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ABSTRACT
Connectomics is gaining increasing interest in the scientific
and clinical communities. It consists in deriving models of
structural or functional brain connections based on some lo-
cal measures. Here we focus on structural connectivity as
detected by diffusion MRI. Connectivity matrices are derived
from microstructural indices obtained by the 3D-SHORE.
Typically, graphs are derived from connectivity matrices and
used for inferring node properties that allow identifying those
nodes that play a prominent role in the network. This in-
formation can then be used to detect network modulations
induced by diseases. In this paper we take a complementary
approach and focus on link as opposed to node properties. We
hypothesize that network modulation can be better described
by measuring the connectivity alteration directly in the form
of modulation of the properties of white matter fiber bundles
constituting the network communication backbone. The goal
of this paper is to detect the paths that are most altered by the
pathology by exploiting a feature selection paradigm. Tem-
poral changes on connection weights are treated as features
and those playing a leading role in a patient versus healthy
controls classification task are detected by the Infinite Fea-
ture Selection (Inf-FS) method. Results show that connection
paths with high discriminative power can be identified that
are shared by the considered microstructural descriptors al-
lowing a classification accuracy ranging between 83% and
89%.

Index Terms— Feature Selection, Stroke, 3D-SHORE

1. INTRODUCTION

Recent advances in diffusion MRI led to the definition of
numerical parameters describing microstructural properties.
The so called Ensemble Average Propagator (EAP) derived
models approximate the diffusion signal by series expan-
sion over basis functions providing an analytical solution
from which indices can be derived in closed form. Among
the most promising ones is the 3D-SHORE [1] model form
which, under some ideal conditions, geometrical descrip-
tors of the diffusion compartments can be inferred [2, 3].

Combined with quantitative tractography, such indices allow
modeling structural connectivity through the construction of
the connectivity matrix from which a representation of the
network in the form of a graph is derived. Typically, cor-
tical/subcortical regions represent the nodes and the matrix
elements represent the weight of the link between pairs of
regions. Then, graph theory is exploited for deriving node
properties and thus identifying those playing a leading role in
the network. This information can be exploited for detecting
network modulations due to some pathological conditions.
In this paper we take a complementary approach focusing
on connections instead than on nodes, with the aim of iden-
tifying the paths that are more prominent in the network
modulation. The reason behind this choice is the observa-
tion that pathologies compromise the communication among
regions by disrupting the white matter fibers that constitute
the backbone for communication. In consequence, we hy-
pothesize that network modulation can be better described by
measuring the connectivity alteration directly in the form of
modulations of the properties of white matter fiber bundles.
The objective is to check this hypothesis by detecting the
paths that are most altered by the pathology in a feature se-
lection paradigm. Temporal changes on connection weights
are treated as features and those playing a leading role in
a patients versus healthy controls classification task are de-
tected by the Infinite Feature Selection (Inf-FS) method. The
novelty of this approach is twofold. First, the focus is on
links instead than on nodes, as previously stated. Second,
the set of connections that are altered by the pathology re-
sults from a feature selection task. Previous works exploiting
microstructural indices for assessing neuronal plasticity after
stroke have been focusing on a predefined set of manually
selected cortical and subcortical regions as the end-points of
the considered links [4, 5, 6]. The proposed approach relaxes
the constraint on the choice of the regions and connections
such that the relevant links naturally emerge by feature selec-
tion. This has the potential of providing new insights on the
changes induced by pathologies both locally and globally.



2. METHODS

Four microstructural indices are derived from the 3D-SHORE
model. Connectivity matrices are derived from each index
by quantitative tractography. Each entry of the connectivity
matrix represents the absolute percent temporal variation of
the mean value of each index along the connection linking the
corresponding cortical/subcortical regions and plays the role
of feature in the classification task. Feature selection by Inf-
FS is performed for detecting the set of connections playing a
dominant role in group discrimination.

2.1. Dataset
A total of 18 subjects (9 patients and 9 age and gender
matched controls) were imaged following Diffusion Spec-
trum Imaging (DSI) scans [TR/TE = 6600/138 msec, FoV =
212× 212 mm2, 34 slices, 2.2× 2.2× 3 mm3 resolution, 258
diffusion directions, b-value = 8000 s/mm2, ∼ 25 min scan
time] within one week (tp1) and one month (± one week,
tp2) after stroke for patients and one month apart for controls.
Pre-processing was performed as in [4]. All subjects pro-
vided written informed consent and the Lausanne University
Hospital review board approved the study protocol.

2.2. 3D-SHORE model
The SHORE model decomposes the signal E(q) as a linear
combination of basis functions that are the solutions of the
3D harmonic oscillator. The orthonormal formulation of the
3D-SHORE model is expressed as

E(qu) =

Nmax∑
l=0,even

(Nmax+l)/2∑
n=l

l∑
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cnlmΦnlm(qu) (1)
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where Γ is the Gamma function and ζ is a scaling parameter
dependent on the diffusion time τ and the diffusivity D. All
these models provide close approximations of the diffusion
signal and allow deriving important EAP features such as the
Orientation Distribution Function (ODF) in a reliable manner.
From EAP models, it is also possible to derived microstruc-
ture related indices, namely the Return To the Origin Prob-
ability (RTOP), the Return To the Axis Probability (RTAP),
and the Return To the Plane Probability (RTPP). RTOP, RTAP
and RTPP represent the zero net displacement probabilities in

the three, two and mono-dimensional cases, respectively. Un-
der some ideal conditions regarding the acquisition protocol
they provide an estimation of the mean pore geometry being
respectively proportional to the reciprocal of the mean vol-
ume, cross-sectional area and length of the pore [1]. In this
work, only RTAP was used

RTAP =

∫
R2

E(q⊥)d2q⊥ =

∫
R
P (~r‖)dr (3)

Additionally, Generalized Fractional Anysotropy (GFA) and
Propagator Anysotropy (PA), expressing the distance between
the EAP and its isotropic component, were calculated. These
indices reflect the degree of restriction of the water molecules
in the voxel, which is directly linked to the underlying pore
shape.

Fig. 1: Image of RTAP in presence of a stroke lesion.

2.3. Feature extraction by tract-based analysis
The ODFs were reconstructed and fiber-tracking was per-
formed via a streamline algorithm (www.cmtk.org). Brain
segmentation was performed using the Desikan-Killany atlas
provided by Freesurfer (www.surfer.nmr.mgh.harvard.edu)
resulting in as a set of 32 cortical and 7 subcortical regions.
The mean value of the microstructural indices along the fibers
were calculated and the absolute percentage changes across
time points were used for generating one connectivity matrix
of size 39× 39 per subject per index as

∆tp12,i =
|Fi,tp1 − Fi,tp2|

Fi,tp1
(4)

where Fi denotes the index in use.

2.4. Feature Selection
Let Gn = (V,E) be an undirected graph where V is the set
of vertices corresponding to ROIs, and E codifies weighted
edges among connections. We represent the graph Gn by the
adjacency matrix Dn, where each element dnij , 1 ≤ i, j ≤ N ,
N = 39 is the corresponding entry of the connectivity matrix



of subject n, n = 1, . . . , 18. In order to measure how well
each connection separates the two classes of patients (P ) and
controls (C), we define a discriminant matrix M by using a
simple heuristic for measuring class separation. The heuristic
is based on the separation of the class means. In the two-
class problem at hand there are Nc = 9 adjacency matrices of
class C and Np = 9 adjacency matrices of class P for each
microstructural index RTAP, R, GFA and PA. For each entry,
that is for each feature, the mean and variance are estimated
across subjects to generate the matrix M whose entries are

Mi,j =
µC
i,j − µP

i,j

(σC
i,j)

2 + (σP
i,j)

2
(5)

where

µk
i,j =

1

Nk

∑
n∈Nk

dni,j , k ∈ {C,P}.

In the same way, we calculate the standard deviation vectors
σk
i,j for each feature dki,j of class k.

Our approach proposes to rank the features by importance
regarding the patients versus controls classification task. To
this end, we use the matrix M as input of the infinite feature
selection (Inf-FS) [7] algorithm, where the percent absolute
changes of the microstructural values along the connections
are seen as features. By construction, the Inf-FS method al-
lows to use convergence properties of the power series of ma-
trices, and evaluate the relevance of a feature with respect to
all the other ones taken together. In the Inf-FS formulation,
each path of a certain length l over the graph is seen as a
possible selection of features. Letting these paths tend to an
infinite number permits the investigation of the importance of
each feature. As a result, this method assigns a score of “im-
portance” to each feature by taking into account all the pos-
sible feature subsets, therefore the higher the final score, the
most important the feature. In this work a simplified version
where only the Fisher distance of the features across classes
was used. The final rank was then used in our experimental
section, where we proved that the selected connections turn
out to be effective from the classification point of view. In or-
der to obtain some measure of relevance of the subset of fea-
tures (connections), a classification approach was followed.
Performance was defined in terms of accuracy, precision and
recall. Moreover, the ROC curve was obtained as well as the
corresponding the area under the curve (AUC). Training and
testing pools were created using a cross-validation leave-1-
out method, while a SVM was used for classification.

3. RESULTS & DISCUSSION

Figure 3 illustrates the performance of the classifier as a func-
tion of the number of features that are retained after the Inf-FS
based selection in terms of accuracy, precision, recall and area
under the curve (AUC). Good performance was obtained us-
ing a relatively low number of features, suggesting that few

key connections could be the key for discriminating patients
from controls. Among the set of the first 20 features, six were
common to the four indices. These correspond to connections
between the pairs of regions illustrated in Figure 2.

Fig. 2: A) lateral occipital (Ol) - para central (PCG) (as sup-
plementary motor area); B) lateral orbito frontal (Fol) - Cau-
date (Cau); C) isthmus cingulate (Ci) - medial orbito frontal
(F02); D) pre cuneus (PCN) - Caudate (Cau); E) lateral orbito
frontal (Fol) - rostral middle frontal (F2.r); F) superior frontal
(F1) - Pallidum (Pall)

Reducing the feature set to this ensemble the classification
performance is slightly degraded especially for GFA and
RTAP. However, the still good performance could be an indi-
cation of the relevance of such connections in the considered
task, pointing to a network modulation involving areas in
different cortical and subcortical regions.

For the sake of comparison, Table 2 provides the perfor-
mance of the classification algorithm when using the 23 con-
nections involving the cortical and subcortical motor loops
manually selected as in [4, 6]. As it can be observed, the dis-
criminative power of those features is lower than the that ob-
tained using the same number of features that are first ranked
by the Inf-FS algorithm that are reported in Table 1. This
could suggest that a more extended portion of the network is
involved in the plasticity process and thus that a wider per-
spective should be taken for its assessment.

Finally, Table 4 shows the performance that is obtained
by gathering the six features common to all indices together.
Accuracy is not significantly affected while precision, recall
and AUC reach the maximum value.
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Fig. 3: Performance of classification after Inf-FS from abso-
lute delta adjancecy matrix.

Table 1: Classification performance on the 23 first ranked
features following Inf-FS.

Index Accuracy AUC Precision Recall
GFA 88.89 97.53 100 77.78
PA 83.33 92.59 87.50 77.78
R 88.89 97.56 87.50 77.78
RTAP 88.89 100 100 77.78

Table 2: Classification performance on the 23 manually se-
lected features as in [4, 5, 6].

Index Accuracy AUC Precision Recall
GFA 66.67 56.79 61.53 88.89
PA 50 41.98 50 33.33
R 55.56 50.62 55.56 55.56
RTAP 50 54.32 50 22.22

Table 3: Classification performance on the 6 features within
the first 20 ranked by Inf-FS for each index.

Index Accuracy AUC Precision Recall
GFA 83.33 95.06 80 88.89
PA 83.33 96.30 87.50 77.78
R 83.33 97.53 87.50 77.78
RTAP 77.78 95.06 77.78 77.78

Table 4: Classification performance on the 6 features within
the first 20 ranked by Inf-FS for all the indices.

Accuracy AUC Precision Recall
88.89 98.77 100 77.78

4. CONCLUSIONS

In this paper we proposed a novel approach for the charac-
terization of the structural connectivity network after stroke

focusing on link as opposed to node properties. The basic
hypothesis is that network modulation can be better described
by measuring the connectivity alterations directly in the form
of modulation of the properties of white matter fiber bundles
constituting the communication backbone. A feature selec-
tion paradigm was exploited where features were represented
by percent absolute changes of mean values of a predefined
set of microstructural indices across connections between
pairs of regions. Results show that connection paths with
high discriminative power can be identified that are shared
by the considered microstructural descriptors allowing a clas-
sification accuracy ranging between 83% and 89% for the
different indices.
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