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a b s t r a c t 

Differential shrinkage in particulate quasi-brittle materials causes microcracking which reduces durability 

in these materials by increasing their mass transport properties. A hydro-mechanical three-dimensional 

periodic network approach was used to investigate the influence of particle and specimen size on the 

specimen permeability. The particulate quasi-brittle materials studied here consist of stiff elastic parti- 

cles, and a softer matrix and interfacial transition zones between matrix and particles exhibiting non- 

linear material responses. An incrementally applied uniform eigenstrain, along with a damage-plasticity 

constitutive model, are used to describe the shrinkage and cracking processes of the matrix and inter- 

facial transition zones. The results showed that increasing particle diameter at constant volume fraction 

increases the crack widths and, therefore, permeability, which confirms previously obtained 2D modelling 

results. Furthermore, it was demonstrated that specimen thickness has, in comparison to the influence of 

particle size, a small influence on permeability increase due to microcracking. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Microcracking due to particle restrained shrinkage significantly

ncreases the permeability of porous quasi-brittle materials, which

ften reduces the durability of these materials. For instance for

ementitious composites, microcracking due to particle (aggre-

ate) restrained shrinkage has been experimentally observed in

isschop and van Mier (2002) , Wong et al. (2009) , Maruyama and

asano (2014) , Wu et al. (2015) and Maruyama et al. (2016) and

as shown to increase mass transport properties such as per-

eability and sorptivity ( Wong et al., 2009; Wu et al., 2015 ).

umerically, the initiation of microcracking due to parti-

le restrained shrinkage was studied in Grassl et al. (2010) ,

agier et al. (2011) and Idiart et al. (2012) . In some of these stud-

es, it was shown that the width of cracks produced by particle re-

trained shrinkage depends strongly on the size of particles ( Grassl

t al., 2010; Idiart et al., 2012 ). In the two-dimensional numerical

odelling, particles were often idealised as cylindrical particles

nd all cracks were assumed to penetrate completely the specimen

hickness. Therefore, in these two-dimensional analyses, increase

f crack width resulted in a significant increase in permeability. 

In experiments of irregular particulate composites such as

oncrete, permeability was measured by applying a unidirectional

ressure gradient of either water or gas across the specimen
∗ Corresponding author. 
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hickness. In these thicker specimens, it can be assumed that

omplicated 3D fracture networks are generated due to differential

hrinkage. It appears to be reasonable to expect that part of these

etworks are not connecting the opposite sides of the specimen

nd, therefore, do not equally contribute to the increase of per-

eability. Even for crack paths connecting opposite sides of the

pecimen, the crack widths along the path might vary. Therefore,

t can be expected that the thicker the specimen is, the smaller

he increase of permeability due to cracking will be. For instance,

ecent experimental studies in Wu et al. (2015) for nonuniform

rying shrinkage showed that permeability depends on specimen

hickness. This dependence on specimen thickness could be due

o the nonuniformity of the shrinkage strain, resulting in thickness

ependent patterns of microcracking in the specimen or due to

he variation of crack openings along random crack planes. 

The aim of the present study was to investigate numerically

he separate influences of specimen thickness and particle size on

he increase of permeability due to particle restrained shrinkage

nduced microcracking. For this purpose, a new coupled hydro-

echanical periodic network approach consisting of coupled

tructural and transport networks was developed. Periodic cells

re known in the area of homogenisation ( Miehe and Koch, 2002;

anit et al., 2003 ), where it has been shown that periodic bound-

ries result in faster convergence of properties with increasing

ell size than boundaries subjected to displacement or traction

onditions. One of the new features of the present periodic

pproach is that not only the periodic displacement/pressure-

radient conditions were applied, but also the three-dimensional
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. 3D periodic cell: main cell (thick lines) and 2 out of 26 neighbouring cells (thin lines) with two points I and J and their periodic images I ′ and J ′ . 
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network structure has been chosen to be periodic for both the

structural and the transport networks. Previously, combinations of

periodic network structure and periodic displacement conditions

were developed only for two-dimensional structural networks

( Grassl and Jirásek, 2010 ). The new three-dimensional coupled

periodic approach allows for describing fracture patterns and

resulting increases in conductivity independent of boundaries. For

the transport network, the constitutive models were based on

Darcy’s law combined with a cubic law to model the influence of

cracking on permeability ( Grassl and Bolander, 2016 ). 

2. Method 

The present numerical method for investigating the influ-

ence of particle restrained shrinkage induced microcracking on

transport properties was based on three-dimensional periodic

hydro-mechanical networks of structural and transport elements.

For the constitutive model of structural elements, a damage-

plasticity model was used ( Grassl and Davies, 2011 ). The transport

constitutive model used was Darcy’s law combined with a cubic

law ( Witherspoon et al., 1980 ) to model the increase of permeabil-

ity due to fracture. The new feature of the present method is the

extension of the coupled network approach proposed in Grassl and

Bolander (2016) to a periodic cell of the shape of a rectangular

cuboid, which uses periodic network structures and periodicity

requirements for the displacements, rotations and pressures. In

addition to nodal degrees of freedom in the form of displacements,

rotations and fluid pressures of nodes inside the cell, average strain

and pressure gradient components are used to solve for unknown

degrees of freedom of nodes outside the cell. The use of a periodic

cell with periodic network structure and periodicity requirements

for the degrees of freedom has the advantage that for the mechani-

cal network, crack patterns are independent of the cell boundaries,

which is not the case for boundary value problems with either dis-

placements or tractions applied to the boundaries. The formulation

of the hydro-mechanical periodic cell approach is conceptually

based on work reported in Grassl and Jirásek (2010) . However,

the method in Grassl and Jirásek (2010) was limited to a two-

dimensional structural network. Here, a three-dimensional coupled

hydro-mechanical periodic network approach was proposed. 

2.1. Discretisation 

The periodic dual network approach was based on Delaunay

and Voronoi tessellations of a set of points placed randomly within

a rectangular cuboid shown in Fig. 1 with thick lines. The points

were placed sequentially while enforcing a minimum distance
 min between all placed points. Trial points that fail the minimum

istance criterion were rejected. The placement was terminated

nce the number of trials for placing one point exceeds the

imit N iter . 

Once the placement of points was completed, 26 periodic

mage points were generated for each successfully placed point

ithin the cell using the translation rule 

 

′ = Mx (1)

here x and x ′ are the coordinate vector of the original point

nd one of the image points, respectively. Furthermore, M is the

ranslation matrix defined as M = diag [1 + k x a, 1 + k y b, 1 + k z c]

here k x , k y , k z ∈ {−1 , 0 , 1 } . The k x , k y and k z coefficients define

he direction of the shift from the original point to the image

oint. The coordinates of the 26 image points are the result of the

oordinate translations in (1) for all k x , k y , k z combinations except

or the case where k x = k y = k z = 0 . In Fig. 1 , the cell with two of

ts 26 neighbours is shown. The points I and J are examples of two

andomly placed points satisfying the minimum distance require-

ents. Points I ′ and J ′ are one of 26 sets of periodic image points

f I and J , respectively, whereby I ′ was generated by a translation

ith k x = −1 and k y = k z = 0 , and J ′ with k x = 1 and k y = k z = 0 . 

All points within the cell and all periodic image points are

sed for the Delaunay and Voronoi tessellations. The Delaunay tes-

ellation decomposes the domain into tetrahedra whose vertices

oincide with the randomly placed points. The Voronoi tessellation

ivides the domain into polyhedra associated with the random

oints ( Okabe et al., 20 0 0 ). Each polyhedron is the subset of the

omain in which points are closer to the placed point that is

ssociated with the polyhedron than all the other placed points.

acets of Voronoi polyhedra form subsets of the 3D space, in

hich every location is equidistant from a pair of placed points

nd nearer to these two points than to any other point. The edges

f Delaunay tetrahedra connect pairs of placed points of Voronoi

olyhedra with common facets. 

Delaunay and Voronoi tessellations were used to define the

tructural and transport elements ( Grassl and Bolander, 2016 ). In

ig. 2 a, a Delaunay tetrahedron and the Voronoi facet associated

ith Delaunay edge i − j are shown. The structural elements

ere placed on the Delaunay edges with their mid-cross-sections

efined by the facets of the Voronoi polyhedra ( Fig. 2 b). Analogous

o the structural network, the transport elements were placed

n the edges of the Voronoi polyhedra, with their cross-sections

ormed by the facets of the Delaunay tetrahedra ( Fig. 2 (c)). 

Because of the periodic image points, the tessellated space is

arger than the main cell. Therefore, edges of Delaunay tetrahedra

nd Voronoi polyhedra cross the cell boundaries. In Fig. 1 , an
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Fig. 2. Discretisation: spatial arrangement of structural and transport elements of the 3D transport-structural network approach showing (a) geometrical relationship be- 

tween Delaunay and Voronoi tessellations, (b) structural element with cross-section defined by the associated Voronoi facet and (c) transport element with cross-section 

defined by the associated Delaunay facet. 

Fig. 3. 3D structural model including elements crossing the boundaries: (a) struc- 

tural network and (b) edges of associated facets. 
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Fig. 4. 3D transport model including elements crossing the boundaries: (a) trans- 

port network, (b) edges of associated facets. 
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xample of two elements crossing the cell boundaries is shown.

ere, the intersections of the elements I − J ′ and I ′ − J with the

oundaries of the periodic cell are presented with a circle and a

ross in the plane of the boundary. The parts of the elements that

ie outside the cell boundaries are shown with dashed lines and

hose inside by solid lines. In the present periodic cell approach,

ll degrees of freedom of nodes inside the cell boundaries were

nvolved in the system of equations that was used for determining

he unknown degrees of freedom. For elements crossing the

oundary, the degrees of freedom of the nodes outside the cell

ere determined from those of the periodic image of the node

nside the cell and additional information in the form of average

train and pressure gradients for the structural and transport

roblem, respectively. 

Examples of structural and transport networks generated from

he same set of random points are presented in Figs. 3 and 4 ,

espectively. For the structural network, the structural elements

re shown in Fig. 3 a and the edges of the mid-cross-sections of

he structural elements in Fig. 3 b. The transport elements of the

ransport network are presented in Fig. 4 a and the edges of the

ransport mid-cross-sections are shown in Fig. 4 b. From these

xamples of structural and transport networks, several interesting

eatures of this coupled periodic cell are visible. Firstly, both struc-

ural and transport elements ( Figs. 3 a and 4 a) are either located

nside the cell or cross its boundaries. No elements are entirely

laced outside the periodic cell. The edges of the cross-sections of

tructural and transport elements are either inside the cell, cross

he boundary or lie entirely outside the periodic cell. Therefore, the

etwork of structural elements in Fig. 3 a is smaller than the net-
ork of edges of the cross-sections of transport elements shown in

ig. 4 b. Analogue to the structural network, the network of trans-

ort elements in Fig. 4 a is smaller than the network of the edges

f cross-sections of the structural network in Fig. 3 b. For the cou-

ling of the two networks, cross-section edges which are entirely

utside the cell require special consideration. In the present net-

ork approach, a one way coupling approach was used in which

rack openings obtained from the structural network were used

o compute the conductivities of transport elements. Therefore,

or the transport network, crack openings associated with cross-

ectional edges outside the cell were assumed to be equal to those

f the corresponding cross-sectional edges located inside the cell

 Athanasiadis, 2017 ). Details regarding how the conductivity was

alculated are presented in Section 2.3.2 . The only input parame-

ers required for the discretisation of the periodic cell are the min-

mum distance d min and the maximum number of trials to place

ne point N iter . These parameters control the average lengths of

tructural and transport elements. The greater N iter is, the smaller

s the standard deviation of the element lengths up to the stage at

hich the domain is almost saturated with points and increase of

 iter will result in small changes of the number of placed points. 

.2. Structural network 

The three-dimensional structural network was designed to

pproximate the quasi-static equilibrium equation without body

orce ( Strang, 1986 ), which is 

 σc = 0 (2) 
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where ∇ is the divergence operator and σc is the continuum

stress. 

2.2.1. Structural element 

The structural element formulation for elements which lie

entirely in the periodic cell is identical to the one presented in

Grassl and Bolander (2016) . However, for elements crossing the

boundary of the periodic cell, a new element formulation was

introduced. To be able to explain this new feature, the standard

formulation is presented first. The discrete version of (2) for the

structural element shown in Fig. 2 (b) is 

Ku e = f s (3)

where K is the stiffness matrix, u e are the vector of degrees

of freedom and f s are the acting forces. The formulation of the

structural element is presented in the local coordinate system, i.e.

the coordinate system ( x, y and z ) of the nodal degrees of freedom

coincides with the coordinate system ( n, p and q ) of the quantities

used for evaluating the constitutive response. Each node has 3

translational ( u x , u y and u z ) and 3 rotational ( φx , φy and φz ) de-

grees of freedom. The degrees of freedom of a structural element

with nodes i and j are grouped in translational and rotational parts

as u e = { u 

T 
t , u 

T 
r } T , where u t = { u 

T 
ti 
, u 

T 
tj 
} T = { u xi , u yi , u zi , u xj , u yj , u zj } T 

and u r = { u 

T 
ri 
, u 

T 
rj 
} T = { φxi , φyi , φzi , φxj , φyj , φzj } T . These degrees of

freedom u t and u r are used to determine displacement disconti-

nuities u C = { u Cn , u Cp , u Cq } T at point C by rigid body kinematics

( Kawai, 1978 ) as 

u C = Bu e = B 1 u t + B 2 u r (4)

where B = { B 1 , B 2 } T , B 1 and B 2 are two matrices containing the

rigid body information for the nodal translations and rotations,

respectively, which are 

B 1 = 

(
−I I 

)
(5)

and 

B 2 = 

( 

0 −e q e p 0 e q −e p 
e q 0 −h/ 2 −e q 0 −h/ 2 

−e p h/ 2 0 e p h/ 2 0 

) 

(6)

Here, I is a 3 × 3 unity matrix. In (6) , e p and e q are the eccen-

tricities between the midpoint of the network element and the

centroid C in the directions p and q of the local coordinate system,

respectively ( Fig. 2 b). The local coordinate system is defined by

the direction n , which is parallel to the axis of the element,

and p and q , which are chosen as the two principal axes of the

mid-cross-section. 

The displacement jump u C in (4) is transformed into strains

ε = { ε n , ε p , ε q } T = u C /h, where h is the length of the structural

element. The strains are related to stresses σ = { σn , σp , σq } T 
by means of a material stiffness D = ( 1 − ω ) D e , where

D e = diag { E , E , E } . Here, E is the Young’s modulus and ω is

the damage variable, which is further discussed in Section 2.2.2 .

For the present elastic stiffness matrix D e , Poisson’s ratio equal

to zero is obtained and the structural network is elastically

homogeneous under uniform modes of straining. 

For the case that the global coordinate system coincides with

the local one, the element stiffness matrix is 

K = 

A 

h 

(
B 

T 
1 DB 1 B 

T 
1 DB 2 

B 

T 
2 DB 1 B 

T 
2 DB 2 

)
+ 

(
0 0 

0 B 

T 
1 K r B 1 

)
(7)

Here, K r is a matrix containing the rotational stiffness at point C

defined as 

K r = 

(1 − ω) E 

h 

( 

I p 0 0 

0 I 1 0 

0 0 I 2 

) 

(8)
ere, I p is the polar moment of area, and I 1 and I 2 are the two

rincipal second moments of area of the cross-section. The factor

(1 − ω) in (8) ensures that the rotational stiffness reduces to zero

or a fully damaged cross-section ( ω = 1 ). The stiffness matrix is

hen expressed in the global coordinate system by means of rota-

ion matrices as described for instance in McGuire et al. (20 0 0) . 

The above element formulation for structural elements entirely

ocated in the periodic cell is identical to the one described in

rassl and Bolander (2016) . For elements crossing the cell bound-

ries, a special formulation is required. For these elements, the

egrees of freedom of the nodes outside the cell are determined

rom the degrees of freedom of the periodic image inside the cell

nd the average strain E = { E x , E y , E z , E yz , E zx , E yx } T . Here, E x , E y 
nd E z are the average normal strains in the x, y and z direction,

espectively and E yz , E zx , E yx are the average engineering shear

train components. For an illustration of the coordinate system x,

 and z , see Fig. 1 . The translations of a node outside the cell is 

 

′ 
x = u x + ak x E x + ck z E zx + bk y E yx (9)

 

′ 
y = u y + bk y E y + ck z E yz (10)

 

′ 
z = u z + ck z E z (11)

here the translation presented without and with the prime sym-

ol are those of the nodes located within and outside the cell, re-

pectively. Note that the contributions of the average shear strains

 zx and E yx have been included only in the displacements in the x

irection and the contribution of E yz has been included only in the

isplacement in the y -direction. This is justified because rigid body

otations of the entire cell are arbitrary. One node of the network is

ully fixed in order to prevent rigid body rotation and translation. 

Consider the element IJ ′ in Fig. 1 . Node J ′ is outside the cell and

ts periodic image J is inside the cell. Making use of (9) –(11) and

ssuming that φxJ = φxJ ′ , φyJ = φyJ ′ and φzJ = φzJ ′ , the transfor-

ation rule giving the translations and rotations of the two ends

 and J ′ of a structural element IJ ′ crossing a cell boundary is 

 

 

 

u I 

u J ′ 
r I 
r J ′ 

⎞ 

⎟ ⎠ 

= T m 

⎛ 

⎜ ⎜ ⎝ 

u I 

u J 

r I 
r J 
E 

⎞ 

⎟ ⎟ ⎠ 

(12)

here u I , r I , u J , r J , u J ′ and r J ′ are the vectors containing transla-

ional and rotational degrees of freedom of nodes I, J and J ′ , respec-

ively. The node J is the periodic image of point J ′ inside the cell.

he transformation matrix T m 

is of size 12 × 18 and has the form 

 m 

= 

⎡ 

⎢ ⎣ 

I 0 0 0 0 0 

0 I 0 0 k 21 k 22 

0 0 I 0 0 0 

0 0 0 I 0 0 

⎤ 

⎥ ⎦ 

(13)

he sub-matrices k 21 and k 22 are 3 × 3 matrices which contain

nformation about the transformation of the nodal translations

ue to the average strains. They are defined as 

 21 = 

[ 

ak x 0 0 

0 bk y 0 

0 0 ck z 

] 

(14)

nd 

 22 = 

[ 

0 ck z bk y 
ck z 0 0 

0 0 0 

] 

(15)

f (12) is combined with (4) for calculating the displacement jump,

he transformation matrix T m 

multiplies matrix B from the right.
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Fig. 5. Yield surface for q = 1 . The surface is controlled by the tensile strength f t , 

the compressive strength f c and two parameters α and β which determine the out- 

of-roundness of the two ellipses which form the surface. 
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t follows from duality that the internal forces must be multiplied

y T T m 

from the left, before the evaluation of the equilibrium

onditions. Hence, the original 12 × 12 stiffness matrix K of the

on-periodic element is now transformed into the 18 × 18 matrix

 

T 
m 

KT m 

. 

With the present approach, average stresses and strains are pre-

cribed by means of the additional six average strain components

ntroduced in the formulation of the periodic cell. Finally, the total

umber of degrees of freedom are six times the number of nodes

ositioned within the cell boundaries plus six additional degrees of

reedom, which correspond to the six average strain components. 

.2.2. Structural material 

The constitutive model for the structural material is based on

 damage-plasticity framework ( Grassl and Davies, 2011 ), which is

apable of reproducing the important features of the response of

uasibrittle materials in tension and compression. The strains are

elated to the nominal stress σ = { σn , σp , σq } T as 

= ( 1 − ω ) D e ( ε − ε p − ε s ) = ( 1 − ω ) ̄σ (16) 

here ω is the damage variable, D e is the elastic stiffness,

 p = 

{
ε p n , ε 

p 
p , ε 

p 
q 

}T 
is the plastic strain and σ̄ is the effective stress.

urthermore, ε s = { ε s , 0 , 0 } T is the shrinkage strain which was

sed in this study to initiate microcracking. 

The plasticity model used to determine the effective stress

s independent of damage. The model is described by the yield

unction (17) , flow rule (18) , evolution law for the hardening

ariable (19) and loading unloading conditions (20) : 

f = F ( ̄σ, κ) (17) 

˙ 
 p = 

˙ λ
∂g 

∂ ̄σ
(18) 

˙ = 

˙ λh κ (19) 

f ≤ 0 , ˙ λ ≥ 0 , ˙ λ f = 0 (20)

ere, f is the yield function, κ is the hardening variable, g is

he plastic potential, h κ is the evolution law for the hardening

arameter and 

˙ λ is the rate of the plastic multiplier. The yield

unction of the two stress variables σ̄n and σ̄q = 

√ 

σ̄ 2 
s + σ̄ 2 

t is 

f = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

α2 σ̄ 2 
n + 2 

α2 ( f c − αβ f t ) 

1 + αβ
q ̄σn + σ̄ 2 

q −
2 α2 f c f t + α2 ( 1 − αβ) 

1 + αβ

σ̄ 2 
n 

β2 
+ 2 

f c − αβ f t 

1 + αβ
q ̄σn + σ̄ 2 

q + 

(
1 − α2 β2 

)
f 2 c − 2 αβ( 1 + αβ

β2 ( 1 + αβ) 

here f t and f c are the tensile and compressive strengths, respec-

ively, and α and β are the friction angles shown in Fig. 5 for

f = 0 and q = 1 , which controls the hardening. It is defined as 

 = exp 

(
κ

A h 

)
(22) 

here A h is an input parameter. For the onset of plastic flow κ = 0

nd q = 1 . 

The stress dependent parts of the plastic potential g in the

on-associated flow rule in (18) are the same as those of the yield

urface f except that α is replaced by ψ : 

 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

ψ 

2 σ̄ 2 
n + 2 

ψ 

2 ( f c − ψβ f t ) 

1 + ψβ
q ̄σn + σ̄ 2 

q if σ̄n ≥ f c − ψβ f t 

1 + ψβ
q 

σ̄ 2 
n 

β2 
+ 2 

f c − ψβ f t 

1 + ψβ
q ̄σn + σ̄ 2 

q if σ̄n < 

f c − ψβ f t 

1 + ψβ
q 

(23) 
if σ̄n ≥ f c − αβ f t 

1 + αβ
q 

 

q 2 if σ̄n < 

f c − αβ f t 

1 + αβ
q 

(21) 

he smaller ψ is, the smaller is the ratio of normal and shear

omponents of plastic strains for σ̄n ≥ f c − ψβ f t 

1 + ψβ
q . The function h κ

n the evolution law in (19) is chosen as 

 κ = 

∣∣∣∣ ∂g 

∂σn 

∣∣∣∣ (24) 

hich is the absolute value of the normal component of the

irection of the plastic flow. 

The damage variable in (16) is determined by means of the

amage history variable 

d = 〈 ε pn 〉 (25) 

here 〈 . 〉 denotes the McAuley brackets (positive part of oper-

tor). The function of the damage variable is derived from the

tress-crack opening curve in pure tension ( σ n > 0, σq = 0 ). For the

amage-plasticity constitutive model, the vector of crack opening

omponents is defined as 

 c = h ( ε p + ω ( ε n − ε pn ) ) (26) 

or pure tension, the crack opening simplifies to 

 c = h ( ε pn + ω ( ε n − ε pn ) ) (27) 

here h is the length of the network element ( Fig. 1 ). The

tress-crack opening curve is 

n = f t exp 

(
−w c 

w f 

)
(28) 

here w f controls the initial slope of the exponential softening

urve. It is related to the area under the stress-crack opening

urve G F as w f = G F / f t . Setting (28) equal to the first component

f (16) , a nonlinear equation of the damage ω is obtained, which

s solved using the Newton–Raphson method. For modelling the

ependence of transport properties on cracking, permeability,

hich is part of the transport model described in Section 2.3 , is

ade dependent on the absolute value of the crack opening 

˜ 
 c = | w c | (29) 

he structural constitutive model requires eight input parameters.

he Young’s modulus of the lattice material E controls the macro-

copic Young’s modulus. The parameters of the plasticity part are

 t , f c , α, β , ψ and A h . Finally, G F controls the amount of energy

issipated during cracking. 
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Fig. 6. Influence of cracking on transport. 
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2.3. Transport network 

For the transport part of the model, a 3D network of 1D

transport elements is used to discretise the stationary transport

equation ( Maekawa et al., 2008 ) 

div ( k grad P f ) = 0 (30)

Here, P f is the fluid pressure, k is the conductivity. In (30) ,

gravitational effects are neglected. 

2.3.1. Transport elements 

Analogue to the structural network, different element formula-

tions are used for elements which are located entirely in the cell

and those that cross one of the faces of the cell. For those inside

the cell, the discrete form of (30) for a 1D transport element

shown in Fig. 2 c is 

k e P f = f e (31)

where k e is the one-dimensional element conductivity and f e 
are the nodal flow rate vector ( Lewis et al., 1996; Bolander and

Berton, 2004 ). The degrees of freedom of the transport elements

are the fluid pressures P f = { P f1 , P f2 } T . Within the context of a

one-dimensional finite element formulation ( Lewis et al., 1996 ),

Galerkin’s method is used to construct the elemental conductivity

matrix as 

k e = k 
A t 

h t 

(
1 −1 

−1 1 

)
(32)

Here, A t is the mid-cross-sectional area and h t the length of the

transport element shown in Fig. 2 c. 

For elements, which cross the faces of the cell, the element

formulation is explained based on Fig. 1 used earlier for the struc-

tural element. For instance, for the element I ′ J in Fig. 1 , the node

I ′ is outside the cell and J is inside the cell. The periodic image of

I ′ is I which is located inside the cell, which is used together with

average fluid pressure gradients to determine the fluid pressure of

the node outside the cell. The nodal fluid pressures of an element

crossing the cell boundary are 

(
P fI ′ 
P fJ 

)
= T t 

⎛ 

⎜ ⎜ ⎝ 

P fI 
P fJ 

�P fx /a 
�P fy /b 
�P fz /c 

⎞ 

⎟ ⎟ ⎠ 

(33)

where �P fx / a, �P fy / b and �P fz / c are the average fluid pressure

gradients along the x, y and z directions respectively. Here, a, b

and c are the dimensions of the periodic cell shown in Fig. 1 .

Furthermore, T t is a transformation matrix of size 2 × 5 and has

the form 

T t = 

[
1 0 ak x bk y ck z 
0 1 0 0 0 

]
(34)

For combining (34) with (31) , the transformation matrix T t mul-

tiplies matrix k e from the right. It follows from duality that the

internal flux must be multiplied by T T t from the left, before the

evaluation of the balance condition. The conductivity matrix is

evaluated as T T t k e T t , where the original conductivity matrix k e 

is transformed from a 2 × 2 matrix to a 5 × 5 one. The global

conductivity matrix is assembled normally except for three rows

and three columns that relate the global degrees of freedom to its

conjugate reaction flow rates. As a result, the periodic cell can be

subjected to arbitrary combinations of average flux or gradients.

The total number of unknown degrees of freedom is the total

number of the nodes located in the interior of the periodic cell

plus three global degrees of freedom controlling the average flux

or pressure gradient in the three directions. 
.3.2. Transport materials 

The conductivity matrix for the material of the transport

lements is 

 = k 0 + k c (35)

here k 0 is the initial conductivity of the undamaged material and

 c is the change of conductivity due to fracture. The conductivity

f the undamaged material is 

 0 = 

ρκ0 

μ
(36)

here ρ is the density and μ is the dynamic viscosity of the fluid,

nd κ0 is the intrinsic permeability. In this work, the density and

ynamic viscosity was set to ρ = 10 0 0 kg/m 

3 and μ = 0 . 001 Pa s,

espectively, which corresponds to the values commonly used for

ater. 

The second term k c in (35) models the increase of conductivity

ue to cracking using a cubic law based on the concept of flow

hrough parallel plates ( Witherspoon et al., 1980 ) with a reduc-

ion factor ξ for the presence of roughness of the wall surface

 Akhavan et al., 2012 ). A detailed description of the definition

f k c and its dependence on the crack openings of the structural

etwork, which was used in this study, has already been presented

n Grassl and Bolander (2016) . However, since this is an important

art of the model of the present study, it is shown here once

ore. The term k c is 

 c = ξ
ρ

12 μA t 

3 ∑ 

i =1 

˜ w 

3 
ci l ci (37)

here ˜ w ci and l ci are the equivalent crack openings and crack

engths (see Fig. 6 ) of neighbouring structural elements, which are

ocated on the edges of the cross-section, and ξ is a reduction

actor which considers the reduction of flow for cracks with rough

urfaces compared to that between smooth parallel plates. 

Here, ˜ w c is the magnitude of the crack opening w c defined

n (27) . The relation in (37) expresses the well known cubic law,

hich has shown to produce good results for transport in frac-

ured geomaterials ( Witherspoon et al., 1980 ). The way how crack

penings in the structural elements influence the conductivity of a

ransport element is schematically shown in Fig. 6 . For instance, for

he transport element o − p, three structural elements ( i − k, k − j

nd i − j) bound the cross-section of the transport element. Thus,

he conductivity will be influenced by these three elements ac-

ording to (37) in proportion to their equivalent crack widths and

he crack lengths. This crack length (shown by blue double lines in

ig. 6 ) is defined as the length from the midpoint of the structural

lement to the centroid C t of the transport element cross-section. 
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Table 1 

Input values. 

Phase E [GPa] f t [MPa] f c [MPa] G F [J/m 

2 ] A h α β ψ κ0 [m 

2 ] ξ

Matrix 40 6.5 65 100 0.001 0.5 0.5 0.25 1 × 10 −19 0.001 

ITZ 57.1 a 3.25 32.5 50 0.001 0.5 0.5 0.25 1 × 10 −19 0.001 

Particle 100 – – – – – – – 1 × 10 −22 –

a The value E for ITZ is determined as harmonic mean of matrix and particle values. 
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. Analyses 

.1. Introduction 

The coupled structural transport network model described

n Section 2 was applied to the analysis of particle restrained

hrinkage of prisms made of a particulate quasi-brittle material

onsisting of particles, matrix and interfacial transition zones. The

atrix and interfacial transition zones are made of permeable

uasi-brittle cohesive-frictional material, where the interfacial

ransition zone is weaker and more permeable than the matrix.

he particles are elastic, and stiffer and less permeable than the

atrix. The input parameters for the three material phases are

resented in Table 1 . The properties of the different phases are

apped onto a coupled periodic network. Network elements with

oth nodes within the same particle are given the property of

articles. Those elements with nodes in different particles or one

ode in a particle and the other in the matrix are assigned the

roperties of the interfacial transition zone. Here, it is assumed

hat the thickness of the interfacial transition zone is much smaller

han the length of the element, so that the Young’s modulus of the

lements crossing the interfacial transition zone is determined as

he harmonic mean of those of matrix and particle. The strength of

he element is determined by the strength of the interfacial transi-

ion zone. Finally, for elements with both nodes outside particles,

he matrix material properties are used. For all elements, the same

tructural and transport constitutive models were used with input

arameters shown in Table 1 according to Grassl et al. (2010) . 

Three groups of analyses were carried out. Firstly, the structural

esponse of the matrix material subjected to mechanical loading

as analysed by means of direct tension and a hydrostatic com-

ression test using the structural periodic cell. With these analyses

ey factors of the performance of the structural constitutive model

ere demonstrated. This study was required since the model

sed here differs from the one in the previous two-dimensional

tudy in Grassl et al. (2010) and it is important that the numerical

ethod provides network-independent results in tension and

ompression. In the second group, periodic cells with a centrally

ocated single particle were analysed. Particle restrained shrinkage

as modelled by subjecting matrix and interfacial transition zones

o uniform incrementally increasing eigenstrain, while keeping

he force resultants of the entire specimen at zero. The particle,

hich was not subjected to eigenstrain, restrained the matrix

nd interfacial transition zones. Therefore, this process is called

article restrained shrinkage. After every increment of applied

igenstrain, the permeability of the specimens was evaluated by a

tationary transport analysis with a fluid pressure gradient across

he specimen applied in one direction. In these single particle

nalyses, the particle diameter was varied at constant particle

olume fraction to investigate the influence of particle diameter

n changes of permeability due to microcracking induced by

estrained shrinkage. The last group consists of coupled analyses

f specimens with multiple randomly placed particles of constant

iameter and volume fraction for varying specimen thickness

n the direction in which the pressure gradient is applied. With

hese analyses, the influence of specimen thickness on changes of

ermeability due to microcracking induced by particle restrained
 d  
hrinkage were investigated. In the following sections, the three

roups of analyses are discussed in detail. 

.2. Uniaxial tension and hydrostatic compression 

Before investigating microcracking induced by particle re-

trained shrinkage, the performance of the structural network

pproach was investigated by means of direct tension and hydro-

tatic compression analyses. For this, a cubic cell with edge length

f a = b = c = 5 cm was discretised with the periodic structural

etwork approach using three network sizes of d min = 8 , 4 and

 mm. The number of iterations for the network generation was

 iter = 10 , 0 0 0 . The material parameters for all network elements

n this cube were the one of the matrix phase shown in Table 1 . 

For direct tension, the periodic cell was subjected to monoton-

cally increasing average axial strain E x introduced in Section 2.2.1 .

he average stress components corresponding to the other average

train components were set to be zero. The resulting normalised

tress-displacement curve and crack pattern for the fine network

t the stage marked in the stress-displacement curve are shown in

ig. 7 a and b, respectively. 

The structural network approach exhibits the typical response

f cohesive-frictional quasibrittle materials subjected to tension

n the form of softening, i.e. decreasing stress with increasing

isplacement ( Fig. 7 a), and localised deformation ( Fig. 7 b). The

eak stress is larger than the tensile strength input f t , because

or an irregular network arrangement the individual elements

re subjected to a combination of normal and shear stresses. For

he present input, the shear strength is greater than the tensile

trength. For shear at zero normal stress at the onset of hardening

called here f q ), the elastic limit is f q = 2 f t for the values of the

arameters α and β in Table 1 . 

For hydrostatic compression, the normalised average stress

v / f c versus strain response and the crack patterns at the stage

arked in the stress-strain curve are shown in Fig. 8 a and b, re-

pectively. Here, σv = 

(
σx + σy + σz 

)
/ 3 and ε v = 

(
ε x + ε y + ε z 

)
/ 3 .

he overall response in hydrostatic compression is initially elastic

ollowed by elasto-plastic hardening. The deviation from the elastic

esponse occurs at σv = − f c , which corresponds to the onset of

he yielding in the constitutive model for negative normal stress

nly ( σ n < 0 and σq = 0 ). The cracks patterns, using the definition

f the crack opening in (27) , are distributed within the periodic

ell without showing any patterns of localised deformations,

hich is typical for quasi-brittle materials subjected to hydrostatic

ompression. The crack opening consists only of plastic strains,

ince no damage occurs in these hydrostatic compression analyses.

The two examples of direct tension and hydrostatic compres-

ion demonstrate that the structural constitutive model is capable

f describing the response in tension and compression realistically.

his is important for the particle restrained shrinkage analyses in

ections 3.3 and 3.4 , in which complex tensile and compressive

tress states play an important role. The responses for both tension

nd compression are insensitive to the element size. For direct

ension, the irregularity of the network affects the results, be-

ause the inelastic displacements are localised in an element size

ependent region. However, global result in the form of the stress-

isplacement curve is insensitive to the element size. For hydro-
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Fig. 7. Direct tension for three network sizes: (a) Normalised stress versus normalised displacement in the x -direction, (b) Crack pattern at the stage marked with a circle in 

(a). The yellow polygons in (b) show mid-cross-sections of network elements in which ˜ w c > 10 μm. Colours refer to the online version. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Hydrostatic compression for three network sizes: (a) Normalised average stress ( σ v / f c ) versus average strain εv , (b) Crack pattern at the stage marked with a circle in 

(a). The yellow polygons in (b) show mid-cross-sections of network elements in which ˜ w c > 1 . 6 μm. Colours refer to the online version. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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static compression, the results converge with network refinement.

For large element sizes, the stiffness is overestimated because el-

ements crossing the boundary contribute stronger to the stiffness

of the cell. Since in the analyses in Sections 3.3 the network size

is varied, this insensitivity to the network size is important. 

3.3. Size of particles 

In the second part of the study, the influence of size of inclu-

sions on increase of permeability due to cracking was analysed.

For these analyses, a coupled periodic cubic cell ( a = b = c in

Fig. 1 ) with a single centrally arranged particle was used. The

volume fraction was kept constant at ρp = 0 . 137 , while varying

the particle size as d = 4 , 8, 16 mm. For the volume of a spherical
article V p = πd 3 / 6 and the cell volume V cell = a 3 , the volume

raction for n p particles is ρp = 

(
n p V p 

)
/V cell . Combining these

xpressions and solving for the specimen length gives 

 = 

(
n p 

π

6 ρp 

)1 / 3 

d (38)

herefore, for constant volume fraction ρp , the size of the periodic

ell decreases with decreasing particle size. For instance, for n p = 1

nd d = 16 mm, the specimen length results in a = 25 mm. For

he discretisation of the network, the ratio of the size of the cell

nd minimum distance was chosen as a/d min = 12 . 5 for all particle

izes investigated. Thus, the average network element length

ecreases with decreasing particle size. This change of element
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Fig. 9. Particle size: permeability κyy normalised by the intrinsic permeability of the matrix κm 
0 versus shrinkage strain εs for three particle diameters at constant particle 

volume fraction. 
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Fig. 10. Particle size: (a) Crack pattern and (b) flow paths for d = 16 mm and ρ = 

0 . 137 at the final increment of shrinkage strain. Yellow polygons in (a) show mid- 

cross-sections of elements in which crack openings increase at this stage of analysis 

and ˜ w c > 10 μm. Blue lines in (b) show transport elements in which the flow is 

greater than the threshold Q 0 . Colours refer to the online version.(For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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ize should not affect the results strongly, as it was shown in

ection 3.2 . For all analyses N iter = 10 0 0 0 was used. 

For the coupled analyses, a uniform shrinkage strain of

 s = −0 . 5 % was applied in 100 increments to matrix and inter-

acial transition zone. The particles were not subjected to the

hrinkage strain. For each particle size, ten analyses with random

etwork generations were performed. After every increment of

hrinkage strain, the permeability was determined by applying a

nit fluid pressure gradient in the y -direction ( �P y /L y = 1 ). Here,

P y and L y = a = b = c are the fluid pressure difference and the

ength in the y -direction, respectively. The total flow Q y in the

 -direction resulting from this fluid pressure gradient was used to

etermine the macroscopic permeability component of the cell in

he y -direction as 

yy = 

Q y μ

A y ρ�P y /L y 
(39) 

here A y = a × b is the cross-sectional area in y -direction ( Fig. 1 ).

he permeability component in (39) , which is one of nine com-

onents of the matrix of permeability ( Nilenius et al., 2014 ), was

sed here to assess the influence of particle size on permeability

or microcracking induced by particle restrained shrinkage. 

In Fig. 9 , the mean of the permeability κyy normalised by the

ntrinsic permeability of the matrix κm 

0 
versus shrinkage strain εs 

f ten random analyses is shown. The areas next to the curves

how plus/minus one standard deviation. The scatter originates

rom the irregularity of the structural and transport networks.

t early stages of the analyses ( ε s > −0 . 1 %), microcracking due

o particle restraint does not occur, so that there is no visible

nfluence of particles size on permeability on the log-scale used in

ig. 9 . Once cracking has been initiated ( ε s < −0 . 1 %), permeability

s strongly influenced by the particle size at constant particle

olume fraction. The greater the particle is, the greater is the

ncrease of permeability. This strong dependence of permeability

n particle size at constant volume fraction is explained by the

rack patterns which are generated by the shrinkage of matrix

nd interfacial transition zone and the restraint that the particle

rovides. Crack patterns for the largest particle size ( d = 16 mm)

re shown in Fig. 10 a at the final increment of shrinkage strain. In

his figure, cracks are visualised by yellow polygons representing

id-cross-sections of elements in which the equivalent crack

idth ˜ w c defined in (29) is greater than 10 μm. Colours refer to

he online version. For all analyses of periodic cells with a single
article size, the shrinkage strain applied to matrix and interfacial

ransition zone results in overall regular localised crack patterns

ith three distinct crack planes aligned with the directions of the

artesian coordinate system used for the periodicity of the cell.

n an earlier two-dimensional study in Grassl et al. (2010) , these

ype of regular crack patterns were obtained by placing multiple

ayers of inclusions in a regular pattern in a bigger specimen. Here,

ecause a cell with periodic boundary conditions is used, these

haracteristic crack patterns for a regular inclusion arrangement

re obtained for a cell with a single inclusion. 

The crack openings depend strongly on particle size. The

reater the particle size is, the greater is the volume of material

ssociated with this particle, which will be subjected to the eigen-

train and which will crack if the eigenstrain is sufficiently large.

herefore, the greater the particle size, the greater is the crack

pening and the smaller is the crack length. This reasoning is in

greement with the two-dimensional numerical results reported

n Grassl et al. (2010) . This particle size dependent crack opening

esults in a strong dependence of conductivity on particle size,

ince the cubic law in (37) was used to related crack opening

o permeability due to cracking. Therefore, the increase in crack

penings dominates the decrease in crack length. 
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Fig. 11. Specimen thickness: permeability κyy normalised by the intrinsic perme- 

ability of the matrix κm 
0 versus shrinkage strain εs for three specimen thicknesses 

at constant particle volume fraction and particle diameter. 
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In addition to the crack patterns, the main flow paths through

the crack network is visualised in Fig. 10 b by showing transport

elements in blue in which the flow is greater than the thresh-

old Q 0 = 2 . 5 × 10 −16 kg/s. This value is equal to the entire flow

through a cell of the same cross-section made of undamaged ma-

trix material and subjected to a unit pressure gradient. In Fig. 10 b,

it can be seen that the flow paths are orientated preferentially

in the vertical direction. Two of the crack planes in Fig. 10 a are

orientated so that they result in an increase of the mass transport

in the y -direction. Most of the transport elements exceeding the

threshold are located on these two crack planes. The strong de-

pendence of permeability on particle size in Fig. 9 is in agreement

with the two-dimensional results in Grassl et al. (2010) . 

3.4. Specimen thickness 

In the third part, the influence of specimen thickness on

random particle arrangements in the direction of the pressure

gradient was investigated for microcracking induced by particle

restrained shrinkage. The aim of this part of the study was to

investigate if potentially disconnected crack networks result in

reduction of permeability with increasing specimen thickness.

The cross-section of the rectangular periodic cell was chosen as

a = b = 50 cm and the specimen thickness was varied as c = 25 ,

50 and 75 mm ( Fig. 1 ). Furthermore, particle diameter and density

were chosen as d = 16 mm and ρp = 0 . 137 , respectively. The

minimum distance for the background network was chosen as

d min = 2 mm. For each specimen thickness, ten analyses with

random periodic particle and network arrangements were carried
Fig. 12. Specimen thickness: crack patterns for the thick specimen ( c = 75 mm) for three 

shown by blue spheres and the cracks are shown as yellow polygons representing mid-c

of the analysis and are greater than 10 μm. Colours refer to the online version. (For inter

the web version of this article.) 
ut using the coupled network approach presented in Section 2 .

s in the single particle analyses in Section 3.3 , a shrinkage strain

f ε s = −0 . 5 % was applied incrementally to matrix and interfacial

ransition zone elements. After every increment, the permeability

omponent κyy was determined as explained in (39) . The mean

f the permeability of ten random analyses versus the shrinkage

train is presented in Fig. 11 in the form of lines with symbols

or the three specimen thicknesses. Note that the mean results

or c = 50 and 75 mm are almost indistinguishable. The coloured

reas around the mean curves represent plus/minus one standard

eviation. The permeability increases strongly with increasing

hrinkage strain, as it was already observed for the single particle

nalyses. The strong increase of permeability is the result of the

reation of random crack networks. These are more complex

han the regular patterns obtained in Section 3.3 . However, the

ermeability at the final stage is similar for the random and

egular particle arrangements. In Fig. 12 , the crack patterns of one

f the thick specimens ( c = 75 mm) is shown for three stages of

pplied shrinkage strain ( ε s = −0 . 25 , −0 . 375 and −0 . 5 %). The

lue spheres indicate the position of the particles. The yellow

olygons show mid-cross-sections of elements in which the crack

pening increases at this stage of analysis and is greater than

0 μm. Colours refer to the online version. The spacing between

he crack planes is determined by the size of the particles and

heir spatial arrangement. For all three stages of applied shrinkage

trains, the crack network connects randomly placed particles.

ery similar observations were made in the two-dimensional

tudy in Grassl et al. (2010) . The greater the shrinkage strain,

he denser is the crack network and the greater are the crack

penings. 

In addition, the flow network is shown in Fig. 13 . Blue lines

ndicate transport elements in which the flow is greater than Q 0 ,

hich is the threshold used earlier for the single particle analyses.

t the first stage in Fig. 13 a, none of the transport elements

xhibits flow greater than Q 0 . The crack openings of the crack

etworks in Fig. 12 a are, while already localised, not large enough

o increase the flow through the transport element sufficiently

o exceed the threshold Q 0 . For the second stage in Fig. 12 b, a

etwork of transport elements exceeding the threshold is visible.

hese transport elements are located on the crack planes shown

n Fig. 12 b. Not all transport elements on crack planes exhibit high

ow, because of the variation of the crack openings of individual

lements. In the final stage, the majority of transport elements

ocated on crack planes shown in Fig. 12 b conduct flow greater

han Q 0 . At this stage, the crack network is fully developed and

he cracks have opened up so much that transport elements along

he crack planes provide the majority of the flow through the

pecimen. 
stages of shrinkage strain of (a) ε s = −0 . 25 , (b) −0 . 375 and (c) −0 . 5 %. Particles are 

ross-sections of structural elements in which crack openings increase at this stage 

pretation of the references to colour in this figure legend, the reader is referred to 
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Fig. 13. Specimen thickness: flow patterns in the thick specimen ( c = 75 mm) for three stages of shrinkage strain of (a) 0.25%, (b) 0.375% and (c) 0.5% applied to the matrix. 

Particles are shown as blue spheres. Blue lines show transport elements in which the flow is greater than Q 0 . (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 14. Specimen thickness: crack patterns for specimens with three thicknesses ( c = 25 , 50, 75 mm) for the final stage of shrinkage strain ( −0 . 5 %). Particles are shown 

by blue spheres and the cracks are shown as yellow polygons representing mid-cross-sections of structural elements in which crack openings increase at this stage of the 

analysis and are greater than 10 μm. Colours refer to the online version. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 15. Specimen thickness: flow patterns for specimens with three thicknesses ( c = 25 , 50, 75 mm) for the final stage of shrinkage strain ( −0 . 5 %). Particles are shown 

by blue spheres. Blue lines show transport elements in which the flow is greater than Q 0 . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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The specimen thickness has overall only a small influence on

he increase of permeability compared to the influence of the

article size and shrinkage strain. The mean permeability for

 = 50 and 75 mm are almost identical. Only for the specimen

ith c = 25 mm, a greater permeability than for c = 50 and

5 mm was obtained. This difference is smaller than the standard

eviation of the analyses with c = 25 mm. The greater the thick-

ess is, the smaller is the standard deviation of the permeability,

ecause some of the irregularities of the crack planes are averaged

ut along the specimen thickness. Crack patterns for specimens of
hree different thicknesses are shown in Fig. 14 for the final stage

 ε s = −0 . 5 ). For all three thicknesses, crack patterns connecting the

articles are fully formed. Qualitatively, there is little difference

etween these crack patterns. 

In Fig. 15 , the network of transport elements in which the flow

s greater than the threshold Q 0 is shown for a shrinkage strain of

 s = −0 . 5 . For all three specimens, the network of transport ele-

ents exceeding this threshold have a very similar structure. The

igh flow elements are positioned on the crack planes as shown

n Fig. 14 . For the network with the smallest specimen thickness
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( c = 25 mm) in Fig. 15 a, the number of elements with high flow is

smaller than for the other two thicknesses in Fig. 15 b and c. This

appears to be in contradiction to the results in Fig. 11 , in which

the specimen with the smallest thickness exhibits the greatest

increase in conductivity due to cracking. Nevertheless, the crack

and flow patterns in Figs. 14 and 15 are only one of ten random

particle arrangements. These illustrations are useful for assessing

the type of crack and flow patterns, but cannot be used for a

quantitative comparison analyses with different thicknesses. For

such a comparison, the mean values shown in Fig. 11 should be

used. In addition, for the smallest specimen thickness, the highest

standard deviation was reported. 

4. Conclusions 

A three-dimensional coupled structural transport network

model was used for the analysis of microcracking in hetero-

geneous materials due to particle restrained shrinkage. A new

coupled periodic network approach has been proposed, which

combines periodic displacement/pressure-gradient conditions with

periodic structural and transport networks. This new approach was

applied to investigate the influence of particle size and specimen

thickness on permeability for particle restrained shrinkage. The

results of the three-dimensional analyses show that a change

of particle size at constant volume fraction has a very strong

influence on the increase of permeability due to microcracking for

the case of particle restrained shrinkage. The influence of a change

specimen thickness on increase of permeability for a pressure

gradient in the direction of the changed specimen thickness was

shown to be small in comparison. 

This study was limited to shrinkage of matrix and ITZ applied

uniformly across the periodic cells. In many applications, the

shrinkage strain will be nonuniform through the specimen be-

cause of for instance a humidity gradient away from the specimen

surface ( Havlásek and Jirásek, 2016 ). This influence of nonuniform

shrinkage strain on microcracking and conductivity changes will

be investigated in future studies. 
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