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Summary 22 

Chronobiological research has seen a continuous development of novel approaches and 23 

techniques to measure rhythmicity at different levels of biological organization from locomotor 24 

activity (e.g. migratory restlessness) to physiology (e.g. temperature and hormone rhythms, and 25 

relatively recently also in genes, proteins and metabolites). However, the methodological 26 

advancements in this field have been mostly and sometimes exclusively used only in indoor 27 

laboratory settings. In parallel, there has been an unprecedented and rapid improvement in our 28 

ability to track animals and their behaviour in the wild. However, while the spatial analysis of 29 

tracking data is widespread, its temporal aspect is largely unexplored. Here, we review the tools 30 

that are available or have potential to record rhythms in the wild animals with emphasis on 31 

currently overlooked approaches and monitoring systems. We then demonstrate, in three question-32 

driven case studies, how the integration of traditional and newer approaches can help answer 33 

novel chronobiological questions in free-living animals. Finally, we highlight unresolved issues in 34 

field chronobiology that may benefit from technological development in the future. As most of the 35 

studies in the field are descriptive, the future challenge lies in applying the diverse technologies to 36 

experimental set-ups in the wild. 37 
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Introduction 52 

For all organisms, exact timing of behaviour to both daily and seasonal environmental cycles is 53 

crucial for survival and successful reproduction [1,2]. Consequently, the study of biological 54 

rhythms, chronobiology, is a vibrant and interdisciplinary research area in biology [3–5]. 55 

However, chronobiology has been largely dominated by studies of just a few model organisms 56 

under standardized laboratory conditions [4]. Bringing such studies into the wild has often 57 

generated surprising outcomes [6–8]. 58 

The knowledge gaps and discrepancies between laboratory and field studies were 59 

emphasized in a recent perspective article on the diversity of animal clocks in the wild:  “…to 60 

begin to understand the adaptive significance of the clock, we must expand our scope to study 61 

diverse animal species from different taxonomic groups, showing diverse activity patterns, in their 62 

natural environments” [4]. Indeed, whereas controlled laboratory studies are essential to 63 

investigate the proximate mechanisms behind biological rhythms, they offer little insight about 64 

the diversity of temporal strategies that free-living animals may adopt and the fitness 65 

consequences of an eco-evolutionary process that takes place in the “real world”.  66 

Building on this evidence, ecologists are increasingly using individual-based telemetry 67 

with high temporal and spatial resolution not only to study the movements of wild animals, but 68 

also to gain insights into the temporal patterns of their behaviour and physiology, as well as into 69 

the genetic, environmental and/or life-history factors that might affect the regulation of such 70 

rhythms [9,10]. For instance, recent telemetry work on arctic shorebirds has revealed unexpected 71 

inter- and intra-specific variation in their behavioural rhythms under the continuous daylight of 72 

arctic summer [10–12], and the combination of automatic radiotelemetry and EEG loggers 73 

demonstrated a link between activity and fitness in a polygynous shorebird [13]. Also, combining 74 

GPS-tracking, accelerometers and EEG loggers revealed unprecedented sleep-wake cycles of 75 

frigatebirds (Fregata minor) flying over the ocean for up to 10 days uninterruptedly [14]. The 76 

integration of ecological and chronobiological approaches and techniques can therefore help not 77 

only answering old questions traditionally confined to laboratory settings, but also ask novel 78 

exciting questions that are more pertinent to field systems (Table 1). Such integration can also 79 

improve our understanding about how adaptive biological rhythms are in the wild, for instance 80 

through a combination of genetic engineering and animal tracking [15].  81 
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This paper has two major aims. First, we review traditional and relatively recent tools to 82 

collect chronobiological data in the wild. In particular, we emphasize the suitability of ecological 83 

tools initially developed for other purposes (e.g. to map migration patterns of animals) and the 84 

added value of integrating different technologies. Second, we present three case studies to 85 

demonstrate how such tools and their integration can be used to answer some of the questions in 86 

the field chronobiology (Table 1). We pick each case study for a specific reason. The first case 87 

study uses array of technologies to reveal the diversity and drivers of behavioural rhythms in the 88 

wild, as well as to discuss how the findings compare to the findings from captive conditions 89 

(Table 1, questions 1-3). Most of the technologies in this case study were traditionally deployed 90 

for other purposes than measuring behavioural rhythms. In the second case study we initially 91 

review technologies that allow individual-based and group-based tracking of insects, for which we 92 

have yet to fully appreciate how their rhythms are expressed in the wild. We then demonstrate the 93 

use of laser radar to record activity rhythms of insect groups across time and habitats (Table 1, 94 

question 1). The third case study combines tracking methods and genetic engineering to tackle 95 

one of the most pressing chronobiological questions, that is, whether clocks are adaptive (Table 1, 96 

question 5). 97 

 98 

Integrating old and new approaches to record rhythms in the field 99 

Chronobiologists assess rhythmicity in captive animals by measuring activity rhythms (e.g., 100 

locomotion and foraging), physiological rhythms (e.g., body temperature or melatonin 101 

production), and molecular rhythms (e.g., gene expression) [3,16,17]. Activity rhythms are 102 

quantified using infrared sensors or mechanical instruments such as the running wheel [18]. 103 

Physiological rhythms are usually assessed using temperature and heart rate loggers [19], or 104 

sampling of blood, urine and faeces which are subsequently analysed for hormone concentration 105 

(melatonin, testosterone, etc.) [20]. Molecular rhythms are assessed by gene expression - a 106 

relatively recent tool - performed with diverse methods ranging from microarrays to quantitative 107 

PCRs [17] and transcriptomics [21], or by quantification a wide range of proteins and metabolites 108 

[21]. All these methodologies can be used, and some of them already are used, to also elucidate 109 

rhythms of organisms in the wild. For instance, a recent study used running wheels with free-110 

living mice in the wild [18] and found similar temporal patterns of running as in captive mice. In 111 
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addition, there have been great developments in individual-based tracking technologies as well as 112 

in automated monitoring systems, which allows gaining unprecedented insight into behavioural 113 

and physiological rhythms of free-living animals. Thus, chronobiologists have now a well-114 

equipped toolbox at hand to study rhythms of organisms in the wild. 115 

We summarise the methods available to field chronobiology in Table 2 and 3. We 116 

distinguish methods used to record behavioural and physiological rhythms (Table 2), which often 117 

involve tagging animals, from relatively new methodologies that assess molecular rhythms or use 118 

genetic engineering to manipulate circadian time (Table 3). We briefly describe how each method 119 

works, what kind of rhythmic information it can measure, and provide examples of 120 

chronobiological questions it can help answer. Although we have described each method 121 

separately, field chronobiology may strongly benefit from integrating existing methodologies. For 122 

instance, geolocators and accelerometers can be jointly deployed on the same animal to infer daily 123 

activity patterns of birds at different stages of their migration journey [22,23]. and a combination 124 

of accelerometers, automated radio-telemetry and EEG recordings revealed strikingly variability 125 

in timing of sleep in tree-toed sloths (Bradypus variegatus) [24]. In addition, different 126 

technologies can be integrated within a single tag. For example, daily diaries have multiple built-127 

in sensors that simultaneously record behavioural, physiological and environmental rhythms [25], 128 

thereby allowing a holistic view into biological rhythms of wild animals.  129 

 130 

CASE STUDY 1: Diversity of individual rhythms in the wild - avian incubation 131 

and foraging behaviour 132 

Key questions: How variable are rhythms within and between wild populations? What drives such 133 

variation? Are rhythms of captive animals comparable to rhythms of animals in the wild? 134 

  135 

We understand little about within- and between-species diversity of behavioural rhythms in the 136 

wild (see Editorial of this issue and [4]). Consequently, we also understand little about what 137 

drives the potential variation in these rhythms, e.g. to what extent rhythms are determined by 138 

evolutionary history and/or by plastic responses to the environment.  139 

Here, we demonstrate how diverse monitoring methods can be used to fill this knowledge 140 

gap, that is, to study variation in behavioural rhythms (daily and seasonal) in free-living non-141 
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model organisms in their natural environments and in unexplored contexts. Specifically, we 142 

discuss monitoring methods used to reveal the diversity in incubation rhythms of biparental 143 

shorebirds [11] and demonstrate the use of GPS-tracking to derive novel data on diverse foraging 144 

activity patterns of raptors (Klaassen et al., in preparation). 145 

  146 

Incubation rhythms of biparental shorebirds. 147 

It is often unclear how findings on single individuals translate to the social context typically 148 

experienced by organisms in their natural environment, i.e. when it matters to them [4]. For 149 

example, when individuals pursue a common goal such as reproducing, the social environment is 150 

expected to shape their behavioural rhythms [26]. However, social synchronization and its 151 

outcome in terms of behavioural rhythms are poorly understood. 152 

Avian biparental incubation is a mutually exclusive, but socially synchronized, 153 

behavioural rhythm. A recent study [11] used an array of monitoring methods (RFIDs, light 154 

loggers, GPS-based systems, radio-tags, video recordings and continuous observations; Table 4) 155 

to reveal unprecedented within- and between- species diversity in incubation rhythms across 729 156 

nests of 91 populations of 32 biparentally-incubating shorebird species (Fig. 1). 157 

Multiple sampling methods allowed us to include more species and populations, as well as 158 

to increase sample size for some populations. Although the sampling interval varied from 159 

continuous to 30 min sampling between methods (Table 3) and populations, as well as within 160 

some populations, the incubation variables were independent of sampling interval (Table 2 in the 161 

Extended Data of [11]). 162 

Incubation records were transformed to local time (UTC time+(nest's longitude/15)) to 163 

make them comparable across sites. For each nest, the authors manually or automatically 164 

[11,12,27,28] extracted lengths of all available incubation bouts defined as the total time allocated 165 

to a single parent (i.e. the time between the arrival of a parent at and its departure from the nest 166 

followed by incubation of its partner). Bout lengths were then used to extract the length of the 167 

period (the most prominent cycle of female and male incubation) that dominated each incubation 168 

rhythm. Finally, phylogenetically informed comparative analyses were used to investigate 169 

phylogenetic signal in bout and period length, the relationship between bout length and body size, 170 

latitude and escape distance from the nest, as well as relationship between period and latitude.      171 
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The study found substantial within- and between-species variation in incubation rhythms 172 

(Fig. 1). For example, between species, the period length of the incubation rhythms varied from 173 

six to 43 hours. Different species, but also different pairs of the same species, adopted strikingly 174 

different incubation rhythms, even when breeding in the same area. For example, the incubation 175 

period length for Long-billed dowitchers Limnodromus scolopaceus varied from 21.75 to 48 176 

hours. Interestingly, 24-h incubation rhythms were absent in 78% of nests representing 18 out 32 177 

species. 178 

Importantly, the study explained part of the described variation in the incubation rhythms. 179 

For example, there was a strong phylogenetic signal (Pagel’s λ was close to 1). In addition, the 180 

incubation rhythms with periods that do not follow the 24-h light-dark cycle were more common 181 

and the deviations from 24-h increased in shorebirds breeding at high latitudes. This supports the 182 

existence of a latitudinal cline in incubation rhythms, but a substantial number of rhythms defied 183 

the 24-h day even at low and mid latitudes. These results indicate that under natural conditions 184 

social synchronization can generate far more diverse behavioural rhythms than previously 185 

expected (e.g. from studies of captive animals), and that the incubation rhythms often defy the 186 

assumptions of entrainment to the 24-h day-night cycle. 187 

 188 

Diel activity patterns of diurnal raptors 189 

Individual variation in daily and seasonal foraging rhythms remains poorly understood. This is 190 

perhaps not surprising as, until recently, long term monitoring of many individuals was not 191 

feasible (e.g. it was too labour intensive, but see an example on hunting activity of individual 192 

European Kestrels Falco tinnunculus recorded with visual observations [29]). This issue is now 193 

solved by the availability of several types of tracking devices that allow us to follow the behaviour 194 

and movements of individual animals in unprecedented spatiotemporal detail (Table 2). However, 195 

most analyses of tracking data focus on spatial aspects such as home range size and migration 196 

routes, whereas temporal aspects such as daily and seasonal activity patterns are largely 197 

overlooked (but see e.g. [30–33]. This suggests that the huge amount of detailed tracking data that 198 

is currently routinely collected is generally underused for chronobiological purposes. Here we 199 

provide an example of how GPS-tracking data could be used to infer daily foraging rhythms of 200 

individual Montagu’s Harriers Circus pygargus.  201 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



R. Soc. open sci. article template  

8   

 
Phil. Trans. R. Soc. B.  

We re-analysed GPS tracking data of three individual Montagu's Harriers, which were 202 

originally collected to study home range behaviour and habitat use during the breeding season 203 

(Klaassen et al. in preparation). The birds were tracked by UvA-BiTS GPS-loggers [34] that were 204 

programmed to sample the position and speed of the bird every 5 to 30 minutes during the day and 205 

every hour to two hours during the night (note that one of the advances of this tracking system is 206 

that tags can be programmed remotely when in reach of a local antennae, [34]). Flying behaviour 207 

was defined when the instantaneous GPS-speed exceeded 2 m/s, as the intercept of the probability 208 

density functions of speeds during sitting and during flight, which together make up the bi-modal 209 

density distribution of instantaneous speeds (Klaassen et al., in preparation). To reconstruct daily 210 

activity patterns, the proportion of flight instances within each hour of the day was calculated, 211 

lumping data across all available days (7-14 days, see Fig. 2). The average time flying per day 212 

was obtained by the sum of the hourly flight proportions. In this analysis, only daylight hours 213 

were included as loggers only collected sufficient data during daylight hours (fix interval 5-30 214 

minutes) and because harriers are strictly diurnal. Montagu's Harriers hunt on the wing by slowly 215 

flying above foraging habitat, thus flight will mainly represent foraging activity. As Montagu's 216 

Harriers are long-distance migrants, daily activity patterns could be compared across different 217 

ecological contexts, i.e. the breeding site in Europe, their main migratory stopover site in 218 

Northwest Africa, and the wintering site in the Sahel in Africa [35]. 219 

  Within individuals, daily activity patterns differed between the breeding, stopover and 220 

wintering site. Harriers flew more at breeding sites (mean values for the three individuals were 221 

6.4, 7.5 and 7.7 hours per day, based on N = 183 days) than at stopover (3.4, 3.7 & 4.7 hours per 222 

day, N = 42 days) or wintering sites (4.1, 4.2 & 4.4 hours per day, N = 214 days) (Fig. 2). Not 223 

only had the amount of time spent flying per day varied between sites, but also temporal patterns 224 

of daily activity. For example, at wintering sites, harriers have a distinct dip in activity around 225 

noon. This “Siesta” is much less pronounced for stopover sites and almost absent for breeding 226 

sites (Fig. 2). Activity patterns also differed between individuals, with for example “Joey” flying 227 

less (6.5 hours per day) during the breeding season compared to “Elzo” (7.7) and “Yde” (7.5) 228 

(Fig. 2). 229 

In order to quantify the degree of similarity in daily activity patterns, for example between 230 

individuals or between sites, the overlap index was calculated: 231 
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where a and b are the proportions of time flying for the two activity patterns that are compared, 232 

for different hours (i). This index ranges from 0 for non-overlapping distributions to 1 for 233 

identical distributions [36]. The overlap index between sites (average [range] index for each 234 

individual: red = 0.81 [0.77-0.87], blue = 0.90 [0.85-0.95] and yellow = 0.75 [0.73-0.79]) was 235 

relatively low compared to the overlap index between individuals at a given site (average index 236 

[range]: breeding = 0.97 [0.96-0.99], stopover = 0.94 [0.93-0.95] and wintering = 0.93 [0.88-237 

0.96]). Thus, in this particular example, activity patterns tended to be similar across individuals at 238 

a given site, but varied to a greater degree across sites (Fig. 2), possibly suggesting a prominent 239 

role of environmental drivers shaping activity patterns in wild Montagu’s Harriers. Seasonal 240 

differences in daily activity patterns could, for instance, arise from different feeding habits of 241 

Montagu's Harriers in the three different seasons: voles and the need to feed young during the 242 

breeding season [37], eggs and nestlings of passerines during the main spring stopover in NW 243 

Africa [38], and grasshoppers in winter [39]. Whether between-individual variation in activity 244 

patterns reflects differences in individual personalities, with some birds being more explorative 245 

than others (e.g. [40]) or differences in habitat quality, is unclear. The speculations about how this 246 

within- and between individual variation arise deserve future testing and can only be resolved by 247 

combining the tracking results with field observations of the ecological circumstances at the three 248 

sites, such as how prey abundance and harriers' hunting success vary throughout the day [38].   249 

 250 

Conclusion 251 

We demonstrated how incubation and foraging rhythms of free-living birds vary within- and 252 

between individuals and species, across seasons, latitudes, and depending on phylogeny (i.e. 253 

provide answers to question 1-2 in Table 1), and that such rhythms are more diverse than expected 254 

from studies in captivity (question 3 in Table 1).  255 

These finding generate three main questions: (1) Are other behavioural rhythms in the 256 

wild also that diverse? (2) Are these rhythms regulated by endogenous (clock-driven) or 257 

environmental factors, or by a mixture of these? (3) What are the fitness consequences of various 258 

behavioural rhythms? To address these questions, we need to (1) expand our studies to different 259 
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species and ecological contexts (e.g. monitoring of rhythms in both predators and preys), (2) use 260 

molecular tools that allow quantification of endogenous clocks in the wild (e.g. fibroblast assays, 261 

see Table 3 and [41,42]), and (3) monitor behavioural rhythms over the long-term to understand if 262 

and how individual variation in rhythms is linked to fitness (see case study 3). 263 

 264 

CASE STUDY 2: From individual to population rhythms: Timing of insects’ 265 

movement in the field 266 

Key questions: How variable is timing of activity between insect groups? What environmental 267 

factors are related to such variation?  268 

  269 

Insects are key laboratory models in chronobiology [43,44]. Yet, long term biotracking of insects 270 

in the wild, unlike tracking of vertebrates [45], is rare and limited to the largest species [46]. This 271 

is alarming because the limited evidence from semi-natural conditions revealed temporal 272 

components of behaviour that markedly differ from those recorded in the laboratory [8]. Here we 273 

briefly review the tracking of individual insects, as well as of groups (for description of each 274 

method). Then we illustrate recent applications of laser radar to identify groups of insects and 275 

their daily activity rhythms over various habitats. 276 

 277 

Tracking individual insects 278 

Monitoring of individual insects in the wild can be done by active (battery-powered) radio 279 

transmitters or by harmonic radar and RFID which use passive tags (without battery) [46]. Radio-280 

telemetry is limited by the available tags, most of which are too large, too heavy (2-100% of body 281 

mass), have limited tracking range on the ground (100–500 m), and/or have short battery life (7-282 

21 days) [46]. Hence, radio-telemetry has been mainly used with larger insects (beetles and 283 

crickets), and only relatively recently with bees, dobsonflies and dragonflies. Such studies are 284 

mainly local in scale, but ground crews and receivers mounted on an airplane allowed monitoring 285 

of dragonfly migration over 150 km and up to 12 days [47].  286 

In contrast to radio-transmitters, the tags used with harmonic radar and RFID have lower 287 

weight and hence can be used with a broader range of insect taxa [46]. Although the individuals 288 

can be monitored over a longer period of time than with radio-transmitters, the monitoring is only 289 
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local as the detection zone of a stationary radar unit is < 1 km in diameter and the detection 290 

distance of RFID tags is usually < 1–5 m. Thus, RFID is useful for insects returning on a regular 291 

basis to their burrows (e.g. crickets) or hives (e.g. bees and bumblebees) [46,48].  292 

Although miniaturization of tags will certainly extend the range of trackable insect taxa, 293 

some miniature insects are trackable only in groups, for instance with help of citizen science [49] 294 

or various radar technologies [50–52] (see Table 2 and next section). 295 

  296 

Tracking groups of insects 297 

Vertical-looking radars, harmonic radars and weather radars have all been deployed to track flying 298 

insects since 1970s [50–52]. Vertical-looking radars detect insects that pass through the radar 299 

beam pointing up into the sky. Harmonic radars detect movements across a horizontal transect at a 300 

ground level, while the beam of weather radars spreads out as it moves away from the station, 301 

covering an increasingly larger volume (up to several km3). Thus, these radars are useful to infer 302 

timing of migration, flight altitudes (up to 1km) and orientation of the insects in relation to winds 303 

[53]. However, information about movements is generally limited to a single location of 304 

observation [54]. Moreover, this technology is suitable predominantly for large insects, and 305 

insects can only be classified by size and air speeds. In sum, these radar technologies are usually 306 

unable to distinguish species from one another. However, to understand activity rhythms in free-307 

ranging insects, especially of those that are too small for any individual-based tracking 308 

technology, identifying insects remotely to groups, families, or better to species, is necessary. 309 

 Classification of insects to groups may be possible with laser radar (lidar; for details see 310 

below and [55]). The lidar beam that spreads out as it moves away from the station, covers a 311 

probe volume of approximately 10 m3 over a 2 km range. Lidars can detect groups of insect by 312 

measuring the spectrum of the light reflected by the body and wings of the flying insect as it flies 313 

across the laser beam [55,56]. That is, lidar can classify groups of insects according to wing beat 314 

frequency, body size, wing area, and potentially also body surface structures. 315 

 Classification of larger insects (such as damselflies) to species and to sex (if sexes are 316 

colour dimorphic) is also possible. Individuals previously marked with fluorescence dye generate 317 

a colour specific peak in the lidar signal [57]. Alternatively, dark-field spectroscopy identifies 318 

flying insects by registering sunlight reflected from the insect surface, when the insect passes 319 
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across sampling area (ø 20-30 cm, up to 300 m afar) monitored by the spectroscope [58]. The 320 

distance to the insect is measured as well as its size and direction of flight, thereby including also 321 

spatial components of activity patterns. 322 

 323 

Use of laser radar to identify rhythms in groups of flying insects  324 

Here, we illustrate the use of lidar technology to record temporal and spatial variation in flying 325 

insect abundance according to insect groups and habitat structures [59]. In this study, the lidar 326 

beam was sent 1.8 m above an open meadow and terminated at a distance of 140 m by a box made 327 

out of a dark cardboard, in an area where the meadow was surrounded by a forest edge. 328 

Over the course of two nights, three main insect clusters were identified in the data (Fig 329 

3a). Some insect groups had a wider peak of activity and were more evenly distributed over the 330 

140 m transect (Fig 3b, Cluster a-b) than others (Fig 3b, Cluster c). Specifically, one insect cluster 331 

was especially abundant at the beginning of the night (Fig. 3b, Cluster c), especially in a meadow 332 

surrounded by a forest edge. Such temporal structuring across habitats might by typical for 333 

insects. For example, abundance of flying insects is higher over the grazed meadow compared to 334 

crop fields with oats [60].  335 

These findings elucidate how various insect groups cluster in time and space and suggest 336 

variability in daily timing across different groups of insects and across various habitats. However, 337 

the study has two major limitations. First, the study lasted only for three days, but recordings over 338 

several days, preferably months, are necessary to identify activity rhythms and their variation over 339 

time. This is essential, if we aim to elucidate the role of different environmental variables in 340 

driving variation in such rhythms. Second, the body-wing proportions overlapped between species 341 

and insects were thus classified only to groups based on body-wing proportions and wing-beat 342 

frequencies (Fig. 3a). However, deeper understanding of insect behavioural rhythms requires 343 

classification of insects down to the order, family or better species level. Such classification might 344 

be feasible if the species classification algorithm includes additional variables [60], or when it is 345 

calibrated by releasing insects of known species that are then recorded by the lidar.  346 

 347 

Conclusion 348 
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Here we briefly reviewed the technology and limitations to track insects, both individually and in 349 

groups. Then we demonstrated how lidar may reveal temporal and spatial variation in activity of 350 

various flying insect-groups [59,60]. Hence, the study provides preliminary insights about how 351 

insect rhythms vary between groups (Table 1, question 1) and across habitat types (Table 1, 352 

question 2). We further highlight current limitations in classifying insects to lower taxonomic 353 

levels. Once such limitations are tackled, lidar will help us answer question related to the 354 

variability and drivers of rhythms in different insect taxa, and how these differ between laboratory 355 

and wild populations (Table 1, question 3).  356 

Lidar technology might also proof suitable for future investigations of nocturnal bird 357 

migration. Species could be classified based on flight speed, but also based on plumage 358 

characteristics, including coloration [57,61]. Such information is of interest to comparative studies 359 

investigating seasonal and diurnal variation in migration patterns. In addition, although lidar has 360 

been so far applied mainly in pilot studies over short time period, using this technology over 361 

longer periods will improve our understanding about daily rhythms of insect abundance across 362 

seasonal and environmental contexts. 363 

  364 

CASE STUDY 3: Measuring fitness consequences of circadian organization in 365 

the wild 366 

Key question: Can we link the variation in circadian organization of activity to fitness in the wild? 367 

  368 

Accurate timing of daily activity of organisms has long been assumed essential for fitness and 369 

survival, for example for the anticipatory regulation of physiology and behaviour in advance of 370 

changes in environmental conditions [62,63]. In captive animals, positive effects of a near 24 h 371 

endogenous circadian period with a duration comparable to the external (laboratory controlled) 372 

light-dark cycle are reported for the growth rate and longevity of insects [44,64], as well as for the 373 

lifespan of mice [65] and hamsters [66]. However, the laboratory is not the environment in which 374 

species have evolved and circadian traits have been selected. It is therefore essential to study the 375 

adaptive value of circadian function under natural conditions [67,68].  376 

To demonstrate adaptiveness of circadian organization in natural habitats is however 377 

daunting. First, the powerful natural light/dark cycle limits experimental manipulation of temporal 378 
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behaviour. Second, free-ranging individuals have to be followed throughout their life and their 379 

reproductive success needs to be measured. DeCoursey et al. [69,70] studied fitness consequences 380 

of lesions of the Suprachiasmatic Nucleus (SCN), the master circadian pacemaker in mammals, in 381 

antelope squirrels (Ammospermophilus leucurus) and chipmunks (Tamias striatus). SCN lesions 382 

are used in chronobiology experiments to abolish circadian rhythms in sleep-wake cycles and 383 

activity in mammals [71,72]. The survival of antelope squirrels and chipmunks was monitored 384 

with the use of transponders (RFID’s, see Table 2) and radio telemetry, respectively. In these 385 

studies, the SCN lesions compromised longevity: individuals with lesions lived shorter than sham 386 

control animals. These results provided the first evidence of the adaptive value of circadian 387 

organization in free-ranging mammals. However, to rigorously test for fitness consequences, it is 388 

essential to measure whether circadian rhythms not only affect survival, but also reproductive 389 

success [67].  390 

A way to measure both individual and reproductive fitness is to use heritable circadian 391 

traits (e.g. the level of rhythmicity or the length of internal clock’s circadian period) in a selection 392 

experiment. Such traits have become available in an increasing number of organisms in the form 393 

of natural or engineered circadian mutants. Selection experiments have been done in the 394 

laboratory with strains of cyanobacteria carrying mutations that effected their circadian period. 395 

Strains with a circadian period similar to the applied external light-dark cycle outcompeted strains 396 

with a different circadian period; thus, showing selective advantage for an endogenous circadian 397 

period that matches the external light/dark cycle [73,74]. 398 

Here, we highlight the methods to translate selection experiments into semi-natural 399 

conditions using results from two competition experiments with mice [15,75]. The experiments 400 

integrated existing monitoring methods with present-day availability of circadian mutants. Wild-401 

type mice (without the mutation) and mutant mice (homo- and hetero-zygote for a circadian 402 

mutation) were housed in mixed populations in outdoor enclosures. All mice were produced from 403 

heterozygote parents. Mice presence and longevity was monitored by subcutaneous RFID tags 404 

recorded at feeding stations. This allowed permanent monitoring of each individual and hence the 405 

mutant allele frequency in each population. 406 

The first study [75] used mice with a mutation in the period2 gene (mPer2brdm1), which 407 

weakens circadian rhythmicity and causes health problems in the laboratory [76]. The mutant and 408 
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wild type mice were released into four outdoor enclosures in near Mendelian ratio (homozygote : 409 

heterozygote : wild type = 1 : 2 : 1). However, there was no selection against the mutant allele 410 

over the course of two consecutive years [75].  411 

The second study [15] used a comparable setup as the first one, but with six outdoor 412 

enclosures and the mutant tau allele (Ck1etau) which shortens the endogenous circadian period 413 

[77]. At the start of the experiment this mutation was present in near Mendelian ratio. Here, a 414 

strong selective force against the mutant allele reduced its frequency from approximately 0.5 to 415 

almost 0.2 in little over a year (Fig. 4). Even though unknown non-circadian pleiotropic effects by 416 

the mutation cannot fully be excluded, this finding strongly indicates fitness consequences of 417 

aberrant circadian organization.  418 

These results suggest that fitness consequences of behavioural rhythms with a circadian 419 

period length that deviates from the light/dark cycle in a semi-natural setting (second study) may 420 

be more severe compared to the consequences of a weaker circadian rhythm (first study). This is 421 

in line with the profound impact of strong deviations in circadian period reported from the lab 422 

[65,66]. However, more studies on the impact of variation of circadian rhythmicity on fitness in 423 

the field are needed. 424 

 425 

Conclusion 426 

So, can we link circadian organization to fitness in the wild? In the second experiment, the 427 

ultimate control test would be to shorten the duration of the period of the natural light/dark cycle. 428 

However, a true manipulation of the natural light/dark cycle is hard to achieve in the field, and 429 

this remains a major limitation for experimental studies on fitness consequences of circadian 430 

timing in wild animals. Nevertheless, developing novel, long lasting and smaller tracking systems 431 

will expand the possibilities to study natural variation of circadian organization in free-ranging 432 

species. These will enable us to follow more and smaller species for a longer time in the field. 433 

Indeed, in some contexts (e.g. bees, fish in small ponds, birds), life-long tracking of individuals 434 

(e.g. using RFID and satellite tracking; see Case study 1 [38]) is already possible. Information on 435 

individual variation in circadian organization, in combination with data on longevity will provide 436 

new insights on the evolutionary consequences of daily rhythms in free-ranging animals (Table 1, 437 

question 5).  438 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



R. Soc. open sci. article template  

16   

 
Phil. Trans. R. Soc. B.  

The circadian phenotype of the tracked individuals can be precisely estimated by standard 439 

behavioural assays in the laboratory, but also with the use of skin fibroblasts (see Table 3 and 440 

[78]). In addition, other manipulations of the natural light/dark cycle (e.g. use of artificial light at 441 

night in natural habitat) are possible [79] and have been shown to affect circadian as well as 442 

seasonal traits in a variety of species [80–82]. However, the fitness consequences of such effects 443 

are still unclear. A recent correlative study has linked light at night to variation in dawn song and 444 

reproductive success (extra-pair paternity) in a wild songbird [83], but an experimental 445 

manipulation of light at night in the field has shown little effect on the reproductive success in a 446 

closely related species [79]. 447 

 448 

Outlook 449 

Methods to monitor behavioural, physiological and molecular rhythms develop rapidly, but are 450 

not used to their full potential for tracking biologically relevant rhythms in free-ranging animals in 451 

their natural environments. Here we have briefly reviewed established and unconventional 452 

methods available for tracking animal rhythms in the wild and suggest possible future applications 453 

(Table 2 and 3). With the help of three case studies, we further illustrated how to use some of the 454 

reviewed technologies to reveal: a) the variability in behavioural rhythms at different taxonomic 455 

level, from individuals to species (Case study 1 and 2, Figure 1, 2, 3), (b) the phylogenetic and 456 

environmental factors that may influence such variability (Case study 1), and (c) the fitness 457 

consequences of functional clocks (Case study 3, Figure 4). These case studies serve as examples 458 

of what is currently possible to achieve, but the opportunities do not end here. For instance, 459 

whereas detailed tracking data are currently limited to larger animals [45], miniaturization of tags 460 

may allow individual tracking of very small animals such as insects [46]. 461 

Technological advances not only result in smaller devices, but also ‘smarter’ devices that 462 

integrate different sensors. For example, tags that contain accelerometers, as well as physiological 463 

and environmental sensors, enable a detailed view into the timing of various animal behaviours 464 

and the relation of such timing to habitat characteristics [25,32]. However, one of the challenges is 465 

to develop standard methods to extract daily activity patterns from tracking data in order to 466 

facilitate intra- and inter-specific comparisons. For example, it is yet unclear how to integrate 467 

datasets that differ in resolution (e.g. time interval between fixes, accuracy of location data; but 468 
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see [11]) or that use different sources of auxiliary data (e.g. accelerometer data compared to 469 

instantaneous speed data). 470 

The current rise of field studies is mostly confined to descriptive work. Combining various 471 

technologies to record rhythms in the wild with rigorous experimental designs will enhance the 472 

mechanistic understanding of how rhythms of free-living animals are regulated, including the 473 

relative contribution of endogenous versus environmental factors, as well as the adaptive function 474 

of biological clocks. 475 
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Tables 766 

 767 

Table 1. Examples of pressing questions in the field chronobiology. 768 

# Question Case study 

1 How variable are rhythms within and between taxa, species, populations and 

individuals? 

1, 2 

2 What drives such variation? (e.g. environmental conditions, internal state, 

sociality, anthropogenic disturbance, global environmental change) 

1, 2 

3 Are rhythms of captive animals comparable to rhythms of animals in the wild? 1 

4 How can we disentangle the relative contribution of endogenous (genes) versus 

exogenous (environment) drivers of rhythmicity in wild species? 

 

5 Is variation in rhythms associated to fitness? 3 
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 1 

Table 2. Methods to record behavioural and physiological rhythms in free-living animals. Methods ordered according to (1) type, (2) level of 787 
application, (3) tag weight and (4) price. Specific applications are listed only when unique to the given method. For instance, for behavioural rhythms all 788 
methods are applicable to record activity vs. non-activity and hence that is not stated. 789 
 790 

TYPE LEVEL COST WEIGHT METHOD DESCRIPTION APPLICATION +/- SOURCE 

     
Behavioural rhythms 

   

On board 

(recapture 

required) 

Individual 
€50-200 / tag 

 
> 2g 

Light loggers 

(including light-

based geolocators) 

Record ambient light levels over time, serve as a proxy 

for activity. Sometimes also humidity, salinity, 

acceleration. 

Cave nesting and roosting animals, 

or incubation in birds. 

- inaccurate proxy of 

position    

- light intensity 

might not reflect 

activity 

[11,84] 

On board 

(recapture 

required) 

Individual 
€50-200 / tag 

 
> 0.7g Accelerometers Measure bi- or tri-axial acceleration  

Identification of specific behaviours 

and measurement of energy 

consumption 

+ insight into daily 

organisation of 

behaviours 

[22,23] 

On board Individual 
< €5000/ tag 

 
> 2g GPS tracking devices 

Position estimated in relation to stationary satellites is 

stored on board and/or send via satellite, cellular, or 

radio modem in a real time or when animals approach 

a receiving station. 

Information on position in space 

(e.g. nest, roost, foraging site 

attendance, habitat type) 

+ great proxy of 

position in space 

-costly 

[33,38] 

Stationary Individual 

€7/ tag 

€400-1000 / 

energy-efficient 

reader 

> 1 mg 
Radio Frequency 

Identification (RFID)  

Electromagnetic fields detects individuals (1cm – 5 cm 

away) tagged with passive transponders. Reader 

requires constant energy supply. 

Rhythmicity of visits to specific 

resources (feeding stations) or 

locations (nests) 

 

+ cheap 

- relies on periodic 

visits from animals 

 

[11,15] 

Stationary Individual >€50k / station > 6 mg 
Harmonic radar with 

passive tags 

Tags (up to 1km afar) transpose an incoming radar 

signal to a different frequency. When received by the 

radar station, such reflected signal is distinguishable 

from other radar-reflective objects. 

Record local activity 
+ detailed activity 

and spatial 

information 

[46] 

Stationary Individual 
€3000 / 

receiver 
> 0.25 g 

Automated radio, 

acoustic or electro-

magnetic tracking 

Transmitters emit signal that is captured by automated 

receivers up to several kilometres afar. 

Position in space, activity rhythms 

and interactions of individuals 

 

+ continuous 

monitoring of 

activity state 

[9,85] 
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-no info on behavior 

Stationary 

Individual 

Group 

Population 

Labour > 0.25 g 
Continuous 

observations 

Periodic observation of animal behaviour via sight, 

video-recordings, or radio-tag signal 

Recording of daily organisation of 

specific behaviours  
 

+ real insight into 

animal behaviour 

- labour intensive                  

[86] 

Stationary 

(Individual) 

Group 

Population 

€50-200 / trap  Camera traps 
Daylight or infra-red illuminated short video or stills 

triggered by various sensor types (commonly infrared) 

Record rhythms of organisms 

confined to specific place (nest, 

boroughs), as well as spatial and 

temporal species interactions 

+ easy to deploy  

- individuals 

commonly not 

identifiable 

- many traps needed 

[87] 

Stationary 
Group 

Population 

€500-2000 / 

detector 
 

Automatic bat 

detectors 
Sound pressure triggered recording of echolocation 

Rhythms of free-ranging bats at a 

specific location 

- species and 

individual hard to 

identify                       

[88] 

Stationary 
Group 

Population 

>€100k / 

station 
 

Dark-field 

spectroscopy 

Identifies organisms (e.g. flying insects) by registering 

sunlight reflected from their surface 

Activity rhythms of groups of 

animals (if classification is 

validated) 

+ no interference 

with animal 

behaviour 

 

[58] 

Stationary 
Group 

Population 

>€300k / radar 

station 
 Laser radar (lidar) 

Records spectrum of reflected laser light, can be 

combined with marking of the individuals (species)  

with colour dies 

Activity rhythms of groups of 

animals (if classification is 

validated) 

+ no interference 

with animal 

behaviour 

[59] 

Stationary 
Groups 

Population 

€2M / radar 

(based on 

NexRad 

WSR88D) 

 Weather radars  
Record frequency changes in reflected radar signal 

(doppler-shift)  

Temporal distribution and direction 

of passing birds, bats or insects. 

 

+ no interference 

with animal 

behaviour 

- lack species 

recognition 

- price 

[51] 

     Physiological rhythms    

On board Individual > €500 / tag > 1 g 

Heart rate 

transmitters and 

loggers 

Electromyocardiograms (EMG) are recorded from radio 

signals (transmitter) or electrodes (logger)  

Rhythms of heart rate and energy 

consumption (metabolic rate) 

+ estimates of 

metabolic rate 

- calibration for new 

studied species             

 

[89] 

On board 

(recapture 

required) 

Individual > €1000 / tag > 5 g EEG recorders 
Measure voltage fluctuations resulting from ionic 

current within brain neurons 
Sleep rhythms 

+ real sleep patterns  

- invasive 
[13,14] 
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On board 

(recapture 

required) 

Individual > €50 / logger > 1g Temperature loggers 

Pulse rate of the radio-transmitter varies with 

temperature and is recorded by researcher or by 

automated receiver 

Body temperature rhythms, health 

state (fever) 

- receiver close to 

the animal 
[19] 

Stationary Individual 

< €300 / tag 

€3000 / 

receiver 

> 0.5g 
Temperature 

radiotransmitters 

Record temperature based on variation in transmitter's 

pulse rate over time 

Body temperature rhythms, health 

state (fever) 

+ records activity 

and body 

temperature 

simultaneusly 

- receiver close to 

the animal 

[90] 
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Table 3. Methods to record molecular rhythms in free-living animals. Table  805 
 806 

METHOD DESCRIPTION APPLICATION COST + - SOURCE 

Fibroblast cells 

A clock gene probe flagged with a bioluminescent 

marker is inserted into fibroblasts cultured from 

skin biopsy. Rhythmic expression of clock gene is 

then measured in constant darkness in a lumicycle.   

Measure circadian period length in fibroblast 

(dermal) cells  

  

> €100 per sample 

(after first 

investment to set 

up facilities) 

- Insight into endogenous 

circadian traits  

- Useful to disentangle 

endogenous (clock-driven) from 

environmental factors affecting 

rhythmicity 

 

- Cell cultures facilities 

needed 

- Requires the use of a 

lumicycle (> €50k) 

[41] 

Gene expression  
Gene expression level is quantified via 

transcriptomics, microarrays, RT-qPCR 

Diel and seasonal expression levels of candidate 

genes as well as of entire gene pathways (e.g. 

immunity, antioxidant system etc) 

> €200 / sample 

- Expression levels of candidate 

genes involved in timing, also 

thousands of genes 

simultaneously (transcriptomics) 

- Bioinformatics  

- Reference genome 
[21] 

Proteomics/ 

Metabolomics 

Relative abundance of proteins and metabolites is 

quantified via mass-spectrometry 

Diel and seasonal abundance of proteins and 

metabolites (including hormones) 

 

> €200 / sample 

- Allow studying the abundance 

of hundreds of proteins and 

metabolites simultaneously  

- Bioinformatics  [91] 

Genetic engineering 
e.g. mutagenesis, gene targeting by homologous 

recombination, gene replacement 

Daily and seasonal rhythms in sleep, activity, 

physiology in mutant animals lacking key 

circadian genes 

€5000-10000 (for 

mice, less 

predictable for 

other animals) 

- Test properties and 

consequences of specific aspects 

of timing 

- Pleiotropic effects may 

affect other genes than 

target circadian ones 

 

[15] 

 807 

 808 

 809 

 810 

 811 

 812 

 813 

 814 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Phil. Trans. R. Soc. B. article template  

 
 

Phil. Trans. R. Soc. B. 
doi:10.1098/not yet assigned 

 

 
 1 

Table 4. Methods used to derive incubation in biparental shorebirds 815 

Method* How was incubation derived? Sampling interval  

(min) 

N 

populations 

N  

nests 

RFID with 

temperature 

probe between 

the eggs 

A thin antenna loop, placed around the nest cup and connected to 

the reader, registered presence of tagged parents at the nest; the 

passive-integrated tag was either embedded in a plastic flag [12] 

with which the parents were banded, or glued to the tail feathers 

[42]. Temperature recordings allowed to identify whether a bird 

was incubating even in the absence of RFID readings; an abrupt 

change in temperature demarcated the start or end of incubation 

[12]. 

0.08-5.5 23 200 

light logger 

attached to 

bird’s leg 

The logger recorded maximum light intensity for a fixed sampling 

interval (2-10 min) and recorded darkness when parent was 

incubating. An abrupt change in light intensity (as opposed to a 

gradual change caused, e.g. by civil twilight) followed by a period 

of low or high light intensity demarcated the start or end of the 

incubation period [11]. 

2-10 71 396 

GPS tag 

mounted on the 

back of the bird 

The tag recorded the position of the bird [43] and incubation was 

assumed whenever the bird was within 25 m of the nest. 

10-30 2 9 

Automated 

receivers 

Receivers recorded signal strength of a radio-tag attached to the 

rump of a bird; whenever a bird incubated, the strength of the 

signal remained constant [10]. 

0.07 2 3 

Video cameras 

and continuous 

observations 

Videos and observations were used to identify the incubating 

parents; parent identification was based on plumage, colour rings 

or radio-tag. 

constant - 30 6 61 

 * For technical specifications of the methods see Extended Data Table 1 in [11]. 816 
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Figure captions 824 

 825 

Figure 1. Actograms illustrating the diversity of shorebird incubation rhythms. a-b, Each 826 

actogram depicts the bouts of female (yellow; ) and male (blue-grey; ) incubation at a single 827 

nest over a 24-h period, plotted twice, such that each row represents two consecutive days. If 828 

present, twilight is indicated by light grey bars ( ) and corresponds to the time when the sun is 829 

between 6° and 0° below the horizon, night is indicated by dark grey bars ( ) and corresponds 830 

to the time when the sun is < 6° below the horizon. Twilight and night are omitted in the centre of 831 

the actogram (24:00) to make the incubation rhythm visible. The circled numbers ( ) indicate 832 

the breeding site of each pair (i.e. highlight which pairs bred in the same breeding site). a, 833 

Between-species diversity. b, Within-species diversity. Note that the three rhythms for Western 834 

sandpiper and Ringed plover come from the same breeding location. The actograms for each nest 835 

in the study together with the data and code to replicate the figure are freely available at 836 

https://osf.io/wxufm/ [28]. This figure was adopted from [11]. 837 

 838 

Figure 2. Example of daily foraging rhythms in three Montagu’s Harriers. Map presents 839 

migration tracks and corresponding bar plots represent proportion of time a bird spent flying 840 

during each hour of the day (GMT; averaged across 7-14 days) at the wintering site (lower plots), 841 

main spring migratory stopover site (middle), and breeding site (upper).  Note that only daylight 842 

hours are included as Montagu’s Harriers are strictly diurnal and loggers recorded the necessary 843 

detailed information (5-30 min sampling interval) only during the day. The three harriers are 844 

distinguished by colour and name. 845 

 846 

Figure 3. Using lidar to classify insect groups and their temporal and spatial distribution. (a) 847 

Contour plot illustrates insect densities based on body-wing ratio and the wing beat frequency as 848 

recorded by lidar. The three major insect clusters are indicated by black curves and as verified by 849 

insect traps represent mostly Trichoptera and Chironomidae (Cluster a), swarming non-biting 850 

midges and flies (Cluster b), and compact insects (Cluster c). The number assigned to each cluster 851 

in the legend represents the number of points in that cluster [59]. (b) Heat maps with temporal and 852 

spatial distribution of the three insect clusters. Note that the 140m long transect (range) started in 853 
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an open meadow and terminated in a meadow surrounded by a forest edge. (a-b) Red denotes 854 

areas with a high density of insects, whereas blue denotes low insect densities. Image reproduced 855 

with permission from [59]. 856 

 857 

Figure 4. The change of mutant tau allele frequency over time. Thick line denotes the mean 858 

allele frequency, thin lines its standard errors, dashed line the 50% frequency of mutant allele. 859 

Asterisks indicate times at which the offspring of the existing mice were trapped and thus 860 

included in the censored population. The red dot indicates the final allele frequency after trapping 861 

of all mice at the end of the experiment. At the start, the mutant allele was in near Mendelian ratio 862 

(homozygote : heterozygote : wild type = 0.88 : 2.00 : 0.78, which resulted in a mutant allele 863 

frequency of 49.1%). After a little over a year, the allele frequency had dropped to 20.5%. Figure 864 

modified from [15]. 865 
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Figure 1. Actograms illustrating the diversity of shorebird incubation rhythms. a-b, Each actogram depicts 
the bouts of female (yellow;  ) and male (blue-grey;  ) incubation at a single nest over a 24-h period, 

plotted twice, such that each row represents two consecutive days. If present, twilight is indicated by light 

grey bars ( ) and corresponds to the time when the sun is between 6° and 0° below the horizon, night is 
indicated by dark grey bars ( ) and corresponds to the time when the sun is < 6° below the horizon. Twilight 

and night are omitted in the centre of the actogram (24:00) to make the incubation rhythm visible. The 
circled numbers ( ) indicate the breeding site of each pair (i.e. highlight which pairs bred in the same 

breeding site). a, Between-species diversity. b, Within-species diversity. Note that the three rhythms for 
Western sandpiper and Ringed plover come from the same breeding location. The actograms for each nest in 

the study together with the data and code to replicate the figure are freely available at 
https://osf.io/wxufm/ [28]. This figure was adopted from [11].  
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Figure 2. Example of daily foraging rhythms in three Montagu’s Harriers. Map presents migration tracks and 
corresponding bar plots represent proportion of time a bird spent flying during each hour of the day (GMT; 
averaged across 7-14 days) at the wintering site (lower plots), main spring migratory stopover site (middle), 

and breeding site (upper).  Note that only daylight hours are included as Montagu’s Harriers are strictly 
diurnal and loggers recorded the necessary detailed information (5-30 min sampling interval) only during 

the day. The three harriers are distinguished by colour and name.  
Fig. 2  
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Figure 3. Using lidar to classify insect groups and their temporal and spatial distribution. (a) Contour plot 
illustrates insect densities based on body-wing ratio and the wing beat frequency as recorded by lidar. The 
three major insect clusters are indicated by black curves and as verified by insect traps represent mostly 
Trichoptera and Chironomidae (Cluster a), swarming non-biting midges and flies (Cluster b), and compact 
insects (Cluster c). The number assigned to each cluster in the legend represents the number of points in 

that cluster [59]. (b) Heat maps with temporal and spatial distribution of the three insect clusters. Note that 
the 140m long transect (range) started in an open meadow and terminated in a meadow surrounded by a 

forest edge. (a-b) Red denotes areas with a high density of insects, whereas blue denotes low insect 

densities. Image reproduced with permission from [59].  
Fig. 3  
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