢ =˜ and i0B¢ = -˜ in (15) and (16) corresponds to having each planewave linearly polarised parallel
to ĵ and gives our ‘electric ring’:

E f tE cos , 270 0f w= ˆ ( ) ( )ɑ

s z
E

c
g h tB sin , 280

0w= +(ˆ ˆ ) ( ) ( )ɑ

so-named because when t l T1 2 20¹ +( ) some of the electric field lines form a particularly prominent ring-
like feature near the origin. The electric field Eɑ of our electric ring is depicted infigures 5 and 6.Note that the
magnetic field Bɑ of our electric ring is equivalent to the electric field Eɓ of our electric globule (section 3.1.4) in
that cB E=ɑ ɓ .

Our electric ring is qualitatively similar to the electromagnetic disturbance described in [54] in that both are
monochromatic and exhibit azimuthally directed electricfield vectors. The two differ, however, in their spatial
dependence and onemight argue that the particularly prominent ring-like feature of our electric ring ismore
pronounced than the analogous feature in [54]. See also [55].

3.1.4. Electric globule
Taking i0A¢ =˜ and 00B¢ =˜ in (15) and (16) corresponds to having each planewave linearly polarised parallel to
Ĵ and gives our ‘electric globule’:

s zE g h tE sin , 290 0w= +(ˆ ˆ ) ( ) ( )ɓ

E

c
f tB cos , 300

0f w= - ˆ ( ) ( )ɓ

so-named because when t lT 20¹ some of the electric field lineswind polloidally and cluster near the origin,
giving the disturbance a globular appearance. The electric field Eɓ of our electric globule is depicted infigures 7
and 8.Note that themagnetic field Bɓ of our electric globule is equivalent to the electricfield Eɑ of our electric
ring (section 3.1.3) in that cB E= -ɓ ɑ .

Figure 4.A two-dimensional density plot of themodulating scalarfield h in greyscale, with contours forwhich h 0> overlaid in
white, contours for which h = 0 overlaid in blue and contours for which h 0< overlaid in black.
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Figure 5.The electricfield Eɑ of our electric ring (section 3.1.3), depicted as a three-dimensional vector plot at an instant of time: each
blue arrow represents an electricfield vector, colour-coded and scaled bymagnitude.

Figure 6.The electricfield Eɑ of our electric ring (section 3.1.3), depicted as a two-dimensional vector plot at an instant of time: each
blue cross (E 0f >· ˆɑ ) or circle (E 0f <· ˆɑ ) represents an electricfield vector, colour-coded bymagnitude.
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Figure 7.The electricfield Eɓ of our electric globule (section 3.1.4), depicted as a three-dimensional vector plot at an instant of time:
each blue arrow represents an electric field vector, colour-coded and scaled bymagnitude.

Figure 8.The electricfield Eɓ of our electric globule (section 3.1.4), depicted as a two-dimensional vector plot at an instant of time:
each blue arrow represents an electric field vector, colour-coded bymagnitude.
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Our electric globule is qualitatively similar to a duality-transformed version of the electromagnetic
disturbance described in [54]. See also [55].

3.1.5. Electromagnetic tangle
Taking 1 20A¢ =˜ and i 20B s¢ =˜ with 1s =  in (15) and (16) corresponds to having each planewave left-
or right circularly polarised [4, 56] and gives our ‘electromagnetic tangle’:

s z
E

f g h tE
2

cos , 310
0fs w= - + +( ˆ ˆ ˆ ) ( ) ( )ƈ

s z
E

c
f g h tB

2
sin , 320

0f s w= - +⎡⎣ ⎤⎦ˆ (ˆ ˆ ) ( ) ( )ƈ

so-named because the electric andmagnetic field lines encode a ‘tangle’ of knots as described inmore detail
below.Our electromagnetic tangle is chiral [57]: 1s = and 1s = - give its enantiomorphs. The electric field
Eƈ of the 1s = formof our electromagnetic tangle is depicted infigure 9 and that of the 1s = - form is
depicted infigure 10.Note that themagnetic field Bƈ of our electromagnetic tangle is proportional to a time-
translated version of Eƈ in that t t T cB E 40s= +( ) ( )ƈ ƈ .Moreover, our electromagnetic tangle can be
regarded as a superposition of our electric ring (section 3.1.3) and a time-translated version of our electric
globule (section 3.1.4):

t t t TE E E
1

2
4 , 330s= - + +⎡⎣ ⎤⎦( ) ( ) ( ) ( )ƈ ɑ ɓ

t t t TB B B
1

2
4 , 340s= - + +⎡⎣ ⎤⎦( ) ( ) ( ) ( )ƈ ɑ ɓ

aswas suggested to the author by StephenMBarnett and Jörg BGötte.
The basic formof the electric field lines of our electromagnetic tangle, which are non-vanishingwhen

t l T1 2 20¹ +( ) , can be appreciated by considering the following, with reference to the chart infigure 11. In a
planewith 0f f= , contours for which f=0 delimit crescent-shaped areas. The sign of f is constantwithin the

Figure 9.The electricfield Eƈ of the 1s = formof of our electromagnetic tangle (3.1.5), depicted as a three-dimensional vector plot at
an instant of time: each blue arrow represents an electric field vector, colour-coded and scaled bymagnitude.
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Figure 10.The electricfield Eƈ of the 1s = - formof our electromagnetic tangle (3.1.5), depicted as a three-dimensional vector plot
at an instant of time: each blue arrow represents an electric field vector, colour-coded and scaled bymagnitude.

Figure 11.A cross section of the i 1, 2,= ¼ tori defined by f=0, with regions for which f 0< in dark grey; regions for which f 0>
in light grey; points for which g s s z h s s, 0 , 0 0i i= = = = =( ) ( ) indicated by black crosses and the sense of circulation of s zg h+ˆ ˆ
about these points indicated by light-blue arrows.
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ith crescent (i 1, 2,Î ¼{ }) and differs between the ith and i 1+( )th crescent.Within the ith crescent there is
one point a distance si along the s axis at z=0 aboutwhich the two-dimensional vector field s zg h+ˆ ˆ circulates
g s s z h s s z, 0 , 0 0i i= = = = = =( ( ) ( ) ), counter-clockwise if f 0> or clockwise if f 0< . In three
dimensions, the crescents define tori (obtained by revolving them about the z axis).We now confine our
attentionwithin the ith such torus, without loss of generality: electricfield lines do not pass between tori. There is
one circular electric field line in the z=0 plane:

s s z f s s z E tE , 0
1

2
, 0 cos , 35i i 0 0fs w= = = - = =( ) ˆ ( ) ( ) ( )ƈ

which points in the f+ direction if f s t, 0 cos 0i 0s w- >( ) ( ) or the f- direction if f s t, 0 cos 0i 0s w- <( ) ( ) .
The other electric field lines follow this line azimuthally (because f has the same sign everywhere)whilst twisting
around it (because of the circulation inherent to s zg h+ˆ ˆ ) to form right-handed helices if 1s = or left-handed
helices if 1s = - . Analogous observations can bemade for themagneticfield lines, of course, which are non-
vanishingwhen t lT 20¹ .

The electric field lines at any given time t l T1 2 20¹ +( ) can be examined by numerically integrating the
streamline equation

r E r

E r

d

d
, 36

t
t

t
t

=
( ) [ ( )]

∣ [ ( )]∣
( )

ƈ

ƈ

giving the trajectory of the jth electric field line as

r r
E r

E r
0 d , 37j j

0
òt

t
t

t= +
¢
¢

¢
t

( ) ( ) [ ( )]
∣ [ ( )]∣

( )
ƈ

ƈ

where τ is an arc lengthwhich increases from0 as one follows the line from the seed position r 0j( ).Wefind that
certain electric field lines resemble familiar torus knots (with the circular electric field lines given by (35) being
unknots, of course) [58]. A selection of these lines are depicted separately infigure 12 and together infigure 13.
Again, analogous observations can bemade for themagnetic field lines.

Figure 12.A selection of torus-knotted electricfield lines from the i=1 torus of the 1s = formof our electromagnetic tangle
(section 3.1.5) and their (p, q) designations [58], with each depicted as a three-dimensional streamline plot at an instant of time.
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Interestingly, there is a sense inwhich the chirality [57]of thehelicalfield lines in our electromagnetic tangle is
opposite to that of theplanewaves that comprise the tangle: for 1s =  thefield lines formright- or left-handed
helices, as described above,whereas for eachwave the tips of thefield vectors trace out left- or right-handed cylindrical
helices about thedirectionof propagation [59]. It shouldbenoted, however, that thefield lines of a circularly
polarisedplanewave are, like those of a linearly polarisedplanewave (section2), straight lines of indefinite extent.

Our electromagnetic tanglemight be regarded as the first explicit example of amonochromatic
electromagnetic knot of toroidal character. Persistent polychromatic electromagnetic knots of toroidal character
are described in [21]. Knotted threads of darkness withinmonochromatic electromagnetic fields are described in
[34–37], for example. Loosely speaking, our electromagnetic tanglemight be regarded as a complimentary
structure: herewe have knotted ‘threads of brightness’ (specifically, non-vanishing electric andmagnetic field
lines) rather than darkness.

3.2. The second kind
In the present subsectionwe introduce our unusual electromagnetic disturbances of the second kind. Any one of
these can be regarded as a superposition of translated and perhaps rotated versions of our unusual
electromagnetic disturbances of thefirst kind (section 3.1).

Our unusual electromagnetic disturbances of the second kind are emphatically ‘new’: electromagnetic
disturbances akin to our electric loop (section 3.2.2), our electric link (section 3.2.3), our electric lines
(section 3.2.4), our electric knots (section 3.2.5) and our electromagnetic cloud (section 3.2.6), for example, do
not appear to have been described before.

At the level of theory employed in the present paper, there is no obvious upper limit to the ‘size’ of an
unusual electromagnetic disturbance of the second kind: one is free to imagine an x-ray [60] electric loop large
enough to encircle a star or an infrared [61–63] electromagnetic cloud as big as a house, for example.

3.2.1. Construction
Wecan construct a valid electromagnetic disturbance by superposing translated and perhaps roatated versions
of our unusual electromagnetic disturbances of the first kind, asMaxwell’s equations (1)–(4) are linear,
homogeneous and isotropic [43].

To realise such a superposition and thus obtain our unusual electromagnetic disturbances of the second
kind, let us introduce N 2 auxiliary coordinate systems, with the nth system (n N1, ,Î ¼{ }) described by
right-handedCartesian coordinates xn, yn and zn orientated such that the associated unit vectors xnˆ , yn̂ and znˆ
are given in terms of Euler angles nf , nq and nc as

x x y z , 38n n n n
11 12 13= + +ℓ ℓ ℓˆ ˆ ˆ ˆ ( )( ) ( ) ( )

Figure 13.The electricfield lines depicted in figure 12, shown together.
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y x y z , 39n n n n
21 22 23= + +ℓ ℓ ℓˆ ˆ ˆ ˆ ( )( ) ( ) ( )

z x y z 40n n n n
31 32 33= + +ℓ ℓ ℓˆ ˆ ˆ ˆ ( )( ) ( ) ( )

with the origin x y z 0n n n= = = located at x Xn= , y Yn= and z Zn= , where

cos cos cos sin sin , 41n n n n n n
11 f q c f c= -ℓ ( )( )

sin cos cos cos sin , 42n n n n n n
12 f c f q c= - -ℓ ( )( )

cos sin , 43n n n
13 f q=ℓ ( )( )

sin cos cos cos sin , 44n n n n n n
21 f q c f c= +ℓ ( )( )

cos cos sin cos sin , 45n n n n n n
22 f c f q c= -ℓ ( )( )

sin sin , 46n n n
23 f q=ℓ ( )( )

sin cos , 47n n n
31 q c= -ℓ ( )( )

sin sin , 48n n n
32 q c=ℓ ( )( )

cos 49n n
33 q=ℓ ( )( )

are direction cosines. It follows from the above together with (15) and (16) that our unusual electromagnetic
disturbances of the second kind are given by

s zE f g hE i e , 50
n

N

n n n n n n n n
t

1
0 0 0

i 0B Aå f= ¢ + ¢ + w

=

-
⎧⎨⎩

⎡⎣ ⎤⎦
⎫⎬⎭

˜ ˆ ˜ (ˆ ˆ ) ( )R

s z
E

c
f g hB i e 51

n

N

n n n n n n n n
t

1

0
0 0

i 0A Bå f= ¢ - ¢ + w

=

-
⎧⎨⎩

⎡⎣ ⎤⎦
⎫⎬⎭

˜ ˆ ˜ (ˆ ˆ ) ( )R

with themodulating scalar fields

f J k s k zsin cos cos sin d , 52n n n
0

1 0 0ò J J J J=
p

( ) ( ) ( )

g J k s k zsin sin cos sin cos d , 53n n n
0

1 0 0ò J J J J J= -
p

( ) ( ) ( )

h J k s k zsin cos cos sin d , 54n n n
0

0 0 0
2ò J J J J= -

p
( ) ( ) ( )

where the n0A¢˜ and n0B¢˜ are complex constants and the nf¢ , sn and zn are cylindrical coordinates defined such that

x s cos , 55n n nf= ¢ ( )

y s sin 56n n nf= ¢ ( )

with associated unit vectors

x ysin cos , 57n n n n nf f f= - ¢ + ¢ˆ ˆ ˆ ( )

s x ycos sin . 58n n n n nf f= ¢ + ¢ˆ ˆ ˆ ( )

Aparticular unusual electromagnetic disturbance of the second kind is determined by specifyingN, the nf , the

nq , the nc , theXn, theYn, theZn, the n0A¢˜ and the n0B¢˜ .We give explicit examples in sections 3.2.2–3.2.6.
It is also possible to realise (50) and (51) via appropriate choices of A¢˜ and B¢˜ in (13) and (14), of course. The

forms required turn out to be particularly lengthy, however, andwe refrain, therefore, from reproducing them
explicitly in the present paper.
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3.2.2. Electric loop
Anunusual electromagnetic disturbance inwhich some of the electric field lines form a particularly prominent
loop-like feature (or features) at certain times can be constructed by superposing spatially translated and perhaps
rotated versions of our electric ring (section 3.1.3). Various forms are possible.

Consider for example the triangular ‘electric loop’1 specified by takingN=21 and

n nf nq nc Xn 0l Yn 0l Zn 0l n0A¢˜ n0B¢˜
1 0 0 0 0 d5 3 2 0 0 i-
2 0 0 0 d- d3 3 2 0 0 i-
3 0 0 0 d d3 3 2 0 0 i-
4 0 0 0 d2- d3 2 0 0 i-
5 0 0 0 0 d3 2 0 0 i-
6 0 0 0 d2 d3 2 0 0 i-
7 0 0 0 d3- d3 2- 0 0 i-
8 0 0 0 d- d3 2- 0 0 i-
9 0 0 0 d d3 2- 0 0 i-
10 0 0 0 d3 d3 2- 0 0 i-
11 0 0 0 d4- d3 3 2- 0 0 i-
12 0 0 0 d2- d3 3 2- 0 0 i-
13 0 0 0 0 d3 3 2- 0 0 i-
14 0 0 0 d2 d3 3 2- 0 0 i-
15 0 0 0 d4 d3 3 2- 0 0 i-
16 0 0 0 d5- d5 3 2- 0 0 i-
17 0 0 0 d3- d5 3 2- 0 0 i-
18 0 0 0 d- d5 3 2- 0 0 i-
19 0 0 0 d d5 3 2- 0 0 i-
20 0 0 0 d3 d5 3 2- 0 0 i-
21 0 0 0 d5 d5 3 2- 0 0 i-

in (50) and (51), where it is to be understood that d= 0.33: the area bounded by our electric loop is tiledwith
electric rings such that the electric fields of the rings largely cancel within the boundary of the loopwhilst those
on the loop connect. The formation of the loop is thus analogous to the formation of bound surface currents in
magneticmedia [3, 4]. The electric field Eɗ of our electric loop is depicted in figure 14.

Electric loops, including non-planar electric loops, can also be realised as closed electric lines (section 3.2.4).

Figure 14.The electricfield Eɗ of our electric loop (section 3.2.2), depicted as a three-dimensional vector plot at an instant of time:
each blue arrow represents an electric field vector, colour-coded and scaled bymagnitude.

1
In the present paper ‘electric loop’ is not to be confusedwith ‘looped electric field line’.
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3.2.3. Electric link
Anunusual electromagnetic disturbance inwhich some of the electric field lines form a particularly prominent
link-like feature (or features) at certain times can be constructed by superposing electric loops (section 3.1.3).
Various forms are possible.

Consider for example the ‘electric link’ specified by takingN=32 and

n nf nq nc Xn 0l Yn 0l Zn 0l n0A¢˜ n0B¢˜
1 0 0 0 d3 2- d D3 2- +( ) 0 0 i-
2 0 0 0 d3 2- d D 2- +( ) 0 0 i-
3 0 0 0 d3 2- d D 2-( ) 0 0 i-
4 0 0 0 d3 2- d D3 2-( ) 0 0 i-
5 0 0 0 d 2- d D3 2- +( ) 0 0 i-
6 0 0 0 d 2- d D 2- +( ) 0 0 i-
7 0 0 0 d 2- d D 2-( ) 0 0 i-
8 0 0 0 d 2- d D3 2-( ) 0 0 i-
9 0 0 0 d 2 d D3 2- +( ) 0 0 i-
10 0 0 0 d 2 d D 2- +( ) 0 0 i-
11 0 0 0 d 2 d D 2-( ) 0 0 i-
12 0 0 0 d 2 d D3 2-( ) 0 0 i-
13 0 0 0 d3 2 d D3 2- +( ) 0 0 i-
14 0 0 0 d3 2 d D 2- +( ) 0 0 i-
15 0 0 0 d3 2 d D 2-( ) 0 0 i-
16 0 0 0 d3 2 d D3 2-( ) 0 0 i-
17 0 2p 0 0 d D3 2- -( ) d3 2- 0 i-
18 0 2p 0 0 d D3 2- -( ) d 2- 0 i-
19 0 2p 0 0 d D3 2- -( ) d 2 0 i-
20 0 2p 0 0 d D3 2- -( ) d3 2 0 i-
21 0 2p 0 0 d D 2- -( ) d3 2- 0 i-
22 0 2p 0 0 d D 2- -( ) d 2- 0 i-
23 0 2p 0 0 d D 2- -( ) d 2 0 i-
24 0 2p 0 0 d D 2- -( ) d3 2 0 i-
25 0 2p 0 0 d D 2+( ) d3 2- 0 i-
26 0 2p 0 0 d D 2+( ) d 2- 0 i-
27 0 2p 0 0 d D 2+( ) d 2 0 i-
28 0 2p 0 0 d D 2+( ) d3 2 0 i-
29 0 2p 0 0 d D3 2+( ) d3 2- 0 i-
30 0 2p 0 0 d D3 2+( ) d 2- 0 i-
31 0 2p 0 0 d D3 2+( ) d 2 0 i-
32 0 2p 0 0 d D3 2+( ) d3 2 0 i-

in (50) and (51), where it is to be understood thatd= 0.75 andD= 1.50: our electric link is comprised of two square
electric loops, suitablyorientated andpositioned. The electricfield Eə of our electric link is depicted infigure 15.

Our electric linkmight be regarded as another explicit example of amonochromatic electromagnetic ‘knot’.

3.2.4. Electric lines
Anunusual electromagnetic disturbance inwhich some of the electric field lines form a particularly prominent
line-like feature (or features) at certain times can be constructed by superposing spatially translated and perhaps
rotated versions of our electric globule (section 3.1.4). Various forms are possible.

As our first example consider the ‘straight electric line’2 specified by takingN=15 and

n nf nq nc Xn Yn Zn n0A¢˜ n0B¢˜
1 0 0 0 0 0 d7- i 0

2 0 0 0 0 0 d6- i 0

3 0 0 0 0 0 d5- i 0

4 0 0 0 0 0 d4- i 0

5 0 0 0 0 0 d3- i 0

6 0 0 0 0 0 d2- i 0

7 0 0 0 0 0 d- i 0

8 0 0 0 0 0 0 i 0

9 0 0 0 0 0 d i 0

10 0 0 0 0 0 d2 i 0

11 0 0 0 0 0 d3 i 0

12 0 0 0 0 0 d4 i 0

13 0 0 0 0 0 d5 i 0

14 0 0 0 0 0 d6 i 0

15 0 0 0 0 0 d7 i 0

2
In the present paper ‘electric line’ is not to be confusedwith ‘electricfield line’.
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in (50) and (51), where it is to be understood that d= 0.25: spatially translated versions of our electric globule are
equally spaced along the z axis like totems in a totempole such that the straight electric line which results has a
continuous appearance. The electric field of our straight electric line is depicted infigure 16.

As our second example consider the ‘curved electric line’ specified by takingN=15 and

n nf nq nc Xn 0l Yn 0l Zn 0l n0A¢˜ n0B¢˜
1 π 0 0 d cos 1q 0 d sin 11q -( ) i 0

2 π 14p 0 d cos 2q 0 d sin 12q -( ) i 0

3 π 7p 0 d cos 3q 0 d sin 13q -( ) i 0

4 π 3 14p 0 d cos 4q 0 d sin 14q -( ) i 0

5 π 2 7p 0 d cos 5q 0 d sin 15q -( ) i 0

6 π 5 14p 0 d cos 6q 0 d sin 16q -( ) i 0

7 π 3 7p 0 d cos 7q 0 d sin 17q -( ) i 0

8 π 2p 0 d cos 8q 0 d sin 18q -( ) i 0

9 π π 0 d cos 9q 0 d sin 19q +( ) i 0

10 π 15 14p 0 d cos 10q 0 d sin 110q +( ) i 0

11 π 8 7p 0 d cos 11q 0 d sin 111q +( ) i 0

12 π 17 14p 0 d cos 12q 0 d sin 112q +( ) i 0

13 π 9 7p 0 d cos 13q 0 d sin 113q +( ) i 0

14 π 19 14p 0 d cos 14q 0 d sin 114q +( ) i 0

15 π 10 7p 0 d cos 15q 0 d sin 115q +( ) i 0

in (50) and (51), where it is to be understood that d= 2.00: an S-shaped curve underlies our curved electric line
and is populatedwith electric globulesmuch as a stringmight be populatedwith beads, the globules being
orientated and translated such that the electricfield vectors at the origin of each globule in isolation are tangential
with the underlying curve and the curved electric linewhich results has a continuous appearance. The electric
field Eɠ of our curved electric line is depicted infigure 17.

3.2.5. Electric knots
Anunusual electromagnetic disturbance inwhich some of the electric field lines form a particularly prominent
feature resembling a torus or non-torus knot [58] at certain times can be realised as a closed electric line
(section 3.2.4)with the appropriate topology. Various forms are possible.

Figure 15.The electricfield Eə of our electric link (3.2.3), depicted as a three-dimensional vector plot at an instant of time: each blue
arrow represents an electric field vector, colour-coded and scaled bymagnitude. Each of the electric rings comprising the link has been
plotted for zn 0 l∣ ∣ only, for the sake of clarity.
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Figure 16.The electricfield of our straight electric line (section 3.2.4), depicted as a three-dimensional vector plot at an instant of
time: each blue arrow represents an electric field vector, colour-coded and scaled bymagnitude.

Figure 17.The electricfield Eɠ of our curved electric line (section 3.2.4), depicted as a three-dimensional vector plot at an instant of
time: each blue arrow represents an electricfield vector, colour-coded and scaled bymagnitude.
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As our first example consider the ‘electric torus knot’ specified by takingN=80 and
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where Y Xa tan2 ,( ) is the four-quadrant inverse tangent function, n N2 1nm p= -( ) and it is to be
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and d= 0.90: our electric torus knot is based upon a p q, 2, 3= -( ) ( ) torus knot, also known as a left-handed
trefoil knot [58]. The electric field Eɦ of our electric torus knot is depicted infigure 18.

Our electric torus knotmight be regarded as another explicit example of amonochromatic electromagnetic
knot of toroidal character, following our electromagnetic tangle (section 3.1.5).

Figure 18.The electricfield Eɦ of our electric torus knot (section 3.2.5), depicted as a three-dimensional vector plot at an instant of
time: each blue arrow represents an electric field vector, colour-coded and scaled bymagnitude. Each of the electric rings comprising
the knot has been plotted for sn 0 l∣ ∣ and zn 0 l∣ ∣ only, for the sake of clarity and to render the task numerically tractable.
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As our second example consider the electric non-torus knot specified by takingN=200 and
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with the amplitudes na as described below, where it is to be understood that
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and d= 1.33: our electric non-torus knot is based upon afigure-of-eight knot [58]. The electric field Ei of our
electric non-torus knot is depicted infigure 19. The na are obtained byfirst calculating Ei with the 1na = , then
taking E x X y Y z Z t lTE , , , 2n n n n0 0a = = = = ¹i∣ ( )∣ for thefinal Ei. This iteration gives the final electric
non-torus knot a ‘cleaner’ form than is obtainedwith the 1na = .

Figure 19.The electricfield Ei of our non-torus electric knot (section 3.2.5), depicted as a three-dimensional vector plot at an instant
of time: each blue arrow represents an electricfield vector, colour-coded and scaled bymagnitude. Each of the electric rings
comprising the knot has been plotted for sn 0 l∣ ∣ and zn 0 l∣ ∣ only, for the sake of clarity and to render the task numerically
tractable.
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Our electric non-torus knotmight be regarded as the first explicit example of amonochromatic
electromagnetic knot of non-toroidal character. Amethod bywhich to construct polychromatic electromagnetic
knots of non-toroidal character (at a particular time) is described in [28].

We note here oncemore, as in section 3.1.5, that knotted threads of darkness withinmonochromatic
electromagnetic fields are described in [34–37], for example. Again, loosely speaking, our electric knotsmight be
regarded as complimentary structures: here we have knotted ‘threads of brightness’ (specifically, non-vanishing
electric field lines) rather than darkness.

3.2.6. Electromagnetic cloud
Randomchoices of the parameters defining our unusual electromagnetic disturbances of the second kind can
yield unusual electromagnetic disturbances with prominent electric (andmagnetic) features that resemble
clouds.

Consider for example the ‘electromagnetic cloud’ specified by takingN=20 and

n nf nq nc Xn 0l Yn 0l Zn 0l n0A¢˜ n0B¢˜
1 0.20 1.60 5.60 0.00 0.00 0.69 0.10e3.10i 0.90e4.70i

2 1.40 0.70 6.10 −0.64 0.15 0.15 0.60e1.10i 0.20e1.10i

3 4.90 0.00 0.30 −1.63 0.57 −0.30 1.20e0.60i 0.70e0.60i

4 3.00 1.20 2.40 −0.91 0.21 −0.15 0.10e4.10i 0.50e5.10i

5 5.20 3.10 5.10 −0.82 −0.18 −0.48 0.70e2.90i 1.20e4.10i

6 0.80 2.80 3.80 −1.30 −0.09 0.36 0.50e0.80i 1.00e3.10i

7 2.20 2.30 4.20 −0.55 −0.42 0.12 0.90e1.20i 0.80e2.50i

8 3.70 0.80 1.30 −1.27 −0.60 0.39 1.10e0.10i 1.10e6.00i

9 2.40 1.40 4.40 −0.94 0.30 −0.33 0.20e5.40i 0.40e0.90i

10 4.30 1.90 0.90 −0.46 0.45 0.06 0.30e0.20i 0.20e1.10i

11 1.20 2.80 4.50 0.70 0.15 0.66 0.80e4.10i 0.40e3.20i

12 0.30 1.60 1.10 0.64 −0.18 0.24 0.50e2.50i 1.00e2.30i

13 1.80 1.30 5.30 1.24 0.48 0.30 0.60e1.70i 0.40e2.60i

14 4.50 0.90 6.10 1.15 0.12 −0.18 1.10e3.50i 0.90e6.10i

15 6.00 0.10 2.30 1.03 −0.63 −0.39 0.90e2.40i 0.10e3.10i

16 0.40 1.80 2.20 0.94 −0.24 0.51 0.60e0.20i 0.20e6.20i

17 1.40 3.10 3.20 1.48 0.39 −0.21 0.40e0.50i 1.10e5.10i

18 3.20 2.80 1.80 1.12 0.51 −0.09 0.10e5.50i 0.60e1.70i

19 1.90 1.50 3.60 0.52 −0.30 0.45 0.20e5.30i 0.50e0.50i

20 5.10 2.40 0.90 0.64 0.21 0.66 0.80e0.50i 1.10e1.40i

in (50) and (51): our electromagnetic cloud can be regarded as amodest superposition of spatiotemporally
translated and rotated versions of our electric ring (3.1.3) and our electric globule (3.1.4), with the translations
and rotations assigned randomly (within appropriate ranges). Thewell localised appearances of the rings and
globules see the cloud itself exhibit a well localised appearance. The random choices nevertheless give the cloud
an amorphous form,with the phase differences between the rings and globules giving the cloud amore intricate
temporal dependencewithin each cycle than that exhibited by each of the rings and globules individually. The
electric field E ʝ of our electromagnetic cloud is depicted at different times infigures 20–22. Themagnetic field
Bʝ of our electromagnetic cloud is similarly cloud-like.

Let us emphasise that our electromagnetic cloud is notmerely a random superposition of plane
electromagnetic waves (although such superpositions are interesting in their own right [65]). In general such
superpositions do not yieldwell localised electromagnetic disturbances. Rather, our electromagnetic cloud is a
randomly chosen superposition of electric rings and electric globules, each of which is a carefully chosen
superposition of planewaves. The electricfield E of a random superposition of plane electromagnetic waves is
depicted infigure 23. Comparing this withfigures 20–22, it can be seen immediately that there is indeed a basic
distinction between our electromagnetic cloud and such superpositions. E was generated by taking

2 sinn
N

n n n n1 0A Ap d j j d J J J¢ = å ¢ - -=˜ ˜ ( ) ( ) and 2 sinn
N

n n n n1 0B Bp d j j d J J J¢ = å ¢ - -=˜ ˜ ( ) ( ) in (13) and
(14), togetherwith the values ofN, the nf , the nq , the n0A¢˜ and the n0B¢˜ listed above for our electromagnetic cloud
(whichwe recycle here for the sake of brevity).

4. Energy and temporal dependence

In the present sectionwemake some general observations with regards to the energies and temporal
dependencies of our unusual electromagnetic disturbances.

Some of our unusual electromagnetic disturbances (such as our electric ring (section 3.1.3), our electric
globule (section 3.1.4), our electromagnetic tangle (section 3.1.5), our electric loop (section 3.2.2), our electric
link (section 3.2.3), our electric lines (section 3.2.4) and our electric knots (section 3.2.5)) can be regarded as
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Figure 20.The electricfield E ʝ of our electromagnetic cloud (section 3.2.6) for t lT0= , depicted as a three-dimensional vector plot:
each blue arrow represents an electric field vector, colour-coded and scaled bymagnitude.

Figure 21.The electricfield E ʝ of our electromagnetic cloud (section 3.2.6) for t l T1 3 0= +( ) , depicted as a three-dimensional
vector plot: each blue arrow represents an electric field vector, colour-coded and scaled bymagnitude.
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(exotic) electromagnetic standingwaves: for both the electric field E and themagnetic field B, the spatial and
temporal dependencies factorise, with the temporal dependence consisting simply of a sinusoidal oscillation.
Our other unusual electromagnetic disturbances (such as our electromagnetic cloud (section 3.2.6)) cannot be
regarded as standingwaves, however, due to theirmore intricate temporal dependencies.

Figure 22.The electricfield E ʝ of our electromagnetic cloud (section 3.2.6) for t l T2 3 0= +( ) , depicted as a three-dimensional
vector plot: each blue arrow represents an electric field vector, colour-coded and scaled bymagnitude.

Figure 23.The electricfield E of a random superposition of plane electromagnetic waves (section 3.2.6), depicted as a three-
dimensional vector plot at an instant in time: each blue arrow represents an electric field vector, colour-coded and scaled by
magnitude.
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For each of our unusual electromagnetic disturbances that can be regarded as a standingwave, one can say
that there is no flow of energy on average in any direction at any position, in that the integral of the familiar
electromagnetic energy flux density [3, 4, 43]

E B
1

0m
´

over one periodT0 vanishes everywhere for any initial time t0:

T
tE B

1 1
d 0. 59

t

t T

0 00

0 0

ò m
´ =

+
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One can also say, however, that there is an oscillation of energy, back and forth between the electric field, which
exhibits a time dependence of the form tE cos 0 0w dµ +( ), and themagnetic field, which exhibits a time
dependence of the form tB sin 0 0w dµ +( ), thus differing in phase from the electric field by a quarter cycle.
When t l T 20 0d p= -( ) , E∣ ∣ takes itsmaximumvalue everywhere whereas B 0= , inwhich case the familiar
electromagnetic energy density [2–4, 43]
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indicating that energy is stored in the electric field.When t l T1 2 20 0d p= + -( ) , E 0= whereas B∣ ∣ takes
itsmaximumvalue everywhere, inwhich case the familiar electromagnetic energy density reduces to
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m
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indicating that energy is stored in themagnetic field instead. Such oscillations are, perhaps, a hallmark of
electromagnetic standingwaves and are sustained throughout the disturbance by electromagnetic induction.
For each of our unusual electromagnetic disturbances that cannot be regarded as a standingwave the situation is
different in that
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in general and there is thus a sense inwhich the disturbance is propagating, at least locally.
The above allows leads us to draw a simple distinction between each of our unusual electromagnetic

disturbances that can be regarded as a standingwave and the region of heightened ‘intensity’ found in a tightly
focussed laser beam, for example: one can say that the former do not transport energy on averagewhereas a
beamof light does transport energy on average, in particular through planes perpendicular to its direction of
propagation.

As highlighted in section 2, each of our unusual electromagnetic disturbances appears to bewell localised in
all three spatial dimensions in that the electric (andmagnetic)field strengths in the regions described are
significantly larger than those found anywhere else. It should be noted, however, that the total energy of each of
our unusual electromagnetic disturbances (as we have defined them thus far in the present paper) is infinite in
that the integral of the familiar electromagnetic energy density over all space diverges:
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Similar observations can bemade of other, well-known solutions ofMaxwell’s equations (1)–(4): a
monochromatic Bessel beamhas an infinite energy per unit length [66]; amonochromatic Gaussian beamhas a
finite energy per unit length but also an infinite total energy, as seenwhen integrating the energy per unit length
along the direction of propagation. Good approximations to these solutions are nevertheless generated routinely
withinfinite regions of space in the laboratory [67]. A subtlety is that these approximations are only quasi-
monochromatic, as they exist over finite time intervals. This leads us to recognise that the total energies of our
unusual electromagnetic disturbances can be renderedmeaningful by introducing suitable regularisations into
the frequency spectra of the disturbances. For each of our unusual electromagnetic disturbances of thefirst kind
(section 3.1), one such regularisation consists of taking k k k k krect 2 40 0

2A Ad p d= - ¢˜ [( ) ] ˜ and
k k k k krect 2 40 0

2B Bd p d= - ¢˜ [( ) ] ˜ rather than E k k k20 0 0 0
2A Ad p= - ¢˜ ( ) ˜ and E k k k20 0 0 0

2B Bd p= - ¢˜ ( ) ˜ in
(13) and (14), where Krect( ) is the rectangular function (with K Krect rect2 =( ) ( )) and k k0 2 0d<  is a range
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ofwavenumbers. This renders the total energy finite and time-independent atfinite times ( t < ¥∣ ∣ ), as desired:
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One can appreciate this regularisation as follows. Recall from section 3.1.2 that themodulating scalar fields f, g
and h each tend towards a form that is at least qualitatively similar to a sinusoidal undulationmodulated by a

r1 ∣ ∣ fall off as r  ¥∣ ∣ in any non-trivial direction. Let us therefore consider
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as r  ¥∣ ∣ . The r1 2∣ ∣ fall off seen in (64) ismore dramatic than the r1 ∣ ∣ fall off seen in (63), as desired.More
potent regularisationsmight be required to render quantities like the total angularmomentum [2–4, 43]
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meaningful, due to the presence of r in the integrands.
The author acknowledges that densities and flux densities are not necessarily unique [64]. The ‘familiar’

forms considered above enjoy something of a privileged status, however, in that they seem to be singled out by
gravitational interactions.

Let us conclude here by notingwith interest that each of our unusual electromagnetic disturbances can be set
translatingwith any speed c< in any direction by actively boosting it [3, 4, 68].We are free to do this because
(1)–(4) are Lorentz-invariant [43]. For speeds c , this does not significantly alter the basic formof the
disturbance. It is thus possible to have an ultraviolet [69] electromagnetic tangle translating at 10m s−1, for
example. Each of the plane electromagnetic waves comprising a boosted version of one of our unusual
electromagnetic disturbances propagates with speed c [2–4, 44, 68, 70]. It is the differences in the frequencies of
thesewaves that gives rise to the apparent translation of the disturbance as awhole: the boosted version of a
monochromatic electromagnetic disturbance is polychromatic in general, its constituent plane waves having
beenDoppler shifted [4, 71] by different amounts depending upon their direction of propagationwith respect to
the direction of the boost.

5.Generation

In the present sectionwe consider the generation of our unusual electromagnetic disturbances in the laboratory.
Differentmethods of generationwill be required depending upon the formof disturbance sought and the
frequencies required. In section 5.1we focus upon the use of an antenna to generate an electric ring
(section 3.1.3) in the radiowave ormicrowave domain [44]. In section 5.2we focus upon the use of cylindrically
polarised vector beams to generate an electric ring or electric globule (section 3.1.4) in the visible domain.

Works to date on electromagnetic knots are largely silent on the question of generation [5–11, 13–28, 30–32,
54, 55], although some basic discussions have been presented [12, 29].
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5.1. Radiowave ormicrowave domain
Consider a collection ofM electrically conducting rings, with each ring concentric with the surface of a sphere of
radiusR centred upon the origin; that section of each ringwith 2, 2j Î -D D( ) removed; the ends of each
ring connected to an alternating electric current source of (central) angular frequency ;0w mq the polar angle of
themth ring (m M1, ,Î ¼{ }) and

I I e 65ti 0= w-( ˜ ) ( )R

the (identical) current in each ring, directed in the f̂ direction for I 0> . The basic ingredients of our electric-
ring antenna are depicted infigure 24. Ignoring interactions between rings, taking each ring to be of negligible
cross-section, neglecting the radiation produced by the elements that connect the rings to the current source and
assuming the surroundingmedium to be transparent with phase refractive index np, wefind that the electricfield
radiated by the rings is essentially

E E e 66tLF LF i 0= w-( )˜ ( )R
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where a x y z, ,Î { }, abd is the Kronecker delta function and

x y zRr cos sin sin sin cos 68m m m mj J j J J¢ = + +( ˆ ˆ ˆ ) ( )

is the position of an element of themth ring: ELF is a sumover contributions due to such elements, with each
element treated as an oscillating electric dipole [3, 4].

Figure 24.The basic ingredients of our electric-ring antenna (section 5.1).
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Suppose now that there is a small gap andmany rings such that
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If,moreover, the distance from the origin is small ( Rr ∣ ∣ ) such that
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which is essentially the electric field Eɑ of our electric ring: the two coincide precisely in form for n 1p » so that

f f¢ » , together with a choice of phase for I such that E E0 0
¢ ˜ is real. Our electric-ring antenna is depicted

schematically in operation infigure 25.
The geometrical requirements above are reasonably well satisfied byM=100, R 1.0 10 m1= ´ - and
2 1.3 100

10w p = ´ s−1, for example.
Simple elaborations upon our design permit the generation of other unusual electromagnetic disturbances

in the radiowave ormicrowave domain.

5.2. Visible domain
The following observations were borne out of discussionswith Sonja Franke-Arnold, Neal Radwell and FionaC
Speirits, towhom the author is grateful.

The electric field Eɑ of our electric ring can be recast as
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an azimuthally polarised vector beam [72–77] of transverse wavenumber k kz0
2 2k = - ∣ ∣ propagating in the

z direction. This leads us to suggest, tentatively, that a good approximation to our electric ring in the visible
domainmight be generated in the laboratory by superposing counter-propagating azimuthally polarised vector
beams of light, eachwith an appropriate spread of transverse wave numbers. An analogous arrangementwith
radially polarised [37, 72–75, 77] beamsmight be used to generate a good approximation to our electric globule.
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Electric rings and electric globules created in this way could be used in turn as building blocks to generatemore
elaborate unusual electromagnetic disturbances in the visible domain, following the recipes given in section 3.2,
for example.

The tight focussing of radially polarised vector beams has been explored in considerable detail elsewhere,
owing to the fact that such beams can be focussedmore tightly than usual [77–79]. It is interesting to note that
our electric globule, which can be regarded as a superposition of radially polarised vector beams as described
above, seems to residewithin a sphere of sub-wavelength diameter, in accordwith the aforementioned focussing
properties of the beams individually. The tight focussing of an azimuthally polarised vector beamhas recently
been explored [80], with interesting results.

6.Outlook

We recognisemany possible directions for future research, some ofwhich are highlighted below.
With regards to basic theory:

• It is desirable to developmore systematicmethods for constructing unusual electromagnetic disturbances.
This could lead to applications in the arts, for example, with unusual electromagnetic disturbances joining
spiral beams [81] and caustics (www.zintaglio.com/lens.html) as ameans bywhich to ‘paint with light’. Our
unusual electromagnetic disturbances would add a new element here in that they appear well localised in all
three spatial dimensions, not just two.

• The generation of our unusual electromagnetic disturbances in the laboratory requires further consideration.

• Exoticmediamight permit new types of unusual electromagnetic disturbance [82].

With regards to potential applications:

• Our unusual electromagnetic disturbancesmight enable new and/or improved forms of display. In particular,
unusual electromagnetic disturbances in the visible domainmight act as three-dimensional pixels or voxels
for a new formof volumetric 3Ddisplay, with each voxel rendered visible in air via Rayleigh scattering [83].
Such voxels would be superposable and non-destructive, the small size of each voxel would permit high-
resolution volumetric images, different colours of voxel and therefore images could be realised, the non-
isotropic radiation profiles of the voxels would permit emulation of occlusion and opacity and therewould be
no need formechanical parts within the image volume.

Figure 25.A schematic depiction of our electric-ring antenna (section 5.1) in operation. Part of the antenna has been cut away to
reveal the electric ring (section 3.1.3) generated by the antenna.
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• The setups that we envisage for the generation of our unusual electromagnetic disturbances in the visible
domain are not entirely unlike that found in a ‘4Pi’microscope [84], suggesting possible applications for our
unusual electromagnetic disturbances in imaging.

• The use of electromagnetic forces tomanipulate various forms ofmatter, including atoms [85–87] and fusion
plasmas [88], is well established. The possibilities offered in such contexts by our unusual electromagnetic
disturbancesmight beworthy of pursuit. A preliminary examination of the forces exerted upon charged
particles by an electromagnetic knot is presented in [14]. It is particularly interesting to note that the helical
magnetic field lines found at appropriate timeswithin each torus of our electromagnetic tangle (section 3.1.5)
resemble themagnetic field lines engineered in certain tokamaks to confine hot plasma: perhaps our
electromagnetic tangle could assist in the pursuit of efficient energy production via controlled thermonuclear
fusion.

With regards to natural occurrence:

• Suggestions have already beenmade that novel electromagnetic disturbances [54, 55], in particularmagnetic
knots [29, 89–91], might underpin the phenomenon of ball lightning. Perhaps it is worth revisiting these
hypotheses given the new ideas introduced in the present paper. Variants of our electric-ring antenna (5)
might be employed to ionise the air in unusual geometries and thus help explore such hypotheses in the
laboratory [54, 92, 93], for example.

• Anunusual electromagnetic disturbance in vacuummight appear essentially invisible when viewed from a
sufficient distance, at least as far as its electromagnetic profile is concerned. The disturbance should
nevertheless be capable ofmaking its presence known gravitationally, due to its energy-momentum content
[94]. It is interesting to imagine an electromagnetic cloud in interstellar space acting as a gravitational lens, for
example. Could some component of darkmatter [95] be attributed to unusual electromagnetic disturbances
and/or analogous features in the gravitational field? The author has found it possible to construct gravitational
analogues [96–98] of the unusual electromagnetic disturbances introduced in the present paper, including
gravitational clouds.

Wewill return to these and related ideas elsewhere.
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Appendix.Multipolar electromagnetic waves

The following treatment echoes that given in [2].
Any electromagnetic disturbance can be regarded as a superposition ofmultipolar electromagnetic waves:

the general solution toMaxwell’s equations (1)–(4) can be cast as
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The relationship between themultipolar description outlined above and the plane-wave description used in

themain text is embodied by the following relationships:
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For our unusual electromagnetic disturbances of thefirst kind (section 3.1), wefind that k kkJM X M0 0J J
a d dµ -˜ ( )

and k kkJM Z M0 0J J
a d dµ -˜ ( ) with noobvious closed form for the Jdependencies.
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