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Optical conversion of pure spin currents in hybrid
molecular devices
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Carbon-based molecules offer unparalleled potential for THz and optical devices controlled

by pure spin currents: a low-dissipation flow of electronic spins with no net charge

displacement. However, the research so far has been focused on the electrical conversion

of the spin imbalance, where molecular materials are used to mimic their crystalline

counterparts. Here, we use spin currents to access the molecular dynamics and optical

properties of a fullerene layer. The spin mixing conductance across Py/C60 interfaces is

increased by 10% (5 × 1018 m−2) under optical irradiation. Measurements show up to a 30%

higher light absorbance and a factor of 2 larger photoemission during spin pumping. We also

observe a 0.15 THz slowdown and a narrowing of the vibrational peaks. The effects are

attributed to changes in the non-radiative damping and energy transfer. This opens

new research paths in hybrid magneto-molecular optoelectronics, and the optical detection of

spin physics in these materials.
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Carbon molecules can have extraordinarily long spin
lifetimes of up to milliseconds, with applications in
organic light emitting diodes (OLEDs), sensors, memories

and quantum computing1–7. This potential for electronic and
optoelectronic applications not withstanding, the work on pure
spin currents is tightly focused on the electrical signals induced by
spin currents via the inverse spin Hall effect (ISHE) and other
mechanisms8–10. Most commonly, the spin current is generated
via spin pumping using ferromagnetic resonance (FMR). There,
the power absorbed by a magnet during microwave irradiation is
dissipated by the generation of spin waves; collective, propagating
magnetic excitations. The angular momentum of the spin waves
can be transferred to an adjacent non-magnetic material in the
form of a spin current. Spin–orbit coupling (SOC) will transform
the spin imbalance into charge separation, leading to a DC vol-
tage transverse to the spin current. Measurements of the ISHE in
polymers or carbon-based materials may be done using heavy
metal layers, via transport in anisotropic conducting polymers,

using polymers with intra-chain heavy atoms or molecules with
an intrinsic SOC1, 11, 12.

Optical→spin conversion has been demonstrated when
illuminating Au nanoparticles embedded in Pt/BiY2Fe5O12

bilayers13. The surface plasmons generated give rise to a pure spin
current measured through the ISHE. According to Onsager’s
principle of microscopic reversibility14, 15, if surface plasmon
resonance can be used to generate a spin current, equally spin
pumping could trigger surface plasmons at interfaces with free
electrons and where the dielectric permittivity changes sign
(see Supplementary Note 1). Given the difference in energy and
frequency between magnons and plasmons (meV and GHz vs. eV
and THz), the optical effects of this mechanism are likely to be
small, although incoherent transfer may play a role in facilitating
the conversion16. In FMR experiments, the maximum power
absorbed by the ferromagnet is typically about 1W/m2. Even if
the spin waves could be efficiently converted, a maximum of ~10
plasmons could be generated per μs and μm2 – taking a typical
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Fig. 1 FMR spin pumping in C60. a Principle of operation: the power P absorbed by the ferromagnet FM when the frequency of a microwave field HAC

matches the electron spin oscillation Sz in a DC magnetic field HDC is dissipated via spin waves used to manipulate the optical properties of an adjacent C60

film. b. FMR measured in Py films coated with C60. The resonant frequency ω0 for the power absorbance (ΔS21 parameter) increases with the applied DC
field. c. Change in effective magnetization Meff (open squares) and Gilbert damping α (dots) for Py with or without C60. The presence of an Al/Al2O3

spacing layer between the Py and C60 hinders the magneto-molecular coupling (numbers in brackets are the thickness of the spacer in nm). d. Effect of
light irradiation in the spin mixing conductance g↓↑. A significant enhancement of ~8% is observed in samples with a C60/Py interface. Error bars in c and d
are the mean square error in the Lorentzian fit of the resonance peaks and the Kittel equation
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surface plasmon energy of the order of 2–3 eV. However, there
may be changes in the interfacial dielectric constant and the
coupling between light-generated plasmons and the electronic
structure during FMR. It has recently been observed that it is
possible to tune the photon–magnon coupling in YIG/Pt struc-
tures and observe changes in the corresponding spin pumping17.

In the following, we shift the emphasis for the spin→ optical
conversion to the spectroscopic effects of spin currents in mole-
cules. The hyperfine coupling and spin relaxation will play a
determinant role in the magneto-optic effects5, 18–20. We choose
C60 as a model system for the spin–optical interaction due to its
low hyperfine interaction and long spin diffusion length6, com-
bined with rich optoelectronic properties that have led to appli-
cations in highly efficient solar cells, OLEDs, THz electronic
devices and photoassisted magnetization21–27. The curvature of
the fullerene adds to the SOC, leading to a measurable voltage
conversion during spin pumping12. The spin current is coupled to
the optoelectronic properties of the metallo-molecular interface,
and our measurements show a 10% enhancement of the spin
current injected into C60 during light irradiation. Conversely, the
spin current may induce changes to the permittivity, spin triplet
density and/or polarizability, leading to a modified Raman

spectrum, higher optical absorption and photoluminescence.
Changes in the spin current propagation and optical absorbance
are linked to the polarization of the light relative to the quanti-
zation axis of the spin current.

Results
Spin pumping in C60 films. Our samples include magnetic and
C60 thin films, where the magnet will act as spin injector when
excited at the resonant frequency, and the nanocarbon is the
active component for the optical conversion and dynamic effects
(Fig. 1a). The resonant frequency at which the spin current is
generated depends on the applied DC magnetic field, and is
typically 1–20 GHz for fields of 5–3000 Oe using the ferromag-
netic alloy Ni80Fe20 (Py). The linewidth of the resonance,
ΔH, increases with the frequency ω as: ΔH(ω)=ΔH(0)+ αω/γ,
with γ the gyromagnetic ratio and α the Gilbert damping (Fig. 1b
and Supplementary Fig. 1)28. This damping is intrinsic to the
system, and it is correlated to energy dissipation via spin-
relaxation29. The transfer of angular momentum, and therefore
the magnitude of the spin current, can be estimated by comparing
α for a Py film with that of the ferromagnet in contact with C60

30.
As shown in Fig. 1c, α is up to 50% higher when C60 is directly in
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Fig. 2 Enhanced optical absorbance during spin pumping. The absorbance is defined as the log ratio of the incident (ϕi) and transmitted (ϕt) light
intensities for Glass//C60(20)/Py(50) /Ag(50) samples – thickness in brackets is in nm. The Py/Ag bilayer acts as a mirror. a. Maps at different
frequencies show a uniform increase of the absorbance at resonance (8 Oe - 1 GHz); x axis parallel to the waveguide. Error bars in absorbance are the
standard error of the mean in 33 measurements, whereas error bars in the x axis are the maximum variation in distance to the waveguide. b Absorbance
change vs. distance to the waveguide [x]. The effect decays as (t2 + x 2)−1/2, modeled after the AC field generated by the skin current, with x in units of the
waveguide width and t a constant (dashed line). Inset, schematic representation of the mechanism for local changes of the optical absorbance via coupling
of the electronic structure at the metallo-molecular interface with light-generated plasmons. c. FMR power absorption (ΔS21, blue line) and optical
absorbance (triangles) vs. frequency. Green and black triangles are two different areas averaged over 99 and 133 points, with error bars the standard error
of the mean. d Effect reproduced in a sample with the same structure at frequencies close to resonance (10 Oe). Lines show different normalizations for
power absorbed at 10 Oe and the shifted resonance at 24 Oe. The asymmetric profile with a local maxima at ~1.9 GHz may be due to sample or waveguide
transmission inhomogeneities. Error bars are the standard error of the mean in the absorbance averaged over 51 sample points. e. The change in
absorbance at 1 GHz irradiation (Δϕt) is proportional to the incident light energy flux: intensity [ϕi] × photon energy [Ei]. f. Averaged absorbance vs.
incident light wavelength λi on/off FMR for a spectral region without features (full C60 film absorption spectra in Supplementary Fig. 3)
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contact with Py, evidence that a spin current is injected into the
fullerenes. We can moderate the intensity of the spin current by
introducing a spacer in between the ferromagnet and the mole-
cules. When a 2 nm Al2O3 or a 5 nm Al film are inserted at the
interface, α is some 20% higher than for Py by itself – caused by
the increased distance to the ferromagnet, the absence of free
charges to carry the spin information (for Al2O3) and/or spin
mixing at the interfaces and films (Fig. 1c). Changes in the
effective magnetization due to the transfer of spin polarized
electrons are also reduced on the addition of an Al or Al2O3

spacer31, 32, which can be used to manipulate the magnitude of
the effects observed (Supplementary Table 1).

The magnitude of the spin current, Js, is proportional to the
spin mixing conductance (g↓↑), which quantifies the ease of spin
pumping into a non-magnetic material33–35. At the magnetic
resonance, it is defined from the change in the Gilbert damping in
the presence of a normal material Δα, the thickness of
the ferromagnet dPy, the volume magnetization 4πM, the Landé
g-factor g, the Bohr magneton (μB) and the vacuum permeability
(μ0, equal to 1 and dimensionless in c.g.s. units):

g"# ¼ 4πMdPyΔα
gμBμ0

ð1Þ

When irradiated with white light (400–900 nm), g↓↑ is
increased in Py films with C60 interfaces by ~10% (Δg↑↓light
on–light off ~ 5 × 1018 m−2)—evidence for a coupling between the
optoelectronic properties of the metallo-molecular interface and
the propagation of spin currents (Fig. 1d). The change in
resistance of the Py film during irradiation is 1%, which would
correspond to a temperature change from ~290 to 300 K.
This temperature increase will reduce slightly the magnetization
M and cause negligible changes in α, which would give rise to a

small decrease in the spin mixing conductance36, 37. By increasing
the source to sample distance, we reduce the light flux by a factor
4–5, leading to an equivalently smaller change in g↓↑. We can
then introduce a polarizer in between the sample and the source
to filter the parallel or perpendicular components of the white
light to the magnetic field – and therefore to the direction of the
spin quantization axis30, 38. We find that light polarized parallel to
the field still generates a ~2% enhancement in the spin mixing
conductance (~1018 m−2), whereas the perpendicular component
of the light causes a reduction in g↓↑ at the limit of our sensitivity.

Optical absorbance and spin pumping effects. An optical
conversion is first apparent in measurements of the optical
absorbance of C60. Absorbance maps of a 20-nm-thick C60 film in
contact with Py show a uniformly higher absorbance during spin
pumping at the 1 GHz magnetic resonant frequency throughout
the probed area of the molecular layer, see Fig. 2a. As the distance
to the waveguide generating the microwaves is increased, the spin
current decreases back towards its non-excited value with a
characteristic length of the order of the width of the waveguide
(Fig. 2b). Averaging the absorbance across a large area of the C60

film, we can see that changes in the optical absorbance are related
to the power absorbance at different frequencies (spin pumping),
decaying slightly at high frequencies, this decay being likely due
to microwave-induced heating (Fig 2c, d and Supplementary
Fig. 2). Even though the absorbance depends only weakly on the
incident light wavelength range used in our experiment, we
observe that the spin current effect is proportional to the total
energy flux of the incident light (Fig. 2e–f). This is probably due
to photo-bleaching at high-energy fluxes and independent of the
spin current effect–see the Supplementary Figs 1 and 2 for
heating effects and the full absorption spectrum.
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To improve the efficiency of photovoltaics, the energy output
from the enhanced absorbance would need to be larger than the
applied FMR power. Taking a typical fullerene-based solar cell
with a 6–7% efficiency and 1 kW/m2 irradiance, the 30% increase
in optical absorbance while using 10 mW microwave pumping
may result in a net energy gain if the excitation is maintained for
a coverage ≳2 cm2. Less than 1% of the power applied to the
waveguide is absorbed by the ferromagnet (Fig. 2c, d), and other
forms of operation could strengthen the effect, for example by
integrating the RF current lines lithographed underneath the
device. Heating effects result in a reduced optical absorption, and
an enhanced magnetoelastic coupling for the ferromagnet used
does not result in larger effects, so phonons are unlikely to be the
mechanism mediating the interaction. However, in order to
improve the optical conversion, we need to disperse any heat
generated.

As it was the case for g↓↑, there is correlation in the measured
absorption changes between the directions of the magnetic field
and the electromagnetic (EM) wave vector. Light that is
unpolarized or polarized in the direction of the spin quantization
axis results in an enhanced optical absorption. However, for light
polarized in a perpendicular direction to the spin axis, the optical
absorbance is unchanged or even reduced. This reduction with
perpendicularly polarized light may be due to a heating effect

reducing the absorbance and not compensated by the
spin–optical conversion (Fig. 3).

Molecular vibrations and Raman spectroscopy. Molecular
vibrations play an important role in the optical and electronic
properties of nanocarbon as well, and as such they can be
used, for example, in the design of THz C60 devices25, 26. To
measure the fullerene dynamics during spin pumping, we use a
FMR-Raman setup – see Supplementary Fig. 2. In Raman spec-
troscopy, we probe the dynamic polarizability of the molecules,
which may be affected by the changes in charge and spin density
at the metal interface during spin pumping. The main vibrational
peak of C60 is the Ag(2) symmetry pentagonal pinch mode at
1,467 cm−1, which is highly sensitive to intermolecular interac-
tions. In Fig. 4a, we show the effect of a spin current in a C60 film
with a 100-μm-wide Py track on top (Glass//C60(10)/Py(30)) –
thickness in brackets is in nm. Outside this track, the remaining
C60 acts as a benchmark to ensure the microwaves themselves
do not lead to changes in the spectra without a spin current
(Glass//C60(10)). During spin pumping, the normal Ag(2) mode
of C60 on Py is quenched, with vibrations transferred to dupli-
cates at 1,445–1,460 cm−1. These modes are associated with the
spin triplet or magnetized state of C60

39, 40, and can be observed
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during surface or tip enhanced spectroscopy41, 42. Estimating the
molecular population at each vibrational peak, the red shift
comparing the vibrational peak for C60 on Py off and on reso-
nance during spin pumping translates into an average decelera-
tion of the Ag(2) mode of 0.15 THz. During FMR, the peaks are
also observed to narrow, and the intensity of the slower excited
modes increases with the microwave power (Fig. 4b and Sup-
plementary Table 2). If we add an Al2O3 spacer, we suppress the
spin current and the vibrational changes are smaller. However,
even with a thin insulating barrier there is a significant power
damping (see Fig. 1c and Supplementary Figs 4 and 5), and the
standard modes are again red-shifted (Fig. 4c).

Photoluminescence. C60 is fluorescent at ~1.4–1.8 eV via the
formation and recombination of polaron-exciton states43. Its
photoluminescence (PL) is highly dependent on the electronic
and magnetic environment32, 44, 45. The process is hampered
by the symmetry of the molecule that favours non-radiative
decay processes, with a PL efficiency of about 10−4. The PL
maximum at 1.69 eV is a result of the direct decay of localized
Frenkel excitons. Molecular dynamics lead to lower energy pho-
non replicas, with the main one at 1.51 eV due to the Ag(2)
vibration (1,467 cm−1 ~ 0.18 eV; Supplementary Fig. 6). For C60

on conducting substrates such as Py, the dynamic molecular
dipole transfers energy to the metal via eddy currents, leading to
lower PL40, 45. During spin pumping, there is a time-varying
charge accumulation at the interface that can increase the elec-
trical polarizability and dielectric constant – reducing the energy
transfer and increasing the PL (see discussion below). We
map this PL change in C60 films with a Py track on top and with/
without an Al2O3 barrier. By spin pumping, it is possible to
increase the PL by up to 100± 5% for C60 directly in contact with

Py. On the other hand, the PL of C60 on C60/Al2O3/Py increases
just by 12± 3% during resonance (Fig. 5d). The PL of C60 away
from the Py or Al2O3/Py track, when the fullerenes are directly on
top of a glass substrate, does not change significantly (Fig. 5d and
Supplementary Figs 7 and 8). A temperature increase would have
the opposite effect: broadening of the Raman peaks and PL
quenching with an activation energy of 0.12 eV46.

The PL spectrum shows as well changes in energy emission.
When Py is in contact with C60, the emission ratio of the PL
due to the Frenkel exciton to this phonon replica is increased by
21± 4% during spin pumping. The effect is limited to a 1± 0.5%
reduction during FMR on the addition of an Al2O3 barrier, see
Fig. 5e. This is in agreement with the dynamic shift seen in Fig. 4.
The Ag(2) vibrations during spin pumping have lower frequen-
cies corresponding to states in high-spin or charged C60 anions
-the latter may be due to enhanced charge transfer during spin
pumping and/or electron accumulation at the interface. The
extinction coefficient, energy transfer to the metal or phonon
radiative decay may be reduced so that the effect of spin pumping
on the radiative decay is higher for the localized exciton than for
the phonon replica.

Discussion
The optical effects measured are consistent with changes in the
spin population and charge density at the metallo-molecular
interface. A spin–optical conversion at a molecular interface
could be achieved via plasmons and polaritons47 coupled to the
FMR10, 48. These surface modes can give rise to a non-resonant
enhancement of the quantum yield in the optical absorbance49–51.
A slowly varying permittivity in the timescale of the microwave
excitation will be associated with a large local change in the
polarizability modulations responsible for molecular
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enhancement of optical absorption. This would be consistent with
the observed weak optical wavelength dependence and a strong
dependence on the amplitude of fields associated with the
microwave resonance.

The enhanced PL for C60 on Py during spin pumping can be
understood as well in terms of local dielectric changes. For
molecules on metallic substrates, the electronic state excited by a
photon may decay through non-radiative processes via dipole
transfer to the metal (generation of eddy currents in Py) that does
not contribute to the PL. The decay rate τ�1 (~ns−1) of the
molecular electronic state due to this process is proportional
to45, 52:

τ�1 / 1þ 1
d3

1
2k3

Im
εm ωð Þ � ε1
εm ωð Þ þ ε1

� �
ð2Þ

where d is the distance from the molecules to the metal layer, k is
the wave vector and ω is the frequency of the EM field generated
by the excited state, εm is the complex permittivity of the metal
and ε1 that of the screening layer of charge/spin polarized C60 at
the interface. A larger ε1 during spin pumping would lead to a
slower decay rate, reducing the non-radiative recombination and
increasing the PL. This explains as well the relative enhancement
of the Frenkel photo-active decay with respect to the phonon
replica, the latter being determined by exciton–phonon coupling
and less affected by the energy transfer. The smaller effect of
spin pumping for Py/Al2O3/C60 would be due to a reduced
spin current and a smaller energy transfer from the molecular
dipole to the metal in the presence of an insulating barrier (higher
initial PL).

When the fullerenes are deposited on an insulating ferrimagnet
(yttrium iron garnet, YIG), small changes on the order of 4% or
less are observed in the PL during FMR, with no measurable
changes in the Raman spectrum (Supplementary Figs 9 and 10).
This can be explained because of the negligible free carrier
density and the constant sign of the dielectric constant across the
interface, which prevents changes in the electron densities,
electrical polarizability or energy transfer to the (now insulating)
substrate. A reduced effect with ΔPL ~ 6–8% is also measured for
C60 deposited on thinner magnetic films or Gd-doped Py, where
the spin mixing conductance is smaller (Supplementary Table 1).
In the case of tunnel barriers, the FMR may lead as well to
changes in the DC resistance of the junction (Supplementary
Fig. 11).

To maximize the optical conversion and amplification in
molecular or inorganic semiconductors, new structures may
transform the AC currents originated during spin pumping53, use
pulsed FMR12 or out of plane DC fields in order to generate
surface magnons that may be more efficient in the optical
conversion at the interface. The search for optimized material
structures could be done by studying the damping coefficient of
different magnetic films (e.g. 100% spin polarized half metals)
with a range of molecules and film thicknesses on top; larger
damping coefficients would imply a better coupling and therefore
the potential for stronger effects.

Methods
Sample growth. C60 was sublimated in a dual evaporation-sputter deposition
system under high vacuum (on the order of 10−8 Torr) onto a Si/SiO2 or glass
substrate. The C60 is deposited via high vacuum thermal sublimation and the
molecules can also withstand the deposition of metals by sputtering. The C60

molecules were from a source of 99.9% purity bought from Sigma-Aldrich. The
subsequent metallic layers were sputter deposited in the presence of an in-plane
magnetic forming field of 15 mT which induces macroscopic uniaxial anisotropy in
a defined direction in the magnetic layers. The metallic materials were deposited at
ambient temperature and at a working gas (Ar) pressure of 3.2 mbar. An aluminum
cap of 3 nm was deposited on top of the devices to prevent oxidation of the sample.
Al2O3 barriers were formed by plasma oxidation of aluminum films or tracks. Thin

Al2O3 layers have shown to be effective on magnetically decoupling the molecular
layer from the 3d metal. The metallic and insulating tracks were deposited through
a shadow mask.

FMR and spectroscopy. A custom built vector network analyzer-FMR system that
can be used simultaneously with Raman spectroscopy, optical transmitivity or
photoluminescence measurements was used. The microwaves were applied
through a printed circuit board waveguide sitting in a DC magnetic field.
White light (400–900 nm) was generated using a 150W Xe lamp and transmitted
via an optical fiber. The samples were positioned face down on the waveguide
with the easy-axis of the ferromagnet (defined by the forming field) positioned
parallel to the DC magnetic field and the microwaves perpendicular to it. Figure 1b
shows the FMR peaks for a Py/C60 system as a function of the effective external
DC magnetic field, Heff. One can extract the effective magnetization, Meff, for
Py from the frequency of the resonant peak ω and the applied DC field Heff:

ω ¼ γ
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Heff Heff þ μ0Meff

� �q
. The samples were deposited on a glass substrate, this

is so that it is possible to optically probe and/or irradiate the C60 while assuring the
magnet is close to the waveguide and excited to resonance. Measurements during
irradiation are performed using a Xe lamp and an optic fiber focused on the
sample. The absorption, photoluminescence and Raman measurements were car-
ried out using a Horiba-Jobin-Yvon LabRam HR800 system using either a blue
(473 nm) or green laser (532 nm) for Raman/luminescence, an incandescent lamp
for absorption measurements, and gratings of 1,800 and 600 ln/mm for single
spectra and map measurements, respectively.

Data availability. The experimental results that support the findings of this study
are available in the Research Data Leeds repository (DOI 10.5518/228)54.
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