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Abstract

The most carbon (C)-dense ecosystems of Amazonia are areas characterized by the

presence of peatlands. However, Amazonian peatland ecosystems are poorly under-

stood and are threatened by human activities. Here, we present an investigation

into long-term ecohydrological controls on C accumulation in an Amazonian peat

dome. This site is the oldest peatland yet discovered in Amazonia (peat initiation ca.

8.9 ka BP), and developed in three stages: (i) peat initiated in an abandoned river

channel with open water and aquatic plants; (ii) inundated forest swamp; and (iii)

raised peat dome (since ca. 3.9 ka BP). Local burning occurred at least three times

in the past 4,500 years. Two phases of particularly rapid C accumulation (ca. 6.6–

6.1 and ca. 4.9–3.9 ka BP), potentially resulting from increased net primary produc-

tivity, were seemingly driven by drier conditions associated with widespread

drought events. The association of drought phases with major ecosystem state
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shifts (open water wetland–forest swamp–peat dome) suggests a potential climatic

control on the developmental trajectory of this tropical peatland. A third drought

phase centred on ca. 1.8–1.1 ka BP led to markedly reduced C accumulation and

potentially a hiatus during the peat dome stage. Our results suggest that future

droughts may lead to phases of rapid C accumulation in some inundated tropical

peat swamps, although this can lead ultimately to a shift to ombrotrophy and a sub-

sequent return to slower C accumulation. Conversely, in ombrotrophic peat domes,

droughts may lead to reduced C accumulation or even net loss of peat. Increased

surface wetness at our site in recent decades may reflect a shift towards a wetter

climate in western Amazonia. Amazonian peatlands represent important carbon

stores and habitats, and are important archives of past climatic and ecological infor-

mation. They should form key foci for conservation efforts.
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Amazon rainforest, carbon accumulation, climate, Holocene, palaeoecology, peat, Peru, swamp,
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1 | INTRODUCTION

Tropical peatlands are found in Southeast Asia, Central Africa, and

Central and South America. They represent globally important terres-

trial carbon (C) stores and ecosystems (Page, Rieley, & Banks, 2011)

and contain at least 87 Pg (billion tonnes) of C (Moore et al., 2013;

Page et al., 2011), similar to the amount stored in the living above-

ground biomass of the entire Amazon rainforest (93 � 23 Pg C—

Fauset et al., 2015; Malhi et al., 2006). There is much concern over

the future of tropical peatlands because large areas in Southeast

Asia have been severely damaged by burning, logging, and conver-

sion to agriculture (Hooijer et al., 2010; Page et al., 2011). In particu-

lar, ditch draining of tropical peatlands to convert them to

agricultural use can lead to a rapid destabilization of their C stores

(Baird et al., 2017). Tropical peatlands are under threat from growing

resource exploitation and agricultural expansion in developing

nations, and their fate under warmer future climates is unknown.

The Pastaza-Mara~n�on foreland basin (PMFB), NW Peru, contains

the most C-dense landscape in Amazonia owing to an abundance of

peatlands (e.g., Draper et al., 2014), including nutrient-poor ombro-

trophic peat domes and river-influenced minerotrophic peat swamps

(L€ahteenoja & Page, 2011). It has been estimated that peatlands of

the PMFB account for 3.5% of the global tropical peatland C stock,

cover 35,600 � 2,133 km2, and contain 3.14 (0.44–8.15) Pg C (Dra-

per et al., 2014). One peatland type in particular—pole forest peat-

land—has been identified as the most C-dense ecosystem type in

the Amazon Basin (1,391 � 710 Mg C/ha) (Draper et al., 2014).

Although much is known about the C dynamics of Amazonian

vegetation, including the finding that its ability to store C is diminish-

ing (Brienen et al., 2015), little is known about how Amazonian peat-

lands developed, including their ecohydrological dynamics through

time, C accumulation, and their response to climatic changes. Poten-

tial threats to these intact peatlands include hydroelectricity (river

damming) projects, road and railway construction, ore, gas, and oil

exploration, logging and clearance of land, and drainage for agricul-

ture—in particular oil palm plantations (Roucoux et al., 2017). Over-

exploitation of the fruit of the aguaje palm (Mauritia flexuosa—

commonly found in wetlands) through tree felling is also of increas-

ing concern (Kahn & Mejia, 1990).

Previous research in the PMFB has included preliminary determi-

nations of peat C content, physical properties, and geochemistry

(L€ahteenoja & Page, 2011; L€ahteenoja, Ruokolainen, Schulman, &

Alvarez, 2009; L€ahteenoja, Ruokolainen, Schulman, & Oinonen,

2009; L€ahteenoja et al., 2012), remote sensing of peatland ecosys-

tems (Draper et al., 2014), and palynological studies (Kelly et al.,

2017; Roucoux et al., 2013). There have also been studies of the

ecology and palaeoecology of testate amoebae (Reczuga, Swindles,

Grewling, & Lamentowicz, 2015; Swindles et al., 2014; Swindles,

Lamentowicz, Reczuga, & Galloway, 2016; Swindles, Morris et al.,

2016). Watson, Swindles, Savov, and Bacon (2015) reported the

presence of microscopic tephra (volcanic ash) in a peat core, tenta-

tively attributed to a source in the Ecuadorian Eastern Cordillera.

Here, we present an investigation into the long-term controls on C

accumulation in the oldest peatland reported in the Amazon basin.

We develop a comprehensive, multiproxy palaeoecological dataset to

(i) determine the developmental trajectory of the peatland and (ii)

assess the peatland’s response to past climate change.

2 | MATERIALS AND METHODS

2.1 | Study site

Aucayacu (3.927°S, 74.386°W), meaning “water of the natives” or

“water of the warriors” in the language of the indigenous people, is

a nutrient-poor ombrotrophic peat dome in Peruvian Amazonia

(L€ahteenoja & Page, 2011; Swindles et al., 2014). We estimate the
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maximum dimensions of Aucayacu to be 33 km (NW-SE) 9 15 km

(NE-SW). The vegetation of the site is characterized by pole and

dwarf forest (including some palm trees) with an understory of

grasses and ferns. The peatland developed between the Aucayacu

stream of the Pastaza fan and the Tigre River (Figure 1). It is situated

in the PMFB which formed during the uplift of the Andes Mountains

and contains alluvial deposits several kilometres thick that began to

accumulate in the Cretaceous period (R€as€anen, Salo, Jungnert, &

Pittman, 1990). The PMFB foreland basin is characterized by migrat-

ing river channels and avulsions leading to burial and erosion of

peats (L€ahteenoja et al., 2012). In Iquitos (120 km east of the study

site), average rainfall of up to 3,000 mm/year is typical (Martinez

et al., 2011). The average annual temperature at Iquitos is 26°C,

with a diurnal range of approximately 10°C (30–32°C daytime tem-

perature and 21–22°C at night) (Met Office, 2011).

2.2 | Fieldwork

Aucayacu was visited in 2008 (by O.L.) and a 3.5-km-long transect

from edge to centre was established (L€ahteenoja & Page, 2011;

L€ahteenoja et al., 2012). Peat thickness was determined using a Rus-

sian D-section corer with a 50-cm-long chamber (De Vleeschouwer,

Chambers, & Swindles, 2010; Jowsey, 1966) across the transect

(eight cores). The topography of the site was determined using a

method involving two wooden stakes and a 35-m hose filled with

water (for further technical details, see L€ahteenoja, Ruokolainen,

Schulman, & Alvarez, 2009; L€ahteenoja, Ruokolainen, Schulman, &

Oinonen, 2009). Accelerator mass spectrometry (AMS) radiocarbon

dates were obtained from basal peat from the centre of the site

(3.5 km from the edge, ca. 8.9 ka BP, L€ahteenoja et al., 2012). Root

remains were removed from the samples before acid–alkali–acid

F IGURE 1 (a) Map of the Amazon
Basin showing major rivers (with upstream
catchment area >4 km2) derived from
HydroSHEDS flow direction data at
30 min resolution (Lehner, Verdin, & Jarvis,
2006). The red box indicates the extent of
panel (b). (b) SRTM digital elevation model
of the region at 30 m resolution, showing
the major rivers, population centres, and
national borders. The red box indicates the
extent of panel (c). (c) False colour Landsat
5 TM image (15 September 2011) of the
Aucayacu peatland with bands 4, 5, and 3
assigned to R, G, and B, respectively.
Wetter soil appears darker and the
variation of vegetation type and condition
is visible as variations in hues (brown,
green, and orange) and tone. Both (b) and
(c) available from the U.S. Geological
Survey http://earthexplorer.usgs.gov/. (d)
Photograph of the pole forest typical of
Aucayacu peatland. (e) Pool microform in
the centre of Aucayacu (a 1-m levelling
staff is shown for scale)
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pretreatment. Dating was carried out in the Laboratory of the Fin-

nish Museum of Natural History, University of Helsinki, Finland.

For the purpose of this study, the site was revisited in 2011 (by

G.T.S) and peat thickness was determined along an alternative 1.4-

km-long transect (11 cores) using a 5-cm diameter Russian D-section

corer in the same manner as in 2008 (De Vleeschouwer et al.,

2010). Basic core stratigraphy was logged in the field using Troels-

Smith (1955). A 5.3-m core was extracted from the interior of the

Aucayacu peatland for a detailed multiproxy analysis. The core was

taken from a flat area (“litter flat”—see Swindles et al., 2014)

between pools. Two additional cores were logged in the central area

(20 m apart) to examine the representativeness of the master core

chosen for detailed analyses. Following clearance of vegetation along

the narrow transect, the site was surveyed to the river edge using a

Leica optical level and staff. Sampling locations were recorded by

hand-held GPS. The size and shape of each microform along with

the vegetation composition (within an area of 25 m2) as well as %

litter and vegetation cover were recorded at each location.

A hole was augered at each sampling point and water level mea-

sured at regular intervals until it equalized to determine depth to

water table. Water-table measurements were carried out over a 3-

day period. pH and conductivity measurements were carried out on

water samples extracted from the boreholes using calibrated field

metres. Litter samples of approximately 5 cm3 were sampled from

each point and placed into Ziploc bags. Samples were shipped to the

University of Leeds and stored at 4°C prior to further analysis.

Approximately one half of each surface litter sample was weighed,

oven dried, burnt in a muffle furnace, and reweighed to determine

moisture content and loss-on-ignition. The other half was used for

analysis of contemporary testate amoebae (see Swindles et al.,

2014).

2.3 | Chronology

Accelerator mass spectrometry 14C dates were carried out on basal

peat samples and throughout the main core. Samples were sieved at

63 lm (retaining the <63 lm fraction) and all rootlets were picked

out before acid–alkali–acid treatment. In some horizons hand-picked

wood and peat macrofossils were dated (Table 1). 14C dating was

carried out at the UK Natural Environment Research Council’s

Radiocarbon Facility (East Kilbride, UK), 14CHRONO (Queen’s

University Belfast), and Direct-AMS (Bothell, USA). All dates are

reported as calibrated ages (cal. years BP, before present = AD

1950). Calibration was carried out using Calib 7.1 and the IntCal13

calibration dataset (Reimer et al., 2013). 210Pb measurements were

performed on contiguous 2 cm samples from the upper 50 cm of

the Aucayacu core. 210Pb methods followed modified versions of

Ali, Ghaleb, Garneau, Asnong, and Loisel (2008) and Pratte, Mucci,

and Garneau (2013). 210Pb was extracted from 0.5 g of ground,

freeze-dried peat, spiked with a 209Pb tracer, using sequential

HNO3–H2O2–HCl digestions with interspersed drying. The samples

were then recovered in a 0.5 M HCl solution and plated to Sterling

Silver discs over a 24-hr period. Samples were counted using an

Ortec Octête Plus Integrated Alpha-Spectrometry System with Mae-

stro software at the Geography Radiometry Laboratory, University

of Exeter. A constant rate of supply (CRS) model was used to assign

ages to the raw 210Pb activity profile (Appleby, 2001). Microscopic

tephra layers have been reported from Aucayacu (Watson et al.,

2015); however, these were not used in the chronology owing to

the current uncertainty of their exact origin and age. Age models

based on the 14C and 210Pb ages were constructed using Bacon, a

Bayesian piece-wise linear accumulation model, where the accumula-

tion rate of sections depend to a degree on that of the preceding

sections (Blaauw & Christen, 2011). The a priori accumulation rate

was assumed to be 15 year/cm and 5-cm thick sections were used.

Markov chain Monte Carlo (MCMC) iterations estimate the accumu-

lation rate for each of these sections.

2.4 | Sedimentology

Grain size frequency distribution for 93 different grain size classes,

ranging from 0.4 to 2000 lm, were determined for sediment sam-

ples below the peat using a Beckman Coulter LS 13 320 Laser

Diffraction-Particle Size Analyser equipped with a Universal Liquid

Module. Utilizing a protocol modified from van Hengstum, Reinhardt,

Boyce, and Clark (2007) and Murray (2002), 30% H2O2 was added

to subsamples in a 80°C water bath to oxidize organic matter (OM).

HCl treatment was deemed unnecessary owing to low carbonate

content. End-member mixing analysis (EMMA) was performed on the

grain size analysis results to detect grain size variability in sediments

beneath the peat at Aucayacu. EMMA was performed following the

procedure of Dietze et al. (2012, 2014) using extensions imple-

mented in the R package EMMAgeo (Dietze & Dietze, 2013). Only

robust end members (EMs) were included, defined as those with

nonoverlapping, interpretable EM loadings, with the addition of

those in which similar EM loadings occurred in most of the model

runs (Dietze et al., 2014). EM scores were centred and scaled using

the “decostand” function in the R package “vegan” (Oksanen et al.,

2013). A Euclidean distance matrix was generated using the “dist”

function in the R package “stats” (R Core Team, 2016). The loadings

were scaled to be genetically meaningful (scale and unit according to

original data: Weltje, 1997) using a weight transformation after Klo-

van and Imbrie (1971).

2.5 | Pollen analysis

Samples measuring 1 cm3 were processed using standard protocols

(Fægri & Iversen, 1989), including sieving at 250 lm to remove large

organic fragments and a cold HF treatment to dissolve silicates. Pol-

len were not sieved at 10 lm because of the presence of Cecropia

and other pollen types with small grains (<10 lm). Residues were

dehydrated with isopropanol and mounted in silicone oil. Three hun-

dred pollen grains were identified and enumerated in each sample.

Spores and pollen from obligate aquatic plants are not included in

the pollen sum. Abundance of all pollen and spores was calculated

relative to the pollen sum. Over 185 pollen taxa were differentiated,
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but we present the 13 most important types as determined through

principal components analysis. The full palynological dataset will be

presented elsewhere.

2.6 | Plant macrofossils

Plant macrofossils were analysed at 5 cm intervals. Samples were

washed and sieved under a warm-water spray using a 0.20-mm

mesh sieve. The volume percentages of different vegetative remains

(rootlets, leaves, wood fragments) were estimated to the nearest 5%

with a stereoscopic microscope. Macroscopic charcoal pieces

(>1 mm) were counted during plant macrofossils analysis. The num-

ber of seeds and insect remains were counted separately and

expressed as absolute numbers. The volume percentage of amor-

phous or unidentifiable organic matter (UOM) was estimated to the

nearest 5% during sieving and serves as a complimentary indicator

of peat decomposition (Gałka et al., 2013).

2.7 | Phytoliths and diatoms

Ashes remaining after loss-on-ignition (see below) were mounted on

glass slides and phytolith and diatom total abundance were deter-

mined (number of diatoms in 1 cm3 sample of peat). Phytoliths were

classified based on their general morphology.

2.8 | Testate amoebae and hydrological
reconstruction

Full details of the testate amoeba method and analysis are provided

in Swindles et al. (2014), Swindles, Lamentowicz et al. (2016), and

Swindles, Morris et al. (2016). Subfossil testate amoebae were

counted under transmitted light at 200–4009 magnification and

identified using morphology, composition, size, and colour to distin-

guish taxa. The weighted-averaging partial least squares (component

3) transfer function of Swindles et al. (2014) was applied to the sub-

fossil testate amoebae to generate a water-table reconstruction. This

model has the following performance statistics: r2ðapparentÞ ¼ 0:81;

RMSE = 3.81 cm; r2ðleave�one�out�crossvalidationÞ ¼ 0:65; RMSEP = 5.24 cm;

water-table depth range = 49 to �12 cm (negative values indicate a

water level above the ground surface). Because the transfer function

is based on one-time water-table measurements, the reconstruction

was detrended using linear regression following Swindles et al.

(2015).

2.9 | Peat properties and C accumulation

The main core was subsampled in contiguous 1-cm sections, and

moisture content and loss on ignition (LOI; ash content) were deter-

mined using standard methods on 1 cm3 samples of peat (Chambers,

TABLE 1 14C dates from Aucayacu including as transect of basal ages and the main multiproxy core

Laboratory code Depth (cm)
Distance from
river (m) 14C age

1r
error Material dated

d13C
(per mil)

Calibrated range
2r (cal. year BP)

Calibrated median
age (cal. year BP)

Master core

SUERC-46946 21 1,400 70 37 Wood fragments �28.9 266–22 124

SUERC-46947 30 1,400 133 37 Wood fragments �27.6 269–6 136

SUERC-46952 41 1,400 146 37 Wood fragments �30.7 277–0 149

UBA-20284 50 1,400 786 22 Wood and leaf macrofossils �31.7 726–677 705

D-AMS-011347 64 1,400 2,372 23 Sieved peat, roots removed �33.5 2,424–2,345 2,381

D-AMS-011348 77 1,400 2,783 32 Sieved peat, roots removed �30.1 2,943–2,793 2,882

SUERC-59689 90 1,400 3,549 37 Sieved peat, roots removed �29.4 3,896–3,717 3,843

SUERC-46949 101 1,400 3,732 37 Wood fragments �27.2 4,149–3,977 4,084

SUERC-59690 160 1,400 4,222 36 Sieved peat, roots removed �29.9 4,847–4,629 4,749

D-AMS 011350 179 1,400 5,191 35 Sieved peat, roots removed �32.1 5,988–5,898 5,948

SUERC-59691 200 1,400 5,625 37 Sieved peat, roots removed �29.8 6,447–6,314 6,405

D-AMS 011352 249 1,400 5,565 27 Sieved peat, roots removed �33.9 6,396–6,303 6,353

SUERC-59692 276 1,400 5,988 37 Sieved peat, roots removed �29.2 6,884–6,738 6,828

SUERC-59693 300 1,400 6,825 39 Sieved peat, roots removed �29.9 7,682–7,588 7,657

Basal date transect

D-AMS-011353 120 77 5,016 28 Sieved peat, roots removed �27.8 5,891–5,658 5,751

D-AMS-011354 300 749 6,004 34 Sieved peat, roots removed �31.5 6,938–6,749 6,844

SUERC-59693 300 1,400 6,825 39 Sieved peat, roots removed �29.9 7,725–7,587 7,656

*Hela-2216/1 750 3,500 7,949 50 Sieved peat, roots removed �29.4 8,990–8,640 8,815

*Hela-2216/2 750 3,500 7,976 50 Sieved peat, roots removed �29.4 8,999–8,649 8,846

Dates marked with an asterisk were published previously in L€ahteenoja et al. (2012).
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Beilman, & Yu, 2011). Bulk density was calculated by dividing sample

mass after freeze-drying by volume (Chambers et al., 2011). The

change in sample mass after drying also provided a measurement of

moisture content. C and N were measured on a Thermo Scientific

Flash 2000 Series CHNS/O Analyser. Peat accumulation rate (mm/

year), C accumulation rate (g C m�2 year�1), and the long-term aver-

age rate of C accumulation (LORCA) were calculated following Tolo-

nen and Turunen (1996). Peat humification analysis was carried out

through colorimetric measurement of alkaline extracts following

Roos-Barraclough, van der Knaap, van Leeuwen, and Shotyk (2004).

This proxy has come under criticism (e.g., Yeloff & Mauquoy, 2006),

so we adopt it cautiously here.

2.10 | Rock-Eval pyrolysis

We used Rock-Eval� 6 pyrolysis to analyse organic constituents of

the peats and underlying sediments (Vinci Technologies, Rueil-Mal-

maison, France; Lafargue, Espitalit�e, Marquis, & Pillot, 1998). The

Rock-Eval� 6 instrument pyrolyses OM under an inert (N2) atmo-

sphere and oxidizes OM at programmed temperature heating of bulk

sediments (~20 mg) at a heating rate of 25°C/min. Rock-Eval� 6

pyrolysis measures total organic C (TOC, wt.%) as well as the quantity

of labile, readily degradable hydrocarbon devolatilized at 300°C (S1,

mg hydrocarbon/g), higher molecular weight kerogen-derived hydro-

carbon released by thermal cracking of OM at 650°C (S2, mg hydro-

carbon/g), and the amount of carbon dioxide released during

pyrolysis of kerogen (S3, mg hydrocarbon/g). Following pyrolysis, the

sample is automatically transferred to an oxidation oven where it is

heated from 400 to 850°C, incinerating all of the residual carbon in

the sample (RC wt.%). The quantity of all OM released during pyroly-

sis and oxidation heating is the total organic carbon (TOC; wt.%).

Analyses of standard reference materials (IFP 160000, Institut

Franc�ais du P�etrole and internal 9107 shale standard, Geological Sur-

vey of Canada, Calgary) show accuracy and precision to be better

than 5% relative standard deviation. In near-modern sediments, the

S1 fraction of OM mainly consists of readily degradable geolipids and

pigments predominantly derived from autochthonous OM (e.g., algal-

derived lipids; Carrie, Sanei, & Stern, 2012). Lipid material consists of

the fraction of OM isolated from biological material by extraction

with organic solvents (Meyers & Ishiwatari, 1993). Biological lipids

undergo degradative alteration as the algae sinks to the bottom of

water bodies. After sedimentation, molecular composition is modified

diagenetically to various degrees depending on the composition of

the parent lipid, resulting in slightly different compounds termed “ge-

olipids” (Meyers & Ishiwatari, 1993). S2 compounds in near-surface

sediment are derived from the highly aliphatic biomacromolecule

structure of algal cell walls and aquatic biological matter (Carrie et al.,

2012; Sanei, Stasiuk, & Goodarzi, 2005). The S3 portion of OM is

dominated by carbohydrates, lignins, and other remains of terrige-

nous plant materials (Carrie et al., 2012). Humic and fulvic acids are

also represented in the S3 fraction (Albrecht, Sebag, & Verrecchia,

2015). Residual carbon represents refractory carbon (RC: charcoal,

coal, reworked, oxidized OM) that cannot be further modified by

bacterial activity in early diagenesis. Oxygen index (OI—the amount

of oxygen relative to the amount of organic carbon present in a sam-

ple) and hydrogen index (HI—the amount of hydrogen relative to the

amount of organic carbon present in a sample) were calculated as fol-

lows: OI = S3/TOC 9 100; HI = S2/TOC 9 100.

2.11 | Statistical analysis

Fossil pollen data were zoned using stratigraphically (depth)-con-

strained cluster analysis by incremental sum of squares (CONISS).

Three statistically significant zones were identified using the broken

stick model (Bennett, 1996). These zones were marked onto the

proxy diagrams and used to interpret the main phases of peat devel-

opment. CONISS was carried out on the full pollen dataset and also

the 13 most important types—identical results were obtained. CON-

ISS was also used to determine contemporary vegetation zones

using distance along transect as the constraining variable. Nonmetric

multidimensional scaling (NMDS) analysis using the Bray–Curtis dis-

tance was applied to contemporary vegetation data to help deter-

mine the main communities. Statistically significant (p < .05)

environmental variables were fitted using Envfit, which is a routine

for fitting an environmental vector onto an ordination. CONISS was

also undertaken on the EMMA results to determine variability in the

EM scores. Statistical analyses were carried out using PAST (Hammer,

Harper, & Ryan, 2001) and the RIOJA (v. 0.9) and VEGAN (v. 2.3) pack-

ages in R v. 3.2 (Juggins, 2015; Oksanen et al., 2013).

2.12 | Climate data and modelling

Full details of climate data and modelling procedures including hind-

casts and future scenarios used here are provided in Appendix S1.

3 | RESULTS

3.1 | Site characteristics

Hydrology, plant communities, and geochemistry are highly variable

along the contemporary transect (Figure 2). Microforms are present

in the peatland including pools containing standing water, hollows,

litter flats, and litter hummocks/ridges (see Swindles et al., 2014).

Sometimes litter hummocks were anchored on tree roots and were

termed “tree hummocks.” The microforms are characterized by dif-

ferent water-table depths (Fig. S1). pH and conductivity suggest that

Aucayacu is currently a nutrient-poor system and topographic survey

data show that the site is clearly domed (Figure 2).

The most abundant trees include Alibertia sp., Iryanthera ulei,

Oxandra euneura, Virola pavonis, and Zygia sp. The most commonly

occurring palm trees are M. flexuosa and Oenocarpus mapora. The

understory is dominated by the fern Trichomanes pinnatum and grass

Pariana sp. Six vegetation zones occur across the site (Fig. S2).

Beginning at the river edge and working towards the peatland inte-

rior, the vegetation zones comprise: A1 dominated by O. euneura,

Parahancornia peruviana, Lacmellea oblongata, and Eschweilera sp. 1;
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A2 dominated by Zygia sp. 1, O. euneura, M. flexuosa, and T. pinna-

tum; A3 dominated by I. ulei, Zygia sp. 1, Alibertia sp. 1, and O. ma-

pora; A4 dominated by I. ulei, Zygia sp. 1, and Alibertia sp. 1; A5

dominated by M. flexuosa, Zygia sp. 1, V. pavonis, and I. ulei; and A6

dominated by I. ulei, Brosimum sp. 1 and Euterpe precatoria. The

major environmental controls on vegetation distribution along the

transect appear to be distance from the river and peat depth

(Fig. S3).

3.2 | Peat initiation

We found progressively younger dates from the centre to the edge

of the peatland: ca. 8.9 ka BP in the centre (7.5 m peat thickness;

L€ahteenoja et al., 2012), ca. 7.7 and 7.1 ka BP midway (~3.0 m peat

thickness), and ca. 5.6 ka BP at the edge (1.2 m peat thickness).

3.3 | Core stratigraphy

Peat depth across the transect varies from <1 to >3 m (Figure 2).

Further to the northeast, peat depths of ~7.5 m have been recorded

(L€ahteenoja et al., 2012). The stratigraphy of the three logged cores

is similar and contains alternating bands of humified peat with occa-

sional wood and wood-dominated peat (Fig. S4). There is a horizon

of increased minerogenic material in the middle of the peat units in

all three cores. Underlying the peat are sediments dominated by silt

and clay, in turn overlying very coarse silt with fine sand.

3.4 | Sedimentology

Results from EMMA are provided in Figs S5–S9 and Tables S1–S3.

EMMAgeo identified that the maximum number of EMs was 7.

Values of the weight transformation that explained the most vari-

ance ranged from 0.00 to 0.26, with 0.00–0.06 performing the best.

We chose a model using a weight transformation of 0 and consisting

of four robust EMs. The EMMA model explained 78 � 18% of the

mean total variance across subsamples and 82 � 15% of the mean

total variance across the grain size distribution (GSD). Significant

breaks occur between 497 and 498 cm and between 492 and

493 cm. The first break represents the disappearance of EM-070,

while the second break represents the disappearance of EM-112.

The core displays a fining-upward succession that is consistent with

the interpretation of progressive isolation from the main channel

flow over time as EM-012 and EM-05 can only be deposited in quiet

water conditions. The basal section of the core represents a deposi-

tional environment dominated by very coarse silt and fine sand

where finer sediments were not deposited. This is interpreted as a

relatively higher energy environment than the subsequent setting

where finer sediments were deposited.

3.5 | Core chronology and peat accumulation rates

Information from 14C dates and 210Pb determinations on the central

Aucayacu core are provided in Table 1 and Fig. S10. The 14C dates

were in stratigraphic order apart from one date at 200 cm: SUERC-

59691 (Table 1). The Bayesian age–depth model is shown in

Figure 3 and illustrates changes in peat accumulation rate through

time. Peat accumulation rate varies between 0.05 and 18.2 mm/year

(mean = 1.88 mm/year) (Figure 4). A phase of extremely slow peat

accumulation, possibly a hiatus, is apparent between 50 and 60 cm,

and phases of rapid accumulation occur at 244–265, 109–137 cm,

and above 40 cm. The apparent rapid accumulation rate in the

uppermost 40 cm reflects the larger proportion of fresh, undecom-

posed litter at the top of the peat profile, where peat has not yet

undergone substantial decomposition (Figures 3 and S10).

3.6 | Pollen analysis

Changes in pollen and spore abundance over time reflect three

phases of peat development: open water wetland (310–270 cm), for-

est swamp (270–95 cm), and raised peat dome (above 95 cm) (Fig-

ure 5). The open water wetland phase is dominated by arboreal

pollen, with consistently high abundances of Moraceae/Urticaceae

(23%–24%), particularly Pseudolmedia, Brosimum, and Helicostylis

types, likely derived from floodplain forest communities surrounding

slow-moving open water, most likely an oxbow lake or backwater

pond that was permanently inundated. The abundance of Poaceae

(4%–19%) and Cyperaceae (5%–16%) pollen reflects an open water

wetland environment that supported semiaquatic species of these

families, rather than terrestrial forms (Burn, Mayle, & Killeen, 2010).

This is supported by the absence of other terrestrial herb pollen

types.

The presence of evergreen tree pollen in this zone indicates a

closed canopy forest around the water body. Similarly, trees from

the genus Cecropia (12%–51%) require light gaps, can tolerate

flooded conditions, and frequently occupy low- to midlevel commu-

nities in floodplain forests, especially v�arzea forest (Nebel et al.,

2001; Worbes, 1997). Clay content in this phase (as observed in the

pollen slides and loss-on-ignition data) is higher than in successive

zones, suggesting a low-energy depositional environment probably

not directly connected to the river at this time.

The forest swamp phase is characterized by an increase in Mauri-

tia/Mauritiella pollen, likely reflecting the high water level of a flood-

plain environment. Mauritia flexuosa is adapted to flooded conditions

and has pneumatophores and other anatomical adaptations to enable

gas exchange in inundated ground surface conditions (Junk, 1989).

The abundance of Cecropia pollen in this zone suggests that although

the water level was relatively shallow, seasonal flooding was com-

mon because Cecropia seedlings will not establish under permanent

inundation (Junk, 1989), and trees of this genus are most common in

midlevel floodplain plant communities (Nebel et al., 2001; Worbes,

1997). Pollen of Combretaceae/Melastomataceae is most abundant

in this phase (4%–30%). Although this pollen type encompasses a

large number of species from two ubiquitous Neotropical families, a

comparison of pollen signatures from a range of Amazonian forest

formations shows that seasonally inundated rainforest is character-

ized by this pollen morphotype (Burn et al., 2010). The forest swamp
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phase characterized by this pollen type therefore likely reflects a

seasonally inundated floodplain forest. The depositional environment

likely contained no permanent water body, as indicated by the

decline in Poaceae and Cyperaceae pollen at the boundary between

this zone and the previous zone.

Mauritia/Mauritiella (10%–42%) and more than 10 additional

undifferentiated Arecaceae pollen types dominate the assemblages

above 95 cm, indicating the transition to the final peat dome phase.

The transition from seasonally inundated floodplain forest to a

nutrient-poor peatland is indicated, as Combretaceae/Melastomata-

ceae and Cecropia pollen (reflective of seasonally inundated flood-

plain forest) decline in this zone. Other abundant taxa include

Alchornea/Aparisthmium (Euphorbiaceae) (2%–15%) and Virola (Myris-

ticaceae) (4%–22%), species of which produce hypertrophic lenticels

and adventitious rooting systems (Junk, 1989; Lopez & Kursar, 2003)

in response to low-oxygen conditions caused either by inundation

and/or burial by sediments or peat. Virola pollen is indicative of

peatland in the Neotropics (Ledru, 2001). Pollen and LOI data
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(Figures 4 and 5) suggest that in this phase the peatland mostly

functioned as an ombrotrophic dome; however, the occasional influ-

ence of high-magnitude floods cannot be discounted.

3.7 | Peat composition and macrofossils

An analysis of macrofossils shows considerable variation in the pro-

portional contributions of roots, wood, UOM, and leaf epidermis

(Figure 6). Major shifts in root-dominated to wood-dominated peats

are apparent during the forest swamp phase. Occasional seeds and

insect remains are also present, and quartz grains were found in the

bottom of the profile. Macroscopic charcoal occurs in the uppermost

20 cm of the core, and at 73 and at 123 cm. Phytoliths are also

common. In particular, an increase in spinulose palm phytoliths (pro-

duced by members of the Arecaceae family) occurs in the peat dome

phase. Diatoms are present in three depths in the core and may sug-

gest wetter conditions at these times (Figure 6).

3.8 | Testate amoebae

The most common testate amoebae in the profile include Hyalosphe-

nia subflava, Trigonopyxis arcula, Phryganella acropodia and
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Centropyxis aculeata. Preservation down-core is variable and concen-

trations of testate amoebae in general were very low (see Swindles,

Lamentowicz et al., 2016; Swindles, Morris et al., 2016). The horizon

50–60 cm (peat dome phase) was barren of testate amoebae.

A contemporary training set from Aucayacu (Swindles et al.,

2014) shows that C. aculeata is an indicator of surface water; an

abundance of this taxon in the early part of our record indicates per-

sistent standing water and provides evidence to support the open

water depositional environment interpreted from pollen analysis.

Fluctuations in palaeohydrological conditions during the subsequent

forest swamp phase and a trend towards dryness followed by a wet

shift (at ca. 50 cm) in the peat dome phase are identified from the

testate amoeba-based reconstruction (Figure 7).

3.9 | Peat properties and C accumulation

Loss-on-ignition (LOI) data clearly show first peatland initiation at

~300 cm (Figure 4). Relatively lower LOI values during the forest

swamp phase provide clear evidence for episodes of minerogenic

input. Within the peat (0–300 cm), the maximum LOI is 98.4% and

the minimum is 48.3% (mean = 88.6%). Above 96 cm (the peat

dome phase), the maximum LOI is 98.4% and the minimum is 88.5%

(mean = 93.9%). However, ash content above 96 cm is related to

the high abundance of silica phytoliths rather than minerogenic

material (see Figure 6). The bulk density of the peat varies between

0.02 and 0.16 g/cm3 (mean = 0.08 g/cm3). Several shifts in peat

humification are apparent with major excursions to lower
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humification at 264–280 cm, 156–199 cm, and above 40 cm (Fig-

ure 4). These may relate to either wetter episodes where peat humi-

fication was reduced or changes in peat composition (e.g., shift from

root and wood-dominated to UOM-dominated peat—Figure 6). The

C/N (% mass) varies between 16.2 and 94.1 (mean = 44.9). The

large increase in %N in the uppermost 40 cm of the profile reflects

the oxic zone, where peat has not yet fully decomposed. A decrease

in %C in the forest swamp phase reflects the incorporation of

minerogenic material within the peat.

C accumulation rates mirror peat accumulation rates, with a

phase of extremely slow accumulation at 50–60 cm, and phases of

rapid accumulation at 244–265 cm, 109–137 cm, and above 40 cm.

C accumulation rates vary between 1.8 and 495.7 g C m�2 year�1

(mean = 70.8 g C m�2 year�1). LORCA is 15.96 g C m�2 year�1,

which is lower than the 39 g C m�2 year�1 found by L€ahteenoja

et al. (2012) on the longer core (7.5 m) taken 2.1 km to the north-

east.

3.10 | Rock-Eval pyrolysis

S1 C displays a decreasing trend down-core, which most probably

relates to diagenesis of labile OM as S1 C is the most readily

degradable fraction of organic C (Figure 8). Both S1 and S2 C

increase during the early open water wetland phase. This is likely

attributable to the relative increase in wetter conditions that pro-

moted primary production and enhanced preservation of OM.

Increases in S3 C during the lower part of the open water wetland

phase likely represent increased delivery of terrestrially derived OM

from increased runoff or more frequent floods. The shifts in S1, S2,

S3, and C/N ratio during the open water wetland phase (Figures 4

and 8) suggest a transition to more lacustrine conditions, reflecting

the isolation of the water body through time. S1/S2 illustrates selec-

tive diagenesis of S1 relative to S2. RC/TOC shows relative decline

in proportion of refractory C during the open water wetland phase

and in the uppermost peat. This is attributed to a relative increase in

proportion of more labile, liptinitic-rich, and autochthonous OM (S1

and S2). RC/TOC remains relatively constant throughout the forest

swamp phase, with around 70% of the TOC being refractory due to

humification occurring in the uppermost layers of the peatland.

Fluctuations in HI and OI profiles during the open water wetland

phase reflect the shift in depositional environment from one that

accumulated under more terrestrial conditions (Type III OM, OI of

~140, and HI of ~200) to one that accumulated more autochtho-

nous, liptinitic-rich C (Type II OM, HI 300–400 and OI of less than

50). In the uppermost 50–100 cm of peat, HI is elevated relative to

deeper peats, although OI remains more or less constant. This sug-

gests that the relative increase of HI is due to higher deposition of

liptinitic-rich OM and little change in the proportion of terrestrially

derived OM input. This shallow section may also reflect active humi-

fication that targets liptinitic-rich OM. The ratio RC/TOC shows

downward enrichment of refractory OM as the more labile, hydro-

gen-rich, liptinitic fraction is degraded due to humification. In the

uppermost 40 cm, the marked rise in OI is likely associated with the

oxic zone and accumulation of humic and fulvic acids along with a

labile geolipid fraction (S1).

4 | DISCUSSION

Our contemporary vegetation analysis suggests that water-table

depth is not a strong control on modern vegetation distribution,

illustrating that vegetation across the site is zoned at the meso–
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macroscale with distance from the river, unlike many northern peat-

lands that are commonly characterized by vegetation patterning at

the microform level (e.g., Baird, Milner, Blundell, Swindles, & Morris,

2016). Our multiproxy palaeoenvironmental dataset illustrates the

long-term dynamics of the oldest known peatland in the Amazon

basin. The modern peat dome has developed in several distinct

phases, and its dynamics were driven by a combination of autogenic

(vegetation succession, vertical and lateral expansion) and allogenic

(climatic, floodplain) influences on millennial and multicentennial time

scales.

4.1 | Allogenic and autogenic controls on peatland
development

Our multiproxy dataset suggests a relatively simple and unidirec-

tional succession from open water wetland (ca. 7.8–6.6 ka BP),

through inundated forest swamp (ca. 6.6–3.9 ka BP), to raised peat

dome (since ca. 3.9 ka BP) (Figure 9). This is in contrast to the paly-

nological study of Kelly et al. (2017) on another Amazonian ombro-

trophic peatland (San Jorge), which suggested a much more complex

trajectory with reversals to former states. The fining-upwards suc-

cession in the mineral sediments underlying the peat is consistent

with the isolation of a river channel segment into an oxbow lake or

a backwater following eastward migration of the river channel, which

subsequently allowed peatland development.

Our four basal dates suggest that the peatland underwent a rapid

lateral expansion (~2.0 m/year) from a central nucleus, before slow-

ing down after ca. 7.7 ka BP (~0.7 m/year), and again after ca.

7.1 ka BP (~0.4 m/year) (Fig. S11). Alternatively, the peatland may

have emerged in a more complex manner from several initiation cen-

tres that coalesced over time. Both of these point initiation and

simultaneous initiation development pathways have previously been

suggested for Northern peatlands (Belyea & Baird, 2006; Foster &

Wright, 1990; Glaser, Hansen, Siegel, Reeve, & Morin, 2004). How-

ever, our four basal dates become monotonically younger from cen-

tre to margin, which is consistent with a point initiation and

subsequent lateral expansion (Figures 1 and S11). As vegetation

developed, peat accumulated and the system transitioned into an

inundated forest swamp. After sufficient vertical accumulation of

peat, the peat surface became hydrologically disconnected from the

influence of river flooding, and the ecosystem transitioned into an

ombrotrophic peat dome with less pronounced cycles between dry

and flooded conditions. The timing of the first appearance of the

contemporary pole forest is ambiguous in the pollen record because

many of the characteristic trees of this vegetation type are insect-

pollinated and are thus commonly poorly represented in palaeoeco-

logical records (e.g., Kelly et al., 2017). Furthermore, the pollen rain

in pole forests is often overwhelmed by the presence of a relatively

small number of M. flexuosa trees (e.g., Kelly et al., 2017). However,

the presence of Mauritia pollen may also suggest the persistence of

palm swamp vegetation disconnected from the influence of pro-

nounced river flooding. The presence of charcoal in the core shows

that these ecosystems have been affected by fire on at least three

occasions in the last 4,500 years, most probably related to anthro-

pogenic activity (see McMichael, Correa-Metrio, & Bush, 2012). This

is in contrast to other published records from peatlands in Peruvian

Amazonia in which no charcoal has been found (see Kelly et al.,

2017; Roucoux et al., 2013).

Although there are many uncertainties over the Holocene climate

history of western Amazonia (see Flantua et al., 2016; Kelly et al.,

2017), some climatic events for which independent evidence exists

may have been recorded in the peat record at Aucayacu. During the

forest swamp phase we identify two distinct dry phases at ca. 6.6–

6.1 (henceforth drought phase A) and ca. 4.9–3.9 ka BP (drought

phase B), as evidenced by a lack of aquatic testate amoebae and

increased peat humification. In addition, an apparent hiatus in peat

accumulation occurred between ca. 1.8 and 1.1 ka BP. Hiatuses in

peat accumulation may occur in response to tree fall and tip-up

events (Dommain et al., 2015), although high phytolith concentra-

tions and a complete absence of preserved testate amoebae around

the hiatus at Aucayacu suggest that it is more likely to reflect

increased peat decomposition. This hiatus overlaps with the begin-

ning of a similar hiatus identified at the San Jorge peatland 150–

200 km away (ca. 1.3–0.4 ka BP; Kelly et al., 2017). Timings of

drought phases A and B and the hiatus at Aucayacu are temporally

consistent with known drought phases in Peru (Figure 9). For exam-

ple, major drought phases have been identified in Lake Sauce in

Peruvian Amazonia at ca. 4.9–3.5 ka BP and ca. 1.9–1.3 ka BP (Cor-

rea-Metrio, Cabrera, & Bush, 2010). Although the nature of strength

of any teleconnection across the Andes is unclear, it is interesting to

note that a major lowstand of Lake Titicaca also occurred between

ca. 7 and 4 ka BP (Baker, Fritz, Garland, & Ekdahl, 2005).

Drought is thought to have been widespread across both upland

and lowland Amazonia during the early–mid Holocene (Mayle &

Power, 2008). A dry event is also recognized in other lakes of Peru-

vian Amazonia around the city of Puerto Maldonado between ca.

7.2 and 3.3 ka BP (Bush, Silman, & Listopad, 2007). Phases of

reduced South American Summer Monsoon (SASM) rainfall have

been dated at ca. 7–5 ka BP and ca. 1.5–0.9 ka BP (Bird, Abbott,

Rodbell, & Vuille, 2011). Therefore, we interpret the hiatus as poten-

tially reflecting a third drought phase (drought phase C). It is also

interesting to note that drought phase B (ca. 4.9–3.9 ka BP) is con-

temporaneous with the well-documented and possibly global ca.

4.2 ka BP climate event (Booth et al., 2005; Davis & Thompson,

2006; Roland, Caseldine, Charman, Turney, & Amesbury, 2014),

which itself is correlative with Bond Event 3 (Bond et al., 1997;

Bond et al., 2001), although the mechanisms for global climatic tele-

connection remain poorly understood.

The palaeoecological study of Peruvian Amazonian lake sedi-

ments by Bush et al. (2007) suggests that dry conditions during the

mid-Holocene were followed by a period of increasingly wet condi-

tions beginning between ca. 4.2 and 2.5 ka BP. A similar wet signal

can be seen in our palaeohydrological reconstruction from Aucayacu,

immediately following drought phase B. Drought phase C is also

chronologically consistent with dry phases found in several other

proxy records from Amazonia and other sites in South America
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(Piperno & Becker, 1996; Roucoux et al., 2013; Weng, Bush, &

Athens, 2002).

We observe differential effects of these droughts on peat and C

accumulation regimes (Figures 9 and 10). During the forest swamp

phase, drought phases A and B led to increased peat and C accumu-

lation, whereas during the subsequent peat dome phase, drought

phase C caused a collapse in peat and C accumulation. This apparent

hiatus may be explained by recent research into the C dynamics of

tropical peatlands. Hirano et al. (2012) investigated the C balance of

drained and near-natural ombrotrophic tropical peatlands using eddy

correlation. For a near-natural site, they found that gross primary

production (PG) showed a quadratic relationship with water-table

depth. PG was lowest at deep water-table levels (ca. 0.9 m below

the ground surface), highest at intermediate water-table depths of

ca. 0.3 m, and lower again (but not as low as for the deepest water

tables) as water tables became shallower and the peatland surface

became inundated. Ecosystem respiration (RE—the sum of plant res-

piration and peat decay) also varied with water-table depth, being

highest for deep water tables (0.9 m) and declining monotonically to

inundation depths of up to 0.2 m, with the rate of decline increasing

in the latter part of the water-table range.

Many other studies have shown how depth-integrated decay of

peat (usually the dominant component of RE) increases as the water

table deepens (see Baird et al., 2017). The combined PG and RE data

from Hirano et al. (2012) show that net rates of peat accumulation

are highest when a tropical peatland is at its wettest and lowest

when it is at its driest. Specifically, the data from Hirano et al.

(2012) suggest that net accumulation of peat only occurs when

water tables are shallower than ca. 0.3–0.2 m, while deeper water

tables lead to a net loss of peat.

The increase in rates of peat accumulation during drought phases

A and B (forest swamp phase) is the opposite of what occurs during

drought phase C (peat dome phase). One possibility is that a reduc-

tion in water levels causes a sharp up step in productivity of the

swamp vegetation—growth rates of the component species of this

vegetation may normally be inhibited by the deep water-logged con-

ditions that usually prevail—without a corresponding or matching

increase in rates of peat decay, which may be expected if water

levels are still mostly near the peatland surface. Other possibilities

can be conjectured, but what is needed is research on current

swamp systems to see how they respond in terms of PG and RE dur-

ing multiyear droughts. Different “rules” almost certainly apply to

swamp and peat dome conditions given their different plant commu-

nities and the likely differences in the nutrient status of peat pore

water, both of which will affect PG and RE (e.g., Debusk & Reddy,

2005; Rydin & Jeglum, 2006). It has also been shown that droughts

can affect productivity in Amazonian forest communities in different

ways (e.g., changes in biomass, autotrophic respiration, photosynthe-

sis and tree mortality), and that they do not always cause a decrease

in productivity (Doughty et al., 2015; Feldpausch et al., 2016). Such

variations may offer an alternative explanation for our observations

during the different drought phases.

A further observation is that drought phase A coincides with an

ecosystem state shift from open water wetland to forest swamp (ca.

6.6 ka BP); and drought phase B with a shift from forest swamp to

raised peat dome (ca. 3.9 ka BP) (Figures 9 and 10). GCM hindcasts

of annual average precipitation also suggest a slight drying trend

between the open water wetland and forest swamp phases, and sug-

gest reduced effective precipitation during drought phases B and C

(Figure 9). Drought phase A may have caused sufficient drying in the

open water phase to stimulate productivity in hitherto limnic condi-

tions, leading to rapid terrestrialization and infilling with litter (driving

the conversion from open water wetland to forest swamp). This is

consistent with the increase in S3 C observed in the Rock-Eval

pyrolysis data (Figure 8). Drought phase B potentially drove the con-

version of the forest swamp into an ombrotrophic peat dome, again

by stimulating productivity in a previously seasonally flooded land-

scape. The resumption of peat accumulation after drought phase C

also adds further weight to the growing body of evidence for the

resilience of peatland ecosystems to recover from severe distur-

bances (e.g., Morris, Baird, Young, & Swindles, 2015; Swindles,

Lamentowicz et al., 2016; Swindles, Morris et al., 2016; Waddington

et al., 2015). The shift to ombrotrophic peat dome at ca. 3.9 ka BP

is contemporaneous with the increased El Ni~no-Southern Oscillation
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(ENSO) activity identified from ~4.0 ka BP (Haug, Hughen, Sigman,

Peterson, & R€ohl, 2001; van Breukelen, Vonhof, Hellstrom, Wester,

& Kroon, 2008), which may suggest climate variability played a role

in stimulating the ecosystem state shift, alongside any autogenic

mechanisms.

Gloor et al. (2013) suggested that there has been intensification

of the Amazonian hydrological cycle over the last two decades and a

marked increase in precipitation in north-western Amazonia (up to

80 mm/month from the period 1980–1990 to 2000–2009). Climate

re-analysis data also show that there has been a recent shift to

higher temperatures and increased precipitation at Aucayacu across

all seasons (Fig. S12). The recent increase in wetness shown in our

testate amoeba record (Figure 9) is consistent with a progressively

wetter climate, although the effects of better test preservation in

the uppermost peat cannot be discounted. The CMIP5 climate model

ensemble projects that this region will continue to warm over the

next ~80 years, with the wet season in particular becoming wetter

(Fig. S12). Held and Soden (1995) and Wang et al. (2017) also sug-

gested that rainfall in the Amazon lowlands is likely to increase,

alongside the intensification of wet and dry phases (including more

pronounced droughts).

4.2 | Implications and uncertainties

Our multiproxy dataset and conceptual model provide an important

step in improving understanding of Amazonian peatland ecosystems.

However, uncertainties remain over the relative controls of auto-

genic (e.g., peat growth and ecohydrology, plant succession) and allo-

genic (e.g., climate, floodplain processes) controls on Amazonian

peatland development. Mathematical models of peatland develop-

ment (e.g., Baird, Morris, and Belyea (2012); Kurnianto et al., 2015;

Morris et al., 2015; Swindles, Morris, Baird, Blaauw, & Plunkett,

2012) may prove useful tools for investigating the behaviour of

Amazonian peatlands and the vulnerability of their C stores to cli-

mate change and human impacts. However, new data on the ecohy-

drological properties of these systems (e.g., plant communities,

above and below-ground litter production and decomposition, and

permeability) are needed for accurate parameterisation of these

models. Detailed down-core studies of peat properties, C content,

decomposition, palaeohydrology, and vegetation types, such as we

present here, provide a crucial yardstick for testing model-based sim-

ulations of tropical peatland development.

A diversity of peatland types has been found in the PMFB (see

L€ahteenoja & Page, 2011). Future work should focus on understand-

ing the developmental history of these different peatland types and

whether there are developmental or successional pathways between

them. Amazonian peatlands are important in terms of biodiversity,

ecosystem services, and C storage, and they represent important

archives of past climatic, ecological, and other environmental infor-

mation (e.g., volcanic ash). Several infrastructure projects are planned

in the PMFB including a proposal for constructing an electricity

transmission line and service track through the Aucayacu peatland

(Dourojeanni, 2016; Roucoux et al., 2017). We contend that policies

should focus on the conservation and protection of these vulnerable

ecosystems.

5 | CONCLUSIONS

1. A multiproxy palaeoecological dataset shows that the oldest peat

dome yet discovered in Amazonia developed in three distinct

phases: (i) peat initiated in an abandoned river channel or back-

water with standing open water and aquatic plants; (ii) inundated

forest swamp; and (iii) raised peat dome (after ca. 3.9 ka BP). The

presence of charcoal in the core shows that these ecosystems

have been affected by fire on at least three occasions in the last

4,500 years.

2. Two phases of rapid carbon accumulation (ca. 6.6–6.1 and ca.

4.9–3.9 ka BP) potentially resulting from increased net primary

productivity were seemingly driven by drier conditions during

widespread drought events. A switch to ombrotrophy occurred

after the ca. 4.5–4.2 ka BP drought phase suggesting a possible

climatic control on tropical peatland developmental trajectories

and ecosystem state shifts. A third drought phase at ca. 1.8–

1.1 ka BP led to a collapse in carbon accumulation (potentially a

hiatus), relating to increased decomposition from deeper water

tables and/or lower net primary productivity during the ombro-

trophic peat dome phase.

3. Our results suggest that future droughts will lead to phases of

rapid carbon accumulation in some inundated tropical peat

swamps, although this can lead ultimately to a shift to ombrotro-

phy and a subsequent return to lower carbon accumulation rates.

Conversely, drought phases may lead to a collapse in carbon

accumulation in ombrotrophic peat domes.

4. Amazonian peatlands are important in terms of biodiversity and

carbon storage, and represent important archives of palaeoenvi-

ronmental information. Policies should focus on the conservation

of these ecosystems.
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