Aeroservoelastic state-space vortex lattice modeling and load alleviation of wind turbine blades

Ng, B. F., Hesse, H. , Palacios, R., Graham, J. M. R. and Kerrigan, E. C. (2015) Aeroservoelastic state-space vortex lattice modeling and load alleviation of wind turbine blades. Wind Energy, 18(7), pp. 1317-1331. (doi: 10.1002/we.1752)

Full text not currently available from Enlighten.

Abstract

An aeroservoelastic model, capturing the structural response and the unsteady aerodynamics of turbine rotors, will be used to demonstrate the potential of active load alleviation using aerodynamic control surfaces. The structural model is a geometrically non-linear composite beam, which is linearized around equilibrium rotating conditions and coupled with time-domain aerodynamics given by a linearized 3D unsteady vortex lattice method. With much of the existing work relying on blade element momentum theory with various corrections, the use of the unsteady vortex lattice method in this paper seeks to complement and provide a direct higher fidelity solution for the unsteady rotor dynamics in attached flow conditions. The resulting aeroelastic model is in a state-space formulation suitable for control synthesis. Flaps are modeled directly in the vortex lattice description and using a reduced-order model of the coupled aeroelastic formulation, a linear-quadratic-Gaussian controller is synthesized and shown to reduce root mean square values of the root-bending moment and tip deflection in the presence of continuous turbulence. Similar trend is obtained when the controller is applied to the original non-linear model of the turbine. Trade-offs between reducing root-bending moment and suppressing the negative impacts on torsion due to flap deployment will also be investigated.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Hesse, Dr Henrik
Authors: Ng, B. F., Hesse, H., Palacios, R., Graham, J. M. R., and Kerrigan, E. C.
College/School:College of Science and Engineering > School of Engineering > Autonomous Systems and Connectivity
Journal Name:Wind Energy
Publisher:Wiley
ISSN:1095-4244
ISSN (Online):1099-1824
Published Online:11 June 2015

University Staff: Request a correction | Enlighten Editors: Update this record