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Abstract. Let F=k be a Galois extension of number fields with dihedral Galois
group of order 2q, where q is an odd integer. We express a certain quotient of S-class num-
bers of intermediate fields, arising from Brauer–Kuroda relations, as a unit index. Our for-
mula is valid for arbitrary extensions with Galois group D2q and for arbitrary Galois-stable
sets of primes S, containing the Archimedean ones. Our results have curious applications
to determining the Galois module structure of the units modulo the roots of unity of a D2q-
extension from class numbers and S-class numbers. The techniques we use are mainly rep-
resentation theoretic and we consider the representation theoretic results we obtain to be of
independent interest.

1. Introduction

Dirichlet [7] was the first to establish a relation between class numbers of a number
field and its subfields in 1842: he showed that for a positive integer d that is not a square,
the quotient of the class number h of Qð

ffiffiffi
d

p
;
ffiffiffiffiffiffiffi
�1

p
Þ by the product of the class numbers hd

of Qð
ffiffiffi
d

p
Þ and h�d of Qð

ffiffiffiffiffiffiffi
�d

p
Þ is either equal to 1 or 2. In 1950, Brauer [4] and Kuroda [11]

independently initiated a systematic study of relations between class numbers in number
fields arising from isomorphisms of permutation representations of finite groups. More pre-
cisely, if G is a finite group and fHigi and fH 0

j gj are sets of subgroups such that there is an
isomorphism of permutation representations of G,L

i

Q½G=Hi�G
L

j

Q½G=H 0
j �;

and if F=K is a Galois extension of number fields with Galois group G, then Artin formal-
ism for Artin L-functions implies that we have an equality of zeta-functions of the corre-
sponding fixed fields: Q

i

zF Hi ðsÞ ¼
Q

j

z
F

H 0
j
ðsÞ:

More generally, if S is any finite G-stable set of places of F containing all the Archimedean
ones, then we have an analogous equality of S-zeta functions. Invoking the analytic class
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number formula (see e.g. [18], Chapter I, Corollary 2.2) yields the equality

Q
i

hSðF HiÞRSðF FiÞ
wðF HiÞ ¼

Q
j

hSðF H 0
j ÞRSðF F 0

j Þ
wðF H 0

j Þ
;ð1Þ

where for a number field M, hSðMÞ, RSðMÞ, and wðMÞ denotes the S-class number of M,
the S-regulator of M, and the number of roots of unity in M, respectively. See below for
precise definitions.

Sometimes, the value of the class number quotient can be given an interpretation in
terms of a unit index. In Dirichlet’s case, the quantity 2h=ðhdh�dÞ is the index in the unit
group of Qð

ffiffiffi
d

p
;
ffiffiffiffiffiffiffi
�1

p
Þ of the subgroup generated by the roots of unity and the unit group

of Qð
ffiffiffi
d

p
Þ. If one wants to make an analogous statement for a general base field and any

bi-quadratic extension, then the class number quotient must have the class numbers of all
three intermediate quadratic extensions in the denominator and the formula is more com-
plicated due a larger unit rank. A correct formula for bi-quadratic extensions in this more
general case, with S equal to the set of Archimedean primes, was only given in 1994 by
Lemmermeyer [13].

Our main result is a unit index formula for Galois extensions with Galois group D2q

for q any odd integer. Let O�
M denote the units in the ring of integers of a number field M.

In 1977, Halter-Koch showed:

Theorem ([10], Section 4). Let F=Q be a Galois extension with Galois group D2p for p

an odd prime. Let K be the quadratic subfield and L3L 0 be two intermediate extensions of

degree p over Q. Let rðKÞ be the rank of the units in K, which is either 0 or 1. Then

hðFÞprðKÞþ1

hðKÞhðLÞ2
¼ ½O�

F : O�
L O�

L 0O
�
K �:

This was generalised to arbitrary base fields by Lemmermeyer in 2005 under a restric-
tive assumption on the extension:

Theorem ([14], Theorem 2.2). Let F=k be a Galois extension of number fields with

Galois group D2p for p an odd prime, let K be the intermediate quadratic extension and

L3L 0 be two intermediate extensions of degree p over k. Assume that F=K is unramified.

Let rðkÞ and rðKÞ denote the ranks of the unit groups in the respective fields. Then

hðFÞhðkÞ2
prðKÞþ1�rðkÞ

hðKÞhðLÞ2
¼ ½O�

F : O�
L O�

L 0O
�
K �:

In 2008, Caputo and Nuccio derived a formula for D2q extensions, where q is any odd
integer for certain base fields and certain extension:

Theorem ([5], Theorem 3.4). Let k be a totally real number field, F=k be a totally

imaginary Galois extension with Galois group D2q, where q is an odd integer. Let K be the

intermediate quadratic and L, L 0 be fixed fields of elements s, s 0 of order 2 such that ss 0�1 is
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of order q. Then

hðFÞhðkÞ2
q

hðKÞhðLÞ2
¼ ½O�

F : O�
L O�

L 0O�
K �

½O�
L O�

L 0 XO�
K : O�

k � :

In this paper we complete the study of unit index formulae for dihedral extensions of
degree 2q. We will only state the formula explicitly for D2p, where p is a prime and explain
how it is derived for D2q for arbitrary odd integers q since the formula gets unwieldy in the
general case, although conceptually not di‰cult.

Theorem 1.1. Let F=k be a Galois extension of number fields with Galois group D2p

for p an odd prime, let K be the intermediate quadratic extension and L, L 0 be distinct inter-

mediate extensions of degree p. Let S be a finite GalðF=kÞ-stable set of places of F including

the Archimedean ones. We write O�
S for S-units, hS for S-class numbers and rS for the ranks

of S-units. Let aðF=k;SÞ be the number of primes of k which lie below those in S and whose

decomposition group is equal to D2p. Finally, set d to be 3 if L=k is obtained by adjoining the

p-th root of a non-torsion S-unit (thus so is F=K) and 1 otherwise. Then we have

hSðFÞhSðkÞ2

hSðKÞhSðLÞ2
¼ pa=2 � ½O�

S;F : O�
S;LO

�
S;L 0O

�
S;K �;

where a ¼ 2rSðkÞ � rSðKÞ � rSðFÞ � rSðKÞ
p � 1

þ aðF=k;SÞ � d.

Note that all the terms in the exponent of p are very easy to compute in practice (e.g.
taking S to be the set of Archimedean places forces aðF=k;SÞ ¼ 0; see Section 6 for more
examples).

For arbitrary Galois extensions and sets of subgroups Hi, H 0
j giving isomorphic per-

mutation representations, Brauer showed that the class number quotientQ
i

hðF HiÞ=
Q

j

hðF H 0
j Þ

takes only finitely many values as F ranges over all Galois extensions of K with Galois
group G (see [4], Satz 5). He further showed that

Q
i

wðF HiÞ=
Q

j

wðF H 0
j Þ is a power of 2 (see

[4], Section 2) and observed that if p is a prime number not dividing the order of G, then

ordp

�Q
i

RðF HiÞ=
Q

j

RðF H 0
j Þ
�
¼ 0 ([4], Satz 4, Bemerkung 2). However, there is to date no

general formula that explains exactly what values the regulator quotient can take. As a by-
product of our calculations, we get the following result in this direction:

Theorem 1.2. Let G be a finite group, let N be a normal subgroup such that G=N is

cyclic, let l be a prime number not dividing the order of N. Let F=K be a Galois extension of

number fields with Galois group G and fHig, fH 0
j g be sets of subgroups yielding an isomor-

phism of permutation representations as above. Let S be a finite G-stable set of places of F

including all the Archimedean ones. Then

ordl

�Q
i

RSðF HiÞ=
Q

j

RSðF H 0
j Þ
�
¼ 0;
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where RS denotes regulators of S-units, and we have an equality of the l-parts of S-class num-

bers:
Q

i

hSðF HiÞl ¼
Q

j

hSðF H 0
j Þl .

We will briefly describe the structure of the paper and the main ideas of the proofs.

Already Brauer pointed out that the regulator quotient is a purely representation the-
oretic invariant of the Z½G�-module O�

S;F . This observation was crucial for proving that the
regulator quotient takes only finitely many values for a fixed base field and varying Galois
extensions F with Galois group G. The main step towards the proof of both Theorem 1.1
and Theorem 1.2 is a representation theoretic description of the regulator quotient. We
will provide such a description in Section 2 by linking the regulator quotients to certain
invariants, first introduced by Tim and Vladimir Dokchitser in [9] and further explored by
the Dokchitser brothers in [8] and by the author in [1] in the context of elliptic curves.
These invariants are rational numbers that can be attached to pairs consisting of an integral
representation of a group and an isomorphism of permutation representations. We will call
these numbers Dokchitser constants (deviating from the original name ‘regulator con-
stants’). To express the regulator quotients in terms of Dokchitser constants is not entirely
trivial and is done in Proposition 2.15.

De Smit [17], Theorem 2.2, has derived a di¤erent expression for the regulator quo-
tient, which turns out to be closely related to ours. In Section 3 we will give an alternative
definition of the Dokchitser constants and will show how this ties in with de Smit’s result.
The alternative definition will also be useful to derive some properties of the Dokchitser
constants, which will lead to a proof of Theorem 1.2. We think that this section is of inde-
pendent interest, since it sheds some light on the nature of Dokchitser constants and there-
fore complements the results of [8].

In Section 4 we turn to Dokchitser constants in dihedral groups. As it turns out, one
can compute all the Dokchitser constants for all integral representations of D2p. We should
mention that D2p must be regarded as a lucky exception. Although it su‰ces to determine
the Dokchitser constants for indecomposable representations (see Proposition 2.7), a finite
group can have infinitely many non-isomorphic indecomposable integral representations
and nobody knows how to classify them in general. However, D2p has finitely many and
they have been written down explicitly in [12]. Still, it is not clear a priori that their
Dokchitser constants can be computed in general since their number grows with p.

In Section 5 we use the properties of Dokchitser constants established in Section 3 to
prove Theorem 1.2. We then use the computation of Dokchitser constants for D2p to prove
Theorem 1.1 and explain how, using formal properties of Dokchitser constants, one can
derive a formula for D2q-extensions for any odd number q. Surprisingly, the generalisation
to D2q is rather easy. Because the most general formula would look rather long and ob-
struct its conceptual simplicity, we will not write it down. Considering S-units instead of
just units also introduces very few conceptual di‰culties. We note that the way we obtain
a unit index formula for D2q-extensions is a completely general procedure to glue unit index
formulae together from intermediate extensions. We hope that this will prove useful in the
search of unit index formulae in much more general contexts.

In the last section we give various examples. For example, we show how the formulae
of Halter-Koch and of Lemmermeyer follow from our Theorem 1.1. We also demonstrate
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how our computations can sometimes be used to determine the structure of the Galois
module given by the units modulo torsion in a dihedral extension in terms of the class num-
bers and S-class numbers of the field and its subfields.

We should mention that we use very little number theory in this paper. We need
the analytic class number formula (or merely its compatibility with Artin formalism), but
unlike the proof of a special case of Theorem 1.1 in [14], we do not need any class field
theory.

Notation. Throughout the paper, the following notation will be used for a number
field F and for S a finite set of places of F containing the Archimedean ones:

hSðFÞ the S-class number of F , i.e. the class number of the ring of all elements of F

which are integral at all places not in S;

wðFÞ the number of roots of unity in F ;

O�
S;F the group of S-units of F ;

rSðFÞ the Z-rank of O�
S;F , i.e. jSj � 1;

USðFÞ the group of S-units modulo torsion; we will often identify units of F with
their image in USðFÞ, when no confusion can arise;

RSðFÞ the S-regulator of F , i.e. the absolute value of the determinant of the square
matrix of size rSðFÞ whose ði; jÞ-th entry is klogðuiÞkpj

, where pj runs through
the set of all but one absolute values attached to the places in S and
fu1; . . . ; urSðF Þg is a set of generators of the group of S-units mod torsion;

zF ;SðsÞ the S-zeta function of F , zF ;SðsÞ ¼
Q
p BS

ð1 � Np�sÞ�1 for <ðsÞ > 1, the prod-

uct taken over the places of F not in S and Np denoting the absolute norm
of p.

The normalisations of the absolute values k � kp attached to places p are as follows:
If Fp ¼ R, then the absolute value is just the usual real absolute value. If Fp ¼ C, then it
is the square of the usual absolute value. If Fp is a p-adic field with residue field of size q,
then the attached absolute value is the p-adic absolute value, normalised in such a way that
kpkp ¼ 1=q for any uniformiser p in Fp.

When k is a subfield of F , we will write Sjk for the set of places of k lying below those
in S. We will often write hSðkÞ etc. instead of hSjkðkÞ.
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2. Regulator quotients and Dokchitser constants

In this section we recall the definition of Dokchitser constants from [9] (where they
were called regulator constants) and relate them to quotients of regulators of number fields.
But first, we introduce a convenient language to talk about the Brauer–Kuroda type rela-
tions.

2.1. Relations of permutation representations and Dokchitser constants. Let G be
any finite group. We recall the following standard definitions (see e.g. [6]):

Definition 2.1. The Burnside ring of G is defined as the ring of formal Z-linear com-
binations of isomorphism classes ½X � of finite G-sets modulo the relations

½X � þ ½Y � ¼ ½X t Y �; ½X �½Y � ¼ ½X � Y �;

where X t Y denotes the disjoint union and X � Y denotes the Cartesian product.

The set of isomorphism classes of transitive G-sets is in bijection with the set of
conjugacy classes of subgroups of G via the map which assigns to the subgroup H the set
of co-sets G=H. We will usually represent elements of the Burnside ring as formal sumsP

i

Hi �
P

j

H 0
j using this identification.

Definition 2.2. Let A be either Q or ZðpÞ, the localisation of Z at a prime p. The rep-

resentation ring of G over A is the ring of formal Z-linear combinations of isomorphism
classes ½M � of A-free finite dimensional AG-modules modulo the relations

½M � þ ½N� ¼ ½M lN�; ½M �½N� ¼ ½M nN�:

Here and in the rest of the paper, AG denotes the group algebra of the group G over A.

We have a natural map from the Burnside ring to the representation ring that sends a
G-set X to the AG-module A½X � with A-basis indexed by the elements of X and the natural
G-action. If we take A to be Q, then the image of the Burnside ring in the representation
ring has finite index (called the Artin index of the group G).

Definition 2.3. We will call an element Y of the kernel of the above map from the
Burnside ring of G to the representation ring over A an AG-relation. If A ¼ Q, then we will
drop A from the notation and will just say that Y is a G-relation.

The number of isomorphism classes of irreducible rational representations of a finite
group G is equal to the number of conjugacy classes of cyclic subgroups of G (see [16], Sec-
tion 13.1, Corollaire 1). Since, as remarked above, the image of the Burnside ring has full
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rank in the representation ring over Q, the lattice of G-relations has rank equal to the num-
ber of conjugacy classes of non-cyclic subgroups.

Example 2.4. Let p be an odd prime. The dihedral group D2p with 2p elements has
one non-cyclic subgroup, namely itself. Decomposing the various permutation representa-
tions into irreducible summands, one easily finds that Y ¼ 1 � 2C2 � Cp þ 2D2p is a rela-
tion. Since it is not divisible by any integer, it must span the Z-lattice of D2p-relations.

We now recall the concept that will be of central importance in this paper:

Definition 2.5. Let G be a finite group, let Y ¼
P

i

Hi �
P

j

H 0
j be an AG-relation

and let R be a principal ideal domain such that its field of fractions K has characteristic
not dividing jGj. Given an R-free finite rank RG-module G such that GnK is self-dual,
we fix a non-degenerate G-invariant bilinear pairing h� ; �i on G with values in some exten-
sion L of K. For any subgroup H of G, the fixed points GH are also R-free, since R is a
PID, and the pairing is also non-degenerate when restricted to GH by [8], Lemma 2.15. We
may thus define the Dokchitser constant of G with respect to Y to be

CYðGÞ ¼

Q
i

det
1

jHij
h� ; �i jGHi

� �
Q

j

det
1

jH 0
j j
h� ; �i jGH 0

j

 ! A L�=ðR�Þ2;

where each inner product matrix is evaluated with respect to some R-basis on the fixed sub-
module. If the matrix of the pairing on GH with respect to some fixed basis is M, then
changing the basis by the change of basis matrix X A GLðGHÞ changes the matrix of the
pairing to X tr MX . So the Dokchitser constant is indeed a well-defined element of
L�=ðR�Þ2.

Convention. From now on, R will be assumed to be a PID with field of fractions K
of characteristic not dividing jGj. We will refer to RG-modules G that are free and of finite
rank over R as RG-lattices. We will always assume that GnK is self-dual. When we refer
to subgroups, we will always mean subgroups up to conjugation unless specifically other-
wise stated. So the subgroups H and H 0 will be treated as being the same if the G-sets G=H

and G=H 0 give the same element of the Burnside ring.

The choice of pairing is not present in the notation of Dokchitser constants and in-
deed we have:

Theorem 2.6 ([8], Theorem 2.17). The value of CYðGÞ is independent of the choice of

the pairing.

In particular, the pairing can always be chosen to be K-valued and so we see that
the Dokchitser constant is in fact an element of K�=ðR�Þ2. Note that if R ¼ Z, then the
Dokchitser constant is just a rational number. If R ¼ Zp, then at least the p-adic order of
the Dokchitser constant is well defined. If on the other hand R ¼ Q, then the Dokchitser
constant is only defined up to rational squares, and if R ¼ Qp, then only the parity of the
p-adic order is defined. An immediate consequence of Theorem 2.6 is
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Proposition 2.7 ([8], Corollary 2.18). The Dokchitser constants are multiplicative in Y
and in G, i.e.

CYðGlG 0Þ ¼ CYðGÞCYðG 0Þ;

CYþY 0 ðGÞ ¼ CYðGÞCY 0 ðGÞ:

Example 2.8. Take G ¼ S3. There are three irreducible complex representations
of S3, namely the trivial representation 1, the one-dimensional sign representation � and a
two-dimensional representation r, and they are all defined over Q. We saw in Example 2.4
that there is, up to integer multiples, a unique relation

1 � 2C2 � C3 þ 2S3

and it is easy to check that the corresponding Dokchitser constants (with R ¼ Q) of all
three irreducible representations are equal to 3 modulo rational squares. The representa-
tions 1 and � contain a unique G-invariant Z-lattice each up to isomorphism and their
Dokchitser constants (with R ¼ Z) are 1=3 and 3, respectively. The two-dimensional repre-
sentation r contains two non-isomorphic G-invariant Z-lattices. Both can be visualised
as hexagonal lattices, generated by two shortest distance vectors P and Q, on which the
3-cycles act as rotations by 120�.

On one, the 2-cycles act by reflection through a shortest distance vector (e.g. through P)
and on the other the 2-cycles act by reflection through the long diagonal of the funda-
mental parallelograms (which are P þ Q and its rotations by 120� in the sketch). Each one
of the two can be embedded into the other G-equivariantly with index 3, but there is no
G-equivariant bijection between them. The Dokchitser constants (again with R ¼ Z) of
the two lattices are easily computed to be 1/3 and 3, respectively.

2.2. Some properties of Dokchitser constants. We will collect some properties of
Dokchitser constants that we will need later. The details can be found in [8]. We first quote
a result that shows that, at least for QG-modules, only finitely many primes p can appear in
the Dokchitser constants:

Proposition 2.9. If R ¼ Q or Qp and pF jGj, then ordp

�
CYðGÞ

�
is even for any

G-relation Y.

Proof. See [8], Corollary 2.28. r

In Section 3 we will generalise this statement to R ¼ Z and R ¼ Zp and we will fur-
ther restrict for what primes ordp

�
CYðGÞ

�
can be non-zero.
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Relations can be restricted to subgroups, induced from subgroups and lifted from
quotients as follows: Let Y ¼

P
i

Hi �
P

j

H 0
j be a G-relation.

� Induction. If G 0 is a group containing G, then by transitivity of induction, Y can
be induced to a G 0-relation Y"G 0 ¼

P
i

Hi �
P

j

H 0
j of G 0.

� Inflation. If G G ~GG=N, then each Hi corresponds to a subgroup ~HHi of ~GG contain-
ing N and similarly for H 0

j and, inflating the permutation representations from a quotient,

we see that ~YY ¼
P

i

~HHi �
P

j

~HH 0
j is a ~GG-relation.

� Restriction. If H is a subgroup of G, then by Mackey decomposition Y can be
restricted to an H-relation Y#H ¼

P
i

P
g AHinG=H

H XH
g
i �

P
j

P
g AH 0

j
nG=H

H XH
0g
j .

We have the following compatibility between these operations and the corresponding
operations applied to representations G:

Proposition 2.10. Let G be a finite group and G an RG-lattice.

� If H < G and Y is an H-relation, then CYðG#HÞ ¼ CY"GðGÞ.

� If G G ~GG=N and Y is a G-relation with ~YY the lifted relation, then CYðGÞ ¼ C~YYðGÞ,
where G can also be regarded as a ~GG-representation.

� If G < G 0 and Y is a G 0-relation, then CYðG"G 0 Þ ¼ CY#G
ðGÞ.

Proof. See [8], Proposition 2.45. r

2.3. Quotients of regulators of number fields. We now want to explain the relation-
ship between Dokchitser constants and quotients of regulators in Brauer–Kuroda type re-
lations. Let G be a finite group, Y ¼

P
i

Hi �
P

j

H 0
j be a G-relation and F=k be a Galois

extension of number fields with Galois group G. Let S be a finite G-stable set of places of F

including all the Archimedean ones.

In the definition of the Dokchitser constant we need to fix a pairing on our ZG-lattice,
so to turn regulator quotients into Dokchitser constants, we need to find a suitable pairing
on USðFÞ. It seems tempting therefore to multiply the matrix ðlogkuikpj

Þ, whose determi-
nant is the S-regulator of the field, with its transpose and to take the pairing of which the
resulting matrix will be the Gram matrix. In other words, we would then define the inner

product of ui with uj by
PjSj�1

k¼1

ðlogkuikpk
logkujkpk

Þ, with the sum running over all but one

place in S. This approach does not work because the resulting pairing does not behave well
upon restriction to subfields. We need its restriction to a subfield M to be equal to the pair-
ing of that subfield scaled by the degree of F=M. We are very grateful to Samir Siksek for
suggesting to us to try instead summing over all places in S, rather than all but one. We
also need another slight twist:
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Definition 2.11. Let M be a number field and S be a finite set of places of M includ-
ing the Archimedean ones. Define the bilinear pairing h� ; �iM on USðMÞ by

hui; ujiM ¼
P

P AS

1

eP fP
logkuikP logkujkP;

where eP is the absolute ramification index of P and fP is the degree of its residue field over
the prime subfield (defined to be 1 if P is Archimedean).

We begin by establishing the non-degeneracy of the pairing and by linking its deter-
minant to the usual S-regulator of a number field.

Lemma 2.12. Let M be a number field and S be a finite set of places of M containing

all the Archimedean ones. Then we have

det
�
h� ; �iM jUSðMÞ

�
¼

P
P AS

fPePQ
P AS

fPeP
� RSðMÞ2:

Proof. Write S ¼ fP1; . . . ;Prþ1g and define the following matrix:

X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fP1

eP1

p logku1kP1ffiffiffiffiffiffiffiffiffiffiffiffiffi
fP1

eP1

p � � �
logkurkP1ffiffiffiffiffiffiffiffiffiffiffiffiffi

fP1
eP1

p
..
. ..

. . .
. ..

.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fPrþ1

ePrþ1

p logku1kPrþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fPrþ1

ePrþ1

p � � �
logkurkPrþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fPrþ1
ePrþ1

p

0BBBBBBBB@

1CCCCCCCCA
:

Then by the product formula and by the definition of our pairing, we have

X trX ¼

P
P AS

fPeP 0 � � � 0

0 hu1; u1iM � � � hu1; uriM

..

. ..
. . .

. ..
.

0 hur; u1iM � � � hur; uriM

0BBBBBBB@

1CCCCCCCA
and so

detðX trXÞ ¼ det
�
h� ; �iM jUSðMÞ

�
�
P

P AS
fPeP:ð2Þ

On the other hand, thanks to the product formula, by multiplying the i-th row of X

by
ffiffiffiffiffiffiffiffiffiffiffiffi
fPi

ePi

p
for each i and by adding all the rows of the resulting matrix to the last one,

we get zeros in the entire bottom row, apart from the bottom left entry, where we getP
P AS

fPeP. Moreover, the resulting matrix with the first column and the bottom row deleted
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has determinant equal to RSðMÞ. In summary, we see that

detðXÞ ¼

P
P AS

fPePQ
P AS

ffiffiffiffiffiffiffiffiffiffi
fPeP

p � RSðMÞ;ð3Þ

and by combining equations (2) and (3), the claim follows. r

We now return to our previous scenario and explain how the pairing behaves in rela-
tions. It is clear that if F=k is a Galois extension of number fields and S is a finite set of
places of F containing all the Archimedean ones, then h� ; �iF is G-invariant. It also behaves
correctly under restriction to subfields:

Lemma 2.13. Let F=k be a Galois extension, S be a finite Galois stable set of places

of F including the Archimedean ones, LeM be subfields of F containing k and ui, uj be

S-units in USðLÞ. Then

hui; ujiM ¼ ½M : L�hui; ujiL:

Proof. This is easy to see by considering each prime of SjL separately since, with our
normalisations of the absolute values, we have

logkukP ¼ eP=p fP=p logkukp

for any u A USðLÞ and for any prime P A SjM above a prime p A SjL. r

There is, however, a slight caveat in working with units modulo torsion because if
F=k is a Galois extension with Galois group G, then the fixed submodule of USðFÞ under
a subgroup H of G need not be canonically isomorphic to USðF HÞ. We will need to under-
stand exactly when it is and what the di¤erence is whenever it is not. Write mðMÞ for the
group of roots of unity of a number field M. Then, from the short exact sequence

1 ! mðFÞ ! O�
S;F ! USðFÞ ! 1

we get the usual long exact sequence of group cohomology

1 ! mðFÞH ! ðO�
S;F Þ

H ! USðFÞH ! H1
�
H; mðFÞ

�
! H1ðH;O�

S;F Þ

for any subgroup H of G. We see immediately that ðO�
S;F Þ

H=mðFÞH ¼ O�
S;F H=mðF HÞ is can-

onically isomorphic to USðFÞH if and only if ker
�
H1
�
H; mðFÞ

�
! H1ðH;O�

S;F Þ
�
¼ 0. We

have that f A H1
�
H; mðFÞ

�
is in this kernel if and only if there is an S-unit u A O�

S;F such
that f ðhÞ ¼ hðuÞ=u A mðFÞ for all h A H. If f is not a co-boundary itself, then u B mðFÞ and
u can without loss of generality be taken to be non-torsion. We deduce that F must contain
a root of a non-torsion S-unit of an intermediate extension of F=F H . Conversely, if it does,
then defining f as above gives a non-trivial element of the kernel. In summary, we record

Lemma 2.14. With F=k and S as above, we have, for any subgroup H of the Galois

group of F=k, that USðFÞH GUSðF HÞ if no intermediate extension of F=F H is obtained by
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adjoining a root of a non-torsion S-unit. In general,

½USðFÞH : USðF HÞ� ¼Kker
�
H1
�
H; mðFÞ

�
! H1ðH;O�

S;F Þ
�
:

We are now ready to prove the main result of this section, which links regulator quo-
tients to Dokchitser constants.

Proposition 2.15. Let F=k be a finite Galois extension with Galois group G and let S

be a finite G-stable set of places of F including the Archimedean ones. Write

lðHÞ ¼Kker
�
H1
�
H; mðFÞ

�
! H1ðH;O�

S;F Þ
�
:

If Y ¼
P

i

Hi �
P

j

H 0
j is a G-relation, then we have

CY

�
USðFÞ

�
¼ CYð1ÞQ

p ASjk
CYðZ½G=Dp�Þ

�

Q
i

�
RSðF HiÞ=lðHiÞ

�2

Q
j

�
RSðF H 0

j Þ=lðH 0
j Þ
�2

;

where, for each p A Sjk, Dp is a decomposition subgroup of G at p.

Remark 2.16. In particular, if the decomposition groups at all primes in S are cyclic,
which is for example the case if S is the set of Archimedean places, then the associated
Dokchitser constants are trivial by [8], Lemma 2.46, and the formula just reads

CY

�
USðFÞ

�
¼ CYð1Þ �

Q
i

�
RSðF HiÞ=lðHiÞ

�2

Q
j

�
RSðF H 0

j Þ=lðH 0
j Þ
�2

:

Proof. For any H eG we have

lðHÞ2 � det
1

jHj h� ; �iF jUSðFÞH

� �
¼Lemma 2:14

det
1

jHj h� ; �iF jUSðF HÞ
� �

¼Lemma 2:13
det
�
h� ; �iF H jUSðF HÞ

�
¼Lemma 2:12

P
P ASj

F H

fPePQ
P ASjF H

fPeP
� RSðF HÞ2:

Since S contains precisely all the places above the places in Sjk, we have, for each p A Sjk,P
P ASj

F H ;

P j p

fPeP ¼
P

P ASj
F H ;

P j p

fpep fP=peP=p ¼ fpep½F H : k�

and thus, for any H eG we have

P
P ASjF H

fPeP ¼ ½F H : k�
P

p ASjk
fpep ¼

jGj
jHj

P
p ASjk

fpep:

222 Bartel, Relations between S-class numbers in dihedral extensions

Brought to you by | University of Glasgow Library
Authenticated

Download Date | 1/8/19 6:15 PM



Observe that by [8], Example 2.30, the term
P

p ASjk
ep fp, being a constant, vanishes in a rela-

tion.

Also, for each p A Sjk we haveQ
P ASjF H ;

P j p

fPeP ¼ ð fpepÞKfprimes of F H above pg �
Q

P ASjF H ;

P j p

ð fP=peP=pÞ:

Now, by [8], Example 2.37, the first of the two factors vanishes in a relation. Also, by [8],
Corollary 2.44, the second factor may be replaced by CYðZ½G=D�Þ in a relation, where D is
a decomposition subgroup of G at p. Combining everything we have said, we obtain

CY

�
USðFÞ

�
¼

Q
i

det
1

jHij
h� ; �iF jUSðFÞHi

� �
Q

j

det
1

jH 0
j j
h� ; �iF jUSðFÞH 0

j

 !

¼ CYð1ÞQ
p ASjk

CYðZ½G=Dp�Þ
�

Q
i

�
RSðF HiÞ=lðHiÞ

�2

Q
j

�
RSðF H 0

j Þ=lðH 0
j Þ
�2

;

as claimed. r

Now that we know how to turn quotients of regulators of number fields into
Dokchitser constants, which are purely representation theoretic invariants, we will establish
some properties of Dokchitser constants in the next two sections.

3. An alternative description of Dokchitser constants

The definition of Dokchitser constants that we have given above is somewhat unsat-
isfactory, since it involves making an arbitrary choice (that of a pairing) on which the result
does not depend. It would be nice to have a definition that avoids any arbitrary choices. As
a first step in the investigation of the properties of Dokchitser constants, we will provide an
alternative definition, which depends on fixing more specific information about the relation
(on which the result again does not depend) but not on any choices connected with the rep-
resentation.

Let Y ¼
P

i

Hi �
P

j

H 0
j be an AG-relation. Define the G-sets S1 ¼

F
i

G=Hi and

S2 ¼
F
j

G=H 0
j . Then to say that Q½S1�GQ½S2� is equivalent to saying that there exists an

embedding of ZG-lattices

f : Z½S1� ,! Z½S2�

with finite cokernel. Also, to say that ZðlÞ½S1�GZðlÞ½S2� is equivalent to saying that there is
such a f with finite cokernel of order coprime to l.
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With these remarks in mind, let R be a PID containing Z, let G be an RG-lattice and
fix an injection of RG-modules

f : R½S1� ,! R½S2�:

By dualising this, we obtain

f tr : HomðR½S2�;RÞ ,! HomðR½S1�;RÞ:

Recall that if G is any RG-lattice and if g A G is represented by the matrix M with respect
to some R-basis, then in the action on HomðG;RÞ, g is represented by ðM�1Þ tr with respect
to the dual basis. But this is equal to M if M is a permutation matrix and so permutation
modules are canonically self-dual. In summary, we have a map

f tr : R½S2� ,! R½S1�:

Applying the functor Homð_;GÞ yields

f� : HomRðR½S2�;GÞ ! HomRðR½S1�;GÞ

and

ðf trÞ� : HomRðR½S1�;GÞ ! HomRðR½S2�;GÞ:

Upon restricting to the G-invariant subspaces, we obtain maps f�
G and ðf trÞ�G between the

corresponding spaces of G-homomorphisms (to avoid index overload, we are abusing nota-
tion slightly by not including G in the notation of these maps). Since R is a PID, the
spaces of G-homomorphisms are R-free. Also, since fnK and ftr nK are both isomor-
phisms, so are f�

G nK and ðf trÞ�G nK. Thus both f�
G and ðftrÞ�G have non-zero deter-

minants.

Definition 3.1. Define

C 0
YðGÞ ¼

detðf trÞ�G
detf�

G

A K�=ðR�Þ2

with both determinants computed with respect to the same bases on HomR½G�ðR½Si�;GÞ,
i ¼ 1; 2. If we change the basis on HomR½G�ðR½S1�;GÞ, say, then the quotient changes by
the square of the determinant of change of basis, so it really is a well-defined element of
K�=ðR�Þ2.

The injection f is not present in the notation and indeed it will turn out that the res-
idue class of C 0

YðGÞ modulo ðR�Þ2 only depends on the relation and the module but not on
any other choices. The main result of this section is

Theorem 3.2. Let G be a finite group, R be a principal ideal domain containing Z with

field of fractions K, Y ¼
P

i

Hi �
P

j

H 0
j be an AG-relation, where A is either Q or ZðpÞ, and G

be an RG-lattice. Fix an injection f : R½S1� ,! R½S2� and obtain f�
G and ðf trÞ�G as above. Fix
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a G-invariant non-degenerate bilinear pairing h� ; �i on G (which exists because GnK is self-

dual by convention). Then

detðf trÞ�G
det f�

G

1

Q
i

det
1

jHij
h� ; �i jGHi

� �
Q

j

det
1

jH 0
j j
h� ; �i jGH 0

j

 ! modðR�Þ2:

Proof. Define a pairing ð� ; �Þ1 on HomRðR½S1�;GÞ by

ð f1; f2Þ1 ¼ 1

jGj
P

s AS1

h f1ðsÞ; f2ðsÞi

and define an analogous pairing ð� ; �Þ2 on HomRðR½S2�;GÞ. It is immediate that these pair-
ings, when restricted to the spaces of G-homomorphisms, are G-invariant. We first claim
that ðf trÞ� is the adjoint of f� with respect to these pairings. Indeed, it su‰ces to check
this for any particular choice of bases on HomRðR½S1�;GÞ and on HomRðR½S2�;GÞ. Let
S1 ¼ fs1; . . . ; sng and choose a basis gj, j ¼ 1; . . . ; r, of G. Define fi; j A HomRðR½S1�;GÞ by
fi; jðsiÞ ¼ gj, fi; jðsÞ ¼ 0 for all s3 si. Then fi; j, i ¼ 1; . . . ; n, j ¼ 1; . . . ; r, is a basis of
HomRðR½S1�;GÞ. Fix the analogous basis f 0

i; j for HomRðR½S2�;GÞ, where S2 ¼ fs 01; . . . ; s
0
ng.

We compute

jGj � ð fi; j; f
�f 0

r; tÞ1 ¼
P

s AS1

�
fi; jðsÞ; f 0

r; t

�
fðsÞ

��
¼
�
gj; f 0

r; t

�
fðsiÞ

��
ð4Þ

¼ hgj; fi; rgti ¼ hfi; rgj; gti ¼ h fi; jðf trs 0rÞ; gti

¼
P

s 0 AS2

h fi; jðf trs 0Þ; f 0
r; tðs 0Þi ¼ jGj �

�
ðf trÞ�fi; j; f 0

r; t

�
2

as required. Next, for a subgroup H of G we can identify HomGðG=H;GÞ with GH via
f 7! f ð1Þ. We claim that under this identification, we have

det
�
ð� ; �Þ1 jHomR½G�ðR½S1�;GÞ

�
1
Q

i

det
1

jHij
h� ; �i jGHi

� �
modðR�Þ2ð5Þ

and similarly for S2. Indeed, if for subgroups Hi 3Hk, we have that R½G=Hi� and R½G=Hk�
are summands of R½S1�, then an element of HomR½G�ðR½S1�;GÞ which is trivial outside of
G=Hi is orthogonal to an element which is trivial outside of G=Hk. So it su‰ces to prove
the claim for S1 ¼ G=H. We compute

ð f1; f2Þ1 ¼ 1

jGj
P

s AG=H

h f1ðsÞ; f2ðsÞi ¼ 1

jGj
P

s AG=H

hs � f1ð1Þ; s � f2ð1Þi

¼ 1

jGj
P

s AG=H

h f1ð1Þ; f2ð1Þi ¼ 1

jHj h f1ð1Þ; f2ð1Þi;

which immediately implies the claim. Now, fix bases v1; . . . ; vm and v 0
1; . . . ; v

0
m on

HomR½G�ðR½S1�;GÞ and HomR½G�ðR½S2�;GÞ, respectively. Then
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Q
i

det
1

jHij
h� ; �i jGHi

� �
Q

j

det
1

jH 0
j j
h� ; �i jGH 0

j

 ! 1
by ð5Þ det

�
ðvi; vjÞ1

�
det
�
ðv 0

k; v
0
l Þ2

�

1
det
�
ðvi; f

�
Gv 0

l Þ1

�
=detðf�

GÞ
det
��
ðf trÞ�Gvi; v

0
l

�
2

�
=det

�
ðf trÞ�G

�
1

by ð4Þ
det
�
ðf trÞ�G

�
=detðf�

GÞ modðR�Þ2;

which concludes the proof. r

Corollary 3.3. The value of C 0
YðGÞ is independent of the choice of f and we have

C 0
YðGÞ ¼ CYðGÞ for all G-relations Y and all RG-lattices G.

Remark 3.4. It is not di‰cult to prove the independence of f directly, using explicit
calculations with the bases fi; j : sl 7! di; l � gj and f 0

i; j : s 0l 7! di; l � gj from the above proof.
This also gives an alternative proof of the independence of CYðGÞ of the pairing.

Remark 3.5. It is instructive to compare our alternative definition of Dokchitser
constants in conjunction with Proposition 2.15 with the formula for class number quotients
derived by de Smit in [17], Theorem 2.2. In his formula, the torsion subgroup of the units is
more directly incorporated into the whole expression. However, arbitrary ZG-modules of a
given group G are more di‰cult to classify than Z-free modules and we will need to use the
classification from [12] for G ¼ D2p in the next section. That is the main reason why we
pass to the quotient modulo torsion first and then recover the torsion separately in the
shape of lðHÞ. Another reason to work with Dokchitser constants is that a lot of the com-
putations of Dokchitser constants in the next section will be easier using a pairing rather
than an embedding f.

An immediate consequence of the alternative definition is the following:

Lemma 3.6. Let G be a finite group and Y be a ZðlÞG-relation. Then ordl

�
CYðGÞ

�
¼ 0

for all ZG-lattices G.

Proof. As remarked above, we can find an injection of G-modules f : Z½S1� ,! Z½S2�
with co-kernel of order coprime to l. For any injection of free abelian groups with finite co-
kernel, the order of its co-kernel is equal to the absolute value of its determinant (with re-
spect to any bases). Now, applying HomGð_;GÞ to the tautological short exact sequence

0 ! Z½S1� !
f
Z½S2� ! cokerðfÞ ! 0

gives the long exact sequence

0 ! HomGðZ½S2�;GÞ !
f�

G
HomGðZ½S1�;GÞ ! Ext1

ZG

�
cokerðfÞ;G

�
:

Since Ext1
ZG

�
cokerðfÞ;G

�
has no l-torsion, neither does cokerðf�

GÞ. The same goes for ðf trÞ�G
and the proof is complete. r
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Definition 3.7. Let l be a prime number. A finite group is called l-hypo-elementary if
it has a normal Sylow l-subgroup with cyclic quotient. Equivalently, an l-hypo-elementary
group is a semi-direct product of an l-group acted on by a cyclic group of order coprime
to l.

Theorem 3.8 (Conlon’s induction theorem). Given any finite group H and any com-

mutative ring ~RR in which every prime divisor of jHj except possibly l is invertible, there exist

integers aH 0 such that some integer multiple of the trivial representation of H over ~RR is equal

to
P
H 0

aH 0 ~RR½H=H 0� in the representation ring over ~RR, where the sum is taken over l-hypo-

elementary subgroups of H.

A proof can be found e.g. in [6], (80.60). We will use this result to considerably
strengthen Proposition 2.9:

Proposition 3.9. Let G be a finite group, let N be a normal subgroup such that the

quotient group C ¼ G=N is cyclic. Let l be a prime not dividing the order of N and let

R ¼ Z or Zl . Then

ordl

�
CYðGÞ

�
¼ 0

for all RG-lattices G and all G-relations Y.

Proof. By Lemma 3.6, it su‰ces to show that every QG-relation is in fact a ZðlÞG-
relation. For that, it is enough to show that the rank of the sublattice of ZðlÞG-relations is
equal to the rank of the lattice of QG-relations, since the former is saturated in the latter.1)
By Theorem 3.8, the rank of the lattice of ZðlÞG-relations is at least equal to the number of
conjugacy classes of non-l-hypo-elementary subgroups. Explicitly, for each subgroup H

of G which is not l-hypo-elementary, we get a ZðlÞG-relation aHH �
P
H 0

aH 0H 0, the sum

taken over l-hypo-elementary subgroups of H. All relations obtained in this way are clearly
linearly independent, since each one contains a unique ‘maximal’ subgroup that has the
property that all other subgroups featuring in the relation are contained in this one. Since
the rank of the lattice of QG-relations is equal to the number of conjugacy classes of non-
cyclic subgroups of G, it is enough to show that any l-hypo-elementary subgroup of G must
by cyclic.

So take H ¼ PzZ eG, where P is an l-group and Z is cyclic of order coprime to l.
Since l does not divide jNj, we have that

PGP=PXN GPN=N eG=N

is cyclic. Further, since H=P is abelian, the commutator subgroup H 0 of H must lie in P, so
it is an l-group. But also, H 0eG 0 eN since G=N is abelian. Therefore H 0 ¼ f1g since l

does not divide jNj. It follows that H is abelian, H ¼ P � C and so cyclic. r

1) The lattice of ZðlÞG-relations is the kernel of the natural map from the Burnside ring to the representa-

tion ring over ZðlÞ. This map is clearly linear and kernels of linear maps from abelian groups are always saturated.
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4. Dokchitser constants in dihedral groups

We will now compute the Dokchitser constants of all ZG-lattices when G ¼ D2p is the
dihedral group with 2p elements for p an odd prime and Y is the relation from Example
2.4. By Proposition 2.7, we only need to compute them for indecomposable representa-
tions. Nonetheless, the fact that this can be done at all is a piece of good fortune. We will
begin by recalling the classification of indecomposable integral representations of D2p from
[12].

Fix a primitive p-th root of unity zp in a fixed algebraic closure Q of Q. Let QðzpÞþ
be the maximal real subfield of the p-th cyclotomic field and let Oþ be its ring of integers.
Let fUig be a full set of representatives of the ideal class group of QðzpÞþ and take
U1 ¼ U ¼ Oþ to represent the principal ideals. Write G ¼ hs; $ : s2 ¼ $p ¼ ðs$Þ2 ¼ 1i.
Let O be the ring of integers of QðzpÞ. Write Ai for the ZG-module UiO on which s acts as
complex conjugation and $ as multiplication by zp. Let A 0

i be the module ðzp � zpÞUiO
with the same G-action. Set A ¼ A1, A 0 ¼ A 0

1.

Finally write 1 for the one-dimensional trivial ZG-module, � for the one-dimensional
module sending s to �1 and $ to 1 and D for the two-dimensional module Z½G=Cp� which
is an extension of 1 by �. The following is a complete list of non-isomorphic indecompos-
able ZG-lattices (see [12]):

� 1;

� �;

� D;

� for each i, Ai;

� for each i, A 0
i ;

� for each i, a non-trivial extension of 1 by A 0
i , denoted by ðA 0

i ; 1Þ;

� for each i, a non-trivial extension of � by Ai, denoted by ðAi; �Þ;

� for each i, a non-trivial extension of D by Ai, denoted by ðAi;DÞ;

� for each i, a non-trivial extension of D by A 0
i , denoted by ðA 0

i ;DÞ;

� for each i, a non-trivial extension of D by Ai lA 0
i , denoted by ðAi lA 0

i ;DÞ.

It is a trivial check that CYð1Þ ¼ 1=p, CYð�Þ ¼ p, CYðDÞ ¼ 1.

Lemma 4.1. The Dokchitser constants of A and of A 0 are p and 1=p, respectively.

Proof. The matrices of s, $ acting on A 0 on the left with respect to the basis

zp � zp; ðzp � zpÞzp; ðzp � zpÞz2
p ; . . . ; ðzp � zpÞzp�2

p
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are

�1 1 0 0 0 � � � 0

0 1 0 0 0 � � � 0

0 1 0 0 � � � 0 �1

0 1 0 � � � 0 �1 0

..

. ..
. ..

. . .. . .. . .. ..
.

0 1 0 �1 0 � � � 0

0 1 �1 0 � � � 0 0

2666666666664

3777777777775
and

0 0 0 � � � 0 �1

1 0 0 � � � 0 �1

0 1 0 � � � 0 �1

..

. ..
. . .

. . .
. ..

. ..
.

0 � � � 0 1 0 �1

0 � � � 0 0 1 �1

26666666664

37777777775
;

respectively. It is immediately seen that the same matrices represent the G-action by multi-
plication on the submodule

h$
p�1

2 �$
pþ1

2 ; $
pþ1

2 �$
pþ3

2 ; . . . ; $p�1 � 1; 1 �$; . . . ; $
p�5

2 �$
p�3

2 iZ

of Z½G=C2� with respect to the indicated basis. But this is just the submodule

h1 �$ i : i A f1; . . . ; p � 1giZ

of the permutation lattice Z½G=C2�. We can choose the standard pairing on the latter which
makes the di¤erent coset representatives an orthonormal Z-basis. It is easy to see that the
fixed sublattices under 1 and under hsi ¼ C2 are

h1 �$ i : i ¼ 1; . . . ; p � 1iZ and 2 �$ i �$p�i : i ¼ 1; . . . ;
p � 1

2

� 	
Z

;

respectively. The subgroup Cp only fixes the trivial lattice. The matrices of the pairing on
these modules with respect to the bases indicated are then

2 1 1 � � � 1

1 2 1 � � � 1

..

. . .
. . .

. . .
. ..

.

1 � � � 1 2 1

1 1 � � � 1 2

26666664

37777775 and

6 4 4 � � � 4

4 6 4 � � � 4

..

. . .
. . .

. . .
. ..

.

4 � � � 4 6 4

4 4 � � � 4 6

26666664

37777775
of sizes p � 1 and

p � 1

2
with determinants p and 2

p�1

2 p, respectively, as can be checked by

elementary row operations. So, taking into account the normalisation by the sizes of the
subgroups, we get

det
1

j1j h� ; �i jA
01

� �
det

1

jGj h ; i jA
0G

� �2

det
1

jC2j
h� ; �i jA 0C2

� �2

det
1

jCpj
h ; i jA 0Cp

� � ¼ p

p2
¼ 1

p

as claimed.
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Now consider the ZG-module Z½G=C2�nZ � with diagonal G-action. It is now
clear from above that A is isomorphic to the submodule of Z½G=C2�nZ � given by
h1 �$ i : i ¼ 1; . . . ; p � 1i. The fixed submodules under 1 and under C2 are

h1 �$ i : i ¼ 1; . . . ; p � 1i and $ i �$p�i : i ¼ 1; . . . ;
p � 1

2

� 	
;

respectively, and an entirely similar calculation using the same natural pairing as above
shows that CYðAÞ ¼ p. r

Lemma 4.2. We have ðA 0; 1ÞGZ½G=C2� and CYððA 0; 1ÞÞ ¼ 1.

Proof. Take the Z-basis 1; $; . . . ; $p�1 for Z½G=C2�. Then there is the submodule�Pp�1

i¼0

$ i

	
isomorphic to 1 and the submodule h1 �$ i : i A f1; . . . ; p � 1gi isomorphic

to A 0, but their sum is the submodule


P
i

ai$
i :
P

ai 1 0 ðmod pÞ
�

, which is an index p

sublattice. In fact, G ¼ Z½G=C2� is indecomposable, for if it were decomposable, it would
have to decompose as cG1G1 XGlcG2G2 XG, where GnQ ¼ cG1G1 lcG2G2 is the decomposition into
irreducible rational representations. But these intersections are easily seen to be the sub-
lattices just exhibited. Thus Z½G=C2� must be a non-trivial extension of 1 by A 0 and the first
claim follows from the classification of integral representations. The Dokchitser constant of
ðA 0; 1Þ is therefore trivial by [8], Lemma 2.46. r

Lemma 4.3. The Dokchitser constants of the remaining lattices in the above list for

i ¼ 1 are as follows:

� CYððA; �ÞÞ ¼ 1;

� CYððA;DÞÞ ¼ 1=p;

� CYððA 0;DÞÞ ¼ p;

� CYððAlA 0;DÞÞ ¼ 1.

Proof. It is noted in [12], Section 4, that ðAlA 0;DÞGZ½G=1� and so
CYððAlA 0;DÞÞ ¼ 1 by [8], Lemma 2.46.

For the other three lattices, since we only need to determine the p-parts, it su‰ces to
work up to squares of elements with trivial p-valuation so we will work over Zp rather than
over Z. Write gðA; �Þ ¼ ðA; �ÞnZ Zp and similarly for the other lattices. Since 1l � is an
index 2 sublattice of D, over Zp we have ~11l ~��G ~DD. Now, ðA; �Þn �G ðA 0; 1Þ and so

gðA; �ÞðA; �Þl gðA 0; 1ÞðA 0; 1Þ ¼Lemma 4:2
Zp½G=C2�n ð~11l ~��Þ

GZp½G=C2�n ~DD

GZp½G=C2�nZp½G=Cp�

GZp½G=1�;
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which has trivial Dokchitser constant by [8], Lemma 2.46. By multiplicativity of

Dokchitser constants and by Lemma 4.2, CYðgðA; �ÞðA; �ÞÞ ¼ 1. Similarly, gðA;DÞðA;DÞG ð ~AA; ~11l ~��Þ, and
since Ext1

ZGð1;AÞ ¼ 0 (cf. [12], Lemma 2.1), it is easy to see that

ð ~AA; ~11l ~��ÞG ~11l gðA; �ÞðA; �Þ:

By multiplicativity of Dokchitser constants, we deduce that

CYð gðA;DÞðA;DÞÞ ¼ 1=p A Q�
p =ðZ�

p Þ
2:

Also Ext1
ZGð�;A 0Þ ¼ 0 and

ð ~AA 0; ~11l ~��ÞG ~��l gðA 0; 1ÞðA 0; 1Þ;

whence

CYð gðA;DÞðA;DÞÞ ¼ p A Q�
p =ðZ�

p Þ
2: r

Theorem 4.4. The Dokchitser constants of all the indecomposable integral representa-

tions of D2p for p an odd prime are as follows:

G 1 � D Ai A 0
i ðA 0

i ; 1Þ ðAi; �Þ ðAi;DÞ ðA 0
i ;DÞ ðAi lA 0

i ;DÞ

CYðGÞ 1=p p 1 p Ei 1=p Ei 1 Ei 1 Ei 1=p Ei p Ei 1 Ei

Proof. For i ¼ 1 this is Lemma 4.1, Lemma 4.2 and Lemma 4.3. We will show that
Ai is isomorphic to A over Zð2Þ and over ZðpÞ for all i and A 0

i is isomorphic to A 0 over Zð2Þ
and over ZðpÞ for all i (strictly speaking, the isomorphism over ZðpÞ would be enough for

this theorem by Proposition 3.9). Recall that Ai, A 0
i are given by ðzp � zpÞ j

UiO for j ¼ 0; 1,
respectively, where Ui runs through representatives of the ideal class group of QðzpÞþ. Take
each Ui to be of norm coprime to 2p. Then Ai is a sublattice of A ¼ A1 of index coprime
to 2p and the two are therefore isomorphic over Z2 and over Zp. Thus they have the same
Dokchitser constants. Similarly, A 0

i all have the same Dokchitser constants as A 0 ¼ A 0
1. r

The proof of Theorem 4.4 exhibits an important feature of Dokchitser constants,
which we will now summarise.

Definition 4.5. Given a finite group G and a principal ideal domain R, two RG-
lattices M and N are said to lie in the same genus if M nRpGN nRp as RpG-modules
for all completions Rp at prime ideals p of R. This is clearly an equivalence relation.

The two main conceptual steps in the proof of Theorem 4.4 can be summarised as:

Theorem 4.6. The Dokchitser constants of an RG-lattice only depend on its genus.

Proposition 4.7. There exist at most ten genera of indecomposable ZD2p-lattices.

Each genus has a representative of the kind considered in Lemma 4.1, Lemma 4.2 and

Lemma 4.3.
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Our goal is to translate the Dokchitser constants into a certain index. To that end,
we now turn to the calculation of the index in G of the submodule generated by the vari-
ous fixed submodules. The calculation is fairly similar to those of the Dokchitser constants
but exhibits some new features. We will not give it in full detail but will give enough ex-
amples to show the main techniques. The result is summarised in the following table,
where C2 and C 0

2 are two distinct subgroups of D2p isomorphic to the cyclic group of
order 2:

G 1 � D Ai A 0
i ðA 0

i ; 1Þ ðAi; �Þ ðAi;DÞ ðA 0
i ;DÞ ðAi lA 0

i ;DÞ

½G : GC2 þ GC 0
2 þ GCp � 1 1 1 1 Ei p Ei 1 Ei p Ei p Ei 1 Ei p Ei

The assertions are clear for the first three modules in the list. For the others, we begin
by noting that the index is an invariant of the genus. More precisely, the l-part of the index
for G is equal to the l-part of the index for GnZðlÞ for any prime l.

Lemma 4.8. Let G ¼ A. Then G ¼ GC2 þ GC 0
2 þ GCp .

Proof. We have already noted in the proof of Lemma 4.1 that A is isomorphic to
the submodule of Z½G=C2�nZ � given by h1 �$ i : i ¼ 1; . . . ; p � 1i and that the sub-
module fixed by hsi is

$ i �$p�i : i ¼ 1; . . . ;
p � 1

2

� 	
:

It follows that the submodule fixed by, say, h$�1s$i is given by

$�1ð$ i �$p�iÞ : i ¼ 1; . . . ;
p � 1

2

� 	
¼ $ i �$p�ðiþ2Þ : i ¼ 0; . . . ;

p � 3

2

� 	
:

These two are easily seen to generate A. For example, by alternatingly summing elements
from them, one can obtain

1 �$ ¼ ð1 �$�2Þ þ ð$�2 �$2Þ þ ð$2 �$�4Þ þ � � � þ ð$p�3 �$Þ

and similarly for all the other generators of A. r

The proof for G ¼ ðA 0; 1Þ ¼ Z½G=C2� is very similar in spirit and we will omit it.

Lemma 4.9. Let G ¼ ðAnA 0;DÞGZ½G=1�. Then ½G : GC2 þ GC 0
2 þ GCp � ¼ p.

Proof. The fixed submodules of Z½G=1� under hsi, under h$s$�1i and under
h$i, respectively, are immediately seen to be

h$ i þ s$ i : i ¼ 0; . . . ; p � 1i; h$ i þ s$ iþ2 : i ¼ 0; . . . ; p � 1i and

�Pp�1

i¼0

$ i;
Pp�1

i¼0

s$ i
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and it is easy to check that together these submodules generate the kernel of the surjective
map

Z½G=1� ! Z=pZ;

�P
i

ais$
i þ
P

j

bj$
j

�
7!
P

i

ai �
P

j

bj mod p:

This kernel is of index p in Z½G=1� and the claim is established. r

A similar proof, which we omit, shows the same for G ¼ A 0.

There are now several ways to finish the calculation. For example, one can note that
to compute the p-part of the indices, we can localise everything at p and use multiplicativ-
ity of indices in direct sums. The p-parts of all the remaining indices then follow from the
direct sum decompositions of the proof of Lemma 4.3.

We note that, by inspection, the quantity

IðGÞ ¼ CYðGÞ � ½G : GC2 þ GC 0
2 þ GCp �2

only depends on the rational representation GnQ and not on the lattice itself. We deduce

Lemma 4.10. Write GnQ ¼ L. Let 1, � and r denote the irreducible rational repre-

sentations of D2p, where r is (p � 1)-dimensional.2) Denote by hL; �i the number of copies of

a given irreducible rational representation in L, analogous to the inner product of complex

characters. Then we have Ið1Þ ¼ 1=p, Ið�Þ ¼ p, IðAiÞ ¼ IðA 0
i Þ ¼ p for all i, and for

any G, we have IðGÞ ¼ phL; �iþhL;ri�hL;1i.

This identity will be crucial in proving Theorem 1.1.

5. Class number relations—main results

In this section we will collect the results obtained so far to prove the main theorems.

5.1. Possible values of regulator quotients. We will begin by establishing Theorem
1.2.

Theorem 5.1. Let G be a finite group, let N be a normal subgroup such that G=N is

cyclic, let l be a prime number not dividing the order of N. Let F=K be a Galois extension of

number fields with Galois group G and Y ¼
P

i

Hi �
P

j

H 0
j be a G-relation. Let S be a finite

G-stable set of places of F including all the Archimedean ones. Recall the notation

lðHÞ ¼Kker
�
H1
�
H; mðFÞ

�
! H1ðH;O�

S;F Þ
�

2) The abuse of notation in using the same letters for the one-dimensional rational representations and in-

tegral lattices in them is very mild, since there is a unique integral lattice up to isomorphism in each of the two

representations.
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for H eG. Then

ordl

�Q
i

lðHiÞ=
Q

j

lðH 0
j Þ
�
¼ 0:

Proof. For a subgroup H of G, define tF ðHÞ as

tF ðHÞ ¼ ker
�
H1
�
H; mðFÞ

�
! H1ðH;O�

S;F Þ
�
;

so that lðHÞ ¼KtF ðHÞ. The inflation-restriction exact sequence gives us the following
commutative diagram with exact rows:

0 ���! H1
�
H=ðH XNÞ; mðF HXNÞ

� ���! H1
�
H; mðFÞ

� ���! H1
�
H XN; mðFÞ

�???y ???y ???y
0 ���! H1

�
H=ðH XNÞ;O�

S;F HXN

� ���! H1ðH;O�
S;F Þ ���! H1ðH XN;O�

S;F Þ;

where the commutativity is obvious on the level of co-cycles. Hence we get the exact se-
quence

0 ! tF N ðHN=NÞ ! tF ðHÞ ! tF ðH XNÞ:

But the l-part of lðH XNÞ is trivial since l does not divide jH XNj, and so we see that

lðHÞ½ly� ¼ lðHN=NÞ½ly� ¼KtF N ðHN=NÞ½ly�:

Since G=N is cyclic and therefore has no non-trivial relations, and by applying [8], Theo-
rem 2.36 (q) with fG=NðHN=NÞ ¼ lðHN=NÞ½ly�, lðHÞ½ly� vanishes in relations and we are
done. r

Corollary 5.2. Under the hypotheses of Theorem 5.1, we have

ordl

�Q
i

RSðF HiÞ=
Q

j

RSðF H 0
j Þ
�
¼ 0:

Proof. This is an immediate consequence of Proposition 2.15, Proposition 3.9 and
the above theorem. r

Corollary 5.3. Under the hypotheses of Theorem 5.1, we have an equality of the

l-parts of class numbers: Q
i

hSðF HiÞl ¼
Q

j

hSðF H 0
j Þl :

Proof. We only need to establish that the l-part of the quotient
Q

i

wðF HiÞ=
Q

j

wðF H 0
j Þ

is trivial. If l 3 2, then this is true in general as observed by Brauer [4], Section 2. If l ¼ 2,
then wðF HÞ ¼ wðF HNÞ and the latter vanishes in relations by exactly the same argument as
in the proof of Theorem 5.1. r
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Remark 5.4. One could also deduce both corollaries directly, without using Theo-
rem 5.1, from the work of Boltje and of Bley and Boltje on Mackey functors (see e.g. [3],
Corollary 2.4, or [2]) combined with the proof of Proposition 3.9.

5.2. Unit index formula for D2p-extensions. We will first prove Theorem 1.1 and
then explain how to deduce a formula for D2q, where q is any odd integer. We will not actu-
ally write down the formula for D2q because it is less enlightening when it is written out
than its conceptual idea. The interested reader should have no di‰culties in writing it
down for any specific case. Let F=k be a Galois extension of number fields with Galois
group G ¼ D2p for p an odd prime. Let K be the intermediate quadratic extension and
L3L 0 be two intermediate extensions of degree p over k. As in the previous section, de-
note by $ an element of order p in G and let s be the involution that fixes L. Let Y be the
relation from Example 2.4 and let S be a G-stable set of primes of F . Our main tool is the
compatibility statement between Artin formalism and the analytic class number formula

given by equation (1). We will first show that in our case,
wðFÞwðkÞ2

wðKÞwðLÞ2
¼ 1. Indeed, since the

extension L=k is not Galois, it cannot be obtained by adjoining roots of unity. Since it has
no intermediate extensions, we see that wðLÞ ¼ wðkÞ. Similarly, if F was obtained from K

by adjoining roots of unity, then adjoining these same roots to k would give an extension of
degree p or 2p. But the former is not possible by what we have just said and the latter
would imply that F=k is abelian. So wðFÞ ¼ wðKÞ and our claim follows.

Set G to be the Galois module USðFÞ given by the S-units of F modulo torsion and
write L ¼ GnQ. We will now invoke Proposition 2.15. Note that in our situation, the
only subgroup of G for which CYðZ½G=H�Þ3 1 is G itself and that

CYðZ½G=G�Þ ¼ CYð1Þ ¼ 1=p.

So Q
p ASjk

CYðZ½G=Dp�Þ ¼ p�Kfp ASjk :Dp¼Gg:

Set aðF=k;SÞ ¼Kfp A Sjk : Dp ¼ Gg. Then we have, using the notation from Proposition
2.15 and from Lemma 4.10,

hSðFÞhSðkÞ2

hSðKÞhSðLÞ2
¼equation ð1Þ RSðKÞRSðLÞ2

RSðFÞRSðkÞ2
ð6Þ

¼Proposition 2:15
�
CYð1Þ=

�
CYðGÞ

Q
p ASjk

CYðZ½G=Dp�Þ
��1=2

� lðCpÞlðC2Þ2

lð1ÞlðGÞ2

¼
�

paðF=k;SÞ�1=CYðGÞ
�1=2 � lðCpÞlðC2Þ2

lð1ÞlðGÞ2

¼Lemma 4:10 ðpaðF=k;SÞ�1

� ½G : GC2 þ GC 0
2 þ GCp �2=phL; �iþhL;ri�hL;1iÞ1=2

� lðCpÞlðC2Þ2

lð1ÞlðGÞ2

235Bartel, Relations between S-class numbers in dihedral extensions

Brought to you by | University of Glasgow Library
Authenticated

Download Date | 1/8/19 6:15 PM



¼ ðprSðkÞ�ðrSðKÞ�rSðkÞÞ�ðrSðFÞ�rSðKÞÞ=ðp�1ÞþaðF=k;SÞ�1Þ1=2

� ½G : GC2 þ GC 0
2 þ GCp � � lðCpÞlðC2Þ2

lð1ÞlðGÞ2
:

Recall that lðHÞ ¼ ½USðFÞH : USðF HÞ� ¼Kker
�
H1
�
H; mðFÞ

�
! H1ðH;O�

S;F Þ
�
. As

we have discussed before Lemma 2.14, this is trivial for all H eG if neither F=L nor
F=K is obtained by adjoining a root of a non-torsion S-unit.

It remains to compute lðHÞ for all H eG and to compare the G-index in equation (6)
with the actual unit index appearing in Theorem 1.1. Since the roots of unity mðFÞ are con-
tained in O�

S;K as remarked above, we have

½O�
S;F : O�

S;LO
�
S;L 0O

�
S;K � ¼ ½O�

S;F=mðFÞ : O�
S;LO

�
S;L 0O

�
S;K=mðFÞ�ð7Þ

¼


O�

S;F=mðFÞ :
�
mðFÞO�

S;L=mðFÞ
�

�
�
mðFÞO�

S;L 0=mðFÞ
��
mðFÞO�

S;K=mðFÞ
��

¼


O�

S;F=mðFÞ :
�
O�

S;L=mðFÞXO�
S;L

�
�
�
O�

S;L 0=mðFÞXO�
S;L 0
��
O�

S;K=mðFÞXO�
S;K

��
¼


O�

S;F=mðFÞ :
�
O�

S;L=mðLÞ
��
O�

S;L 0=mðL 0Þ
��
O�

S;K=mðKÞ
��

¼ ½USðFÞ : USðF C2ÞUSðF C 0
2ÞUSðF CpÞ�;

where for H eG, O�
S;F H=mðF HÞ is identified with its image in O�

S;F=mðFÞ under the ob-
vious inclusion map. Thus, to compare the G-index with the unit index, we need to com-
pute

iðF=k;SÞ ¼ ½USðFÞC2 USðFÞC 0
2 USðFÞCp : USðF C2ÞUSðF C 0

2ÞUSðF CpÞ�:

We will consider various di¤erent cases. The remaining computations are summarised in
the following two lemmata:

Lemma 5.5. We have lð1Þ ¼ 1; lðC2Þ A f1; 2g; lðCpÞ A f1; pg with lðCpÞ ¼ p if and

only if F ¼ Kð
ffiffiffi
u

p
p

Þ for a non-torsion S-unit u A O�
S;K ; lðGÞ A f1; 2; p; 2pg with lðGÞ divisible

by 2 if and only if lðC2Þ ¼ 2 and divisible by p if and only if L ¼ kð
ffiffiffiffi
u 0p

p
Þ for a non-torsion

S-unit u 0 A O�
S;k.

Proof. It is clear that lð1Þ ¼ 1. Since, for any subgroup H eG, lðHÞ is the order of
a subgroup of H1

�
H; mðFÞ

�
and since this cohomology group is cyclic and annihilated by

jHj, we deduce that lðHÞ divides jHj for H A fC2;Cp;Gg. The 2-part of the l-quotient van-
ishes by Theorem 5.1.

By definition, an element of USðFÞCp=USðF CpÞ of order p is represented by a non-
torsion S-unit v A O�

S;FnmðFÞO�
S;K such that $ðvÞ ¼ zv and vp ¼ zx for z; z A mðFÞ and

x A K . But mðFÞHO�
S;K , so these conditions are equivalent to v A O�

S;FnO�
S;K , vp A K. Thus,

lðCpÞ ¼ p if and only if F ¼ Kð
ffiffiffi
u

p
p

Þ, where u is a non-torsion S-unit in O�
S;K .
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Also, an element of USðFÞG=USðF GÞ of order p is represented by an S-unit
v 0 A O�

S;FnmðFÞO�
S;k such that $ðv 0Þ ¼ z1v 0, sðv 0Þ ¼ z2v 0 and v 0p ¼ zx for z1; z2; z A mðFÞ

and x A O�
S;k. If L ¼ kð

ffiffiffiffi
u 0p

p
Þ for a non-torsion S-unit u 0 A O�

S;k, then the conditions are sat-

isfied for v 0 ¼
ffiffiffiffi
u 0p

p
, so in this case lðGÞ is divisible by p. Conversely, let v 0 A O�

S;FnmðFÞO�
S;k

represent an element of order p and let z1, z2, z and x be as above. We need to find
~vv A O�

S;FnmðFÞO�
S;k satisfying the same conditions, but with ~vvp A O�

S;k (and not merely in
mðFÞO�

S;k). Consider ~vv ¼ NormF=Lðv 0Þ ¼ v 0sðv 0Þ ¼ z2v 02: Clearly, it is fixed by G up to roots
of unity, since v 0 is, and also v 0p A mðFÞO�

S;k LO�
S;K implies that ~vvp A O�

S;k. So we only need

to show that ~vv B mðFÞO�
S;k. But if ~vv A mðFÞO�

S;k LO�
S;K , then in fact z2v 02 ¼ ~vv A K XL ¼ k,

so v 02 A mðFÞO�
S;k, contradicting the assumption that v 0 represents an element of order p in

USðFÞG=USðF GÞ. r

Lemma 5.6. The index

iðF=k;SÞ ¼ ½USðFÞC2USðFÞC 0
2USðFÞCp : USðF C2ÞUSðF C 0

2ÞUSðF CpÞ�

is equal to p if F ¼ Kð
ffiffiffi
u

p
p

Þ for a non-torsion S-unit u A O�
S;K and L is not obtained by adjoin-

ing a non-torsion S-unit to k, and is 1 otherwise.

Proof. The statement clearly holds if lðHÞ ¼ 1 for all H eG. Next, by the previous
lemma, any non-trivial element in USðFÞC2=USðF C2Þ can be represented by an element of
USðFÞG. In particular, this representative is fixed by Cp up to roots of unity, so gives an
element of USðFÞCp=USðF CpÞ. Since this latter group has no 2-torsion, we deduce that
any non-trivial class in USðFÞC2=USðF C2Þ is represented by an element of USðF CpÞ and so
the index iðF=k;SÞ is never divisible by 2.

Similarly, by the same lemma, if L ¼ kð
ffiffiffiffi
u 0p

p
Þ for a non-torsion S-unit u 0 A O�

S;k, then
a generator of USðFÞCp=USðF CpÞ can be represented by an element of USðFÞG, which then

gives an element of USðFÞC2=USðF C2Þ. This group has no p-torsion, so the generator of
USðFÞCp=USðF CpÞ is represented by an element of USðF C2Þ and the index iðF=k;SÞ is not
divisible by p in this case, hence trivial.

Finally, suppose that F ¼ Kð
ffiffiffi
u

p
p

Þ for a non-torsion S-unit u A O�
S;K , but that L is not

obtained from k in this way. We will show that then,
ffiffiffi
u

p
p

represents a non-trivial coset of

USðFÞC2USðFÞC 0
2USðFÞCp=USðF C2ÞUSðF C 0

2ÞUSðF CpÞ;

necessarily of order p in this quotient. Assume for a contradiction that
ffiffiffi
u

p
p

¼ uLuL 0uK ,
where uM A O�

S;M for M ¼ L;L 0;K . Recall, that $ denotes an element of G of order p.
Let zp be a primitive p-th root of unity in K , which must exist since otherwise F=K would
not be Galois. Since

zpuLuL 0uK ¼ zp

ffiffiffi
u

p
p

¼ $ð
ffiffiffi
u

p
p

Þ ¼ uK$ðuLuL 0 Þ;

we may replace
ffiffiffi
u

p
p

by
ffiffiffi
u

p
p

=uK and assume without loss of generality that uK ¼ 1. Consider
the images w, wL and wL 0 of

ffiffiffi
u

p
p

, uL and uL 0 , respectively, in O�
S;F nZ Q, where O�

S;F is re-
garded as a Z-module by virtue of being a finitely generated abelian group. Recall the no-
tation 1, � and r of Lemma 4.10 for the irreducible rational representations of D2p. Since w

is fixed by Cp and since the Cp-invariant subspace of r is trivial (this is true for the complex
irreducible two-dimensional representations, of which r is the sum), the projection of w
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onto the r-isotypical component of O�
S;F nZ Q is trivial. Since the C2-invariant subspace

and the C 0
2-invariant subspace of r are linearly independent (as can again be seen on the

level of the complex irreducible summands of r), the projections of wL and of wL 0 onto
the r-isotypical component must also be trivial. But also, the C2-invariant subspace of the
�-isotypical component is trivial, so we deduce that wL is in the 1-component, in other
words that G acts on uL by multiplying by roots of unity. So either uL A k and thus
u A L 0, or L is obtained from k by obtaining the p-th root of a non-torsion S-unit, both
possibilities contradicting the assumptions. r

Combining the two lemmata with equations (6) and (7) completes the proof of Theo-
rem 1.1.

5.3. A formula for D2q for q any odd integer. Throughout this subsection we fix the
following notation:

Notation. In this subsection we will drop the subscript S from O�
S;M and write O�

M

instead. The set-up is as follows:

q
Qn
i¼1

pi for pi odd primes, not necessarily distinct;

G dihedral group with 2q elements, D2q ¼ ha; b j aq ¼ b2 ¼ ðabÞ2 ¼ 1i;

F=k a Galois extension of number fields with Galois group G;

K F hai;

L F hbi;

L 0 F habi;

S Galois stable set of places of F including the Archimedean ones.

For each j A f0; . . . ; ng define

ej

Qj

i¼1

pi (1 if j ¼ 0);

Cj haeji, the unique subgroup of hai of index
Qj

i¼1

pi (1 if j ¼ 0);

Dj, D 0
j the dihedral groups generated by Cj and b and by C 0

j and b, respectively.

With this notation, F Cj=F Dj�1 is an intermediate Galois extension with Galois group
D2pj

for j A f1; . . . ; ng and so Theorem 1.1 applies to this extension. By taking the product
of the unit index formula over j ¼ 1; . . . ; n, we obtain that

hSðFÞhSðkÞ2

hSðKÞhSðLÞ2
¼
Qn
j¼1

ðp
aj

j � ½O�
F

Cj
: O�

F
Cj�1

O�
F

Dj O
�
F

D 0
j
�Þ;ð8Þ

where aj are the corresponding exponents of pj from Theorem 1.1.
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Before investigating the unit index, we will give a more conceptual explanation of this
formula. We have the G-relation

Y ¼ 1 � 2C2 � Cpn þ 2G:

As in the case of D2p, the corresponding quotient of numbers of roots of unity
wðFÞwðkÞ2

wðKÞwðLÞ2

is trivial, because if F contains a root of unity, then adjoining this root to k gives an abelian
Galois extension of k which must therefore be contained in K. Thus wðFÞ ¼ wðKÞ and
wðLÞ ¼ wðkÞ. So, using equation (1), we see that

hSðFÞhSðkÞ2

hSðKÞhSðLÞ2
¼ RSðKÞRSðLÞ2

RSðFÞRSðkÞ2

and Proposition 2.15 implies that

hSðFÞhSðkÞ2

hSðKÞhSðLÞ2
¼ CYð1Þ

CYðGÞ �
Q

p ASjk
CYðZ½G=Dp�Þ

0B@
1CA

1=2

lðCpnÞlðC2Þ2

lð1ÞlðGÞ2
:

This time, we do not have a classification of all indecomposable integral representations
of G at our disposal (in fact the number of their isomorphism classes is infinite when q is
not cube-free). Instead, to replace the Dokchitser constant by a unit index, we break up the
Dokchitser constant into Dokchitser constants of D2pi

-representations and then use Lemma
4.10. We begin by an obvious lemma:

Lemma 5.7. Let G be any finite group, Y ¼
P
i A I

niHi be any G-relation with ni non-

zero integers and G be any R-free RG-module. Set H ¼
T
i A I

Hi. Then

CYðGÞ ¼ CYðGHÞ:

Proof. This is clear from the definition of Dokchitser constants, since elements of G
that are not fixed by any of the subgroups occurring in the relation do not contribute to the
Dokchitser constant. r

For each integer j A f1; . . . ; ng we have the G-relation Yj ¼ Cj � 2Dj � Cj�1 þ 2Dj�1.

We see immediately that Y ¼
Pn
j¼1

Yj and so by Proposition 2.7 we have

CYðGÞ ¼
Qn
j¼1

CYj
ðGÞ:

For each j, Yj is induced from the corresponding relation in Dj�1 and so by Proposition
2.10 we have CYj

ðGÞ ¼ CYj
ðG#Dj�1

Þ, where on the right-hand side Yj is viewed as a Dj�1-
relation. Moreover, by Lemma 5.7 we have CYj

ðGÞ ¼ CYj

�
ðG#Dj�1

ÞCj
�
. Now, ðG#Dj�1

ÞCj

can be considered as a ðDj�1=Cj GD2pj
Þ-module Gj, and since Yj is in fact lifted from the

D2pj
-quotient of Dj�1, we have from Proposition 2.10

CYðGÞ ¼
Qn
j¼1

CYj
ðGjÞ;
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where each factor is now a Dokchitser constant in D2pj
. Applying Lemma 4.10 and the dis-

cussion of the D2p case recovers equation (8).

Ideally, we would like to replace the product of the unit indices by the index

½O�
F : O�

K O�
L O�

L 0 �:

However, the right-hand side of equation (8) depends on more than this one index and
some correction terms will be necessary.

Write Kj ¼ F Cj , Lj ¼ F Dj and L 0
j ¼ F D 0

j , so that for example K0 ¼ K , Kn ¼ F ,
L0 ¼ k and Ln ¼ L:

:

First, note that for any group X and any normal subgroups Y and Z, we have

jX=Y j ¼ jYZ=Y j � jX=YZj ¼ jZ=ðY XZÞj � jX=Z=YZ=Zj;

provided all the quotients are finite. Applying this in step y below with X ¼ O�
Ln
O�

L 0
n
O�

K1
,

Y ¼ O�
Ln
O�

L 0
n
O�

K0
and Z ¼ O�

K1
, we get

½O�
F : O�

Ln
O�

L 0
n
O�

K0
� ¼ ½O�

F : O�
Ln
O�

L 0
n
O�

K1
� � ½O�

Ln
O�

L 0
n
O�

K1
: O�

Ln
O�

L 0
n
O�

K0
�

¼y ½O�
F : O�

Ln
O�

L 0
n
O�

K1
� � ½O�

Ln
O�

L 0
n
O�

K1
XO�

K1
: O�

Ln
O�

L 0
n
O�

K0
XO�

K1
�

� ½O�
Ln
O�

L 0
n
O�

K1
=O�

K1
: O�

Ln
O�

L 0
n
O�

K0
O�

K1
=O�

K1
�

¼ ½O�
F : O�

Ln
O�

L 0
n
O�

K1
� � ½O�

K1
: O�

Ln
O�

L 0
n
O�

K0
XO�

K1
�

¼ ½O�
F : O�

Ln
O�

L 0
n
O�

K1
� � ½O�

K1
: O�

L1
O�

L 0
1
O�

K0
�=½O�

Ln
O�

L 0
n
O�

K0
XO�

K1
: O�

L1
O�

L 0
1
O�

K0
�:
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Repeating this inductively yields

Qn
j¼1

½O�
Kj

: O�
Lj
O�

L 0
j
O�

Kj�1
� ¼ ½O�

F : O�
Ln
O�

L 0
n
O�

K0
� �
Q

j

½O�
Ln
O�

L 0
n
O�

Kj�1
XO�

Kj
: O�

Lj
O�

L 0
j
O�

Kj�1
�:

Finally, substituting this in equation (8) gives the sought for unit index formula.

6. Examples

We first derive some easy consequences of Theorem 1.1:

Corollary 6.1. Let F=Q be a Galois extension with Galois group D2p for p an odd

prime. Let K be the quadratic subfield and let L and L 0 be distinct intermediate extensions

of degree p over Q. Let rðKÞ be the rank of the units in K, which is either 0 or 1. Then we

have

hðFÞprðKÞþ1

hðKÞhðLÞ2
¼ ½O�

F : O�
K O�

L O�
L 0 �:

This is the formula derived by Halter-Koch in [10].

Proof. In this case, S consists of the Archimedean primes and none of them have
decomposition group D2p. Moreover, F=K cannot be obtained by adjoining a p-th root of
a fundamental unit, since for that K has to contain the p-th roots of unity and have unit
rank 1, which is impossible. Finally, rðFÞ ¼ p

�
rðKÞ þ 1

�
� 1 ¼ p � rðKÞ þ p � 1. So for-

mula (6) simplifies to the stated form. r

Corollary 6.2. Let F=k be a Galois extension of number fields with Galois group

G ¼ D2p for p an odd prime, let K be the intermediate quadratic extension and let L and L 0

be distinct intermediate extensions of degree p. Let S be a G-stable set of primes of F includ-

ing the Archimedean ones such that their decomposition groups do not contain Cp. Also as-

sume that F=K is not obtained by adjoining a p-th root of a non-torsion S-unit. Then

hSðFÞhSðkÞ2
prSðKÞþ1�rSðkÞ

hSðKÞhSðLÞ2
¼ ½O�

S;F : O�
S;LO

�
S;L 0O

�
S;K �:

The condition that F 3Kð
ffiffiffi
u

p
p

Þ for a non-torsion S-unit u of K is for example satisfied
when K does not contain the p-th roots of unity or when F=K is unramified at p. In partic-
ular, the corollary applies when F=K is unramified, so this includes the case considered by
Lemmermeyer in [14], Theorem 2.2.

Proof. We again have that rSðFÞ ¼ p � rSðKÞ þ p � 1 since all the places in S are
assumed to split in F=K, and the claim is a direct consequence of formula (6). r

In particular cases we can use the classification of integral representations of D2p to
express the Galois structure of the units modulo torsion in terms of the class number quo-
tient. This has been explored when the base field is Q and S contains only the Archimedean
place, e.g. in [15]. We will give some more examples in the more general setting.
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Example 6.3. Let k be a real quadratic field and let F=k be a Galois extension with
Galois group G ¼ D2p. As before, let K be the intermediate quadratic extension and let L

be an intermediate extension of degree p and take G to be the integral G-representation
given by the units of F modulo torsion (or more precisely their usual logarithmic em-
bedding into RrðFÞþ1). Assume that F=K is not obtained by adjoining a p-th root of
a non-torsion unit of K . Further, assume for simplicity that K is totally complex. Then,
rðkÞ ¼ rðKÞ ¼ 1 and rðFÞ ¼ 2p � 1. So the QG-representation given by GnQ contains
one copy of the trivial representation and two copies of the (p � 1)-dimensional irreducible
representation. Using the notation from Section 4, we have the following possible ZG-
module structures for G together with the corresponding class number quotients:

G
hðFÞhðkÞ2

hðKÞhðLÞ2

Ai lAi l 1 1=p

Ai lA 0
i l 1 1

A 0
i lA 0

i l 1 p

Ai l ðA 0
i ; 1Þ 1=p

A 0
i l ðA 0

i ; 1Þ 1

where the values of the class number quotients follow from Proposition 2.15 and the com-
putation of Dokchitser constants in Section 4. In particular, we see that if the class number
quotient is p, then this determines the genus of the integral representation G. We remind the
reader that by the classification of integral representations, the number of the representa-
tions Ai in the same genus is equal to the class number of QðzpÞþ. This is known to be 1
for pe 67 and conjectured to be 1 for pe 157 (this conjecture is implied by the generalised
Riemann hypothesis), so for ‘small’ p the class number quotient can sometimes completely
determine the Galois module structure of the units modulo torsion.

If K is not totally complex, then the same kind of analysis applies, but the rank of the
units of F is larger and there are more possibilities to consider.

Example 6.4. In the previous example we have seen how, using our general result,
we can apply Moser’s reasoning from [15] to base fields, di¤erent from Q. We will now
show how the generalisation to S-units can be useful to complement Moser’s results. Let
F=Q be a D2p-extension with K, L and G as above. If K is imaginary, then rðKÞ ¼ 0 and
GnQ only contains one copy of the irreducible (p � 1)-dimensional representation. By the
classification of integral representations and the computation of their Dokchitser constants
in Section 4, we see that the class number quotient is either 1 or 1=p and in either case it
determines the genus of G. However, when K is real, we have the following possibilities
for G together with the corresponding class number quotients:

number G
hðFÞhðkÞ2

hðKÞhðLÞ2

(1) Ai lAi l � 1=p2

(2) Ai lA 0
i l � 1=p

(3) A 0
i lA 0

i l � 1
(4) Ai l ðAi; �Þ 1=p

(5) A 0
i l ðAi; �Þ 1
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We see that if the class number quotient is 1=p2, then the genus of G is again determined
(and therefore the whole Galois module structure of G is determined if pe 67, as remarked
in the previous example). However, if the class number quotient is 1 or 1=p, then we are left
with two possibilities. But sometimes, looking at S-class numbers can resolve the ambigu-
ity. Let q be a prime number which is inert or ramified in K=Q and ramified in F=K . Let S

consist of the infinite places of F and the places above q. Let GS be the Galois module given
by the S-units of F modulo torsion. Then GS nQ contains one copy of the trivial represen-
tation, one copy of the non-trivial one-dimensional representation and two copies of the
irreducible (p � 1)-dimensional representation. Also, GS contains G as a saturated sublat-
tice and the possible Galois module structures of GS restrict the possibilities for G. For ex-
ample, if the S-class number quotient is 1=p, then writing out the list of possibilities for GS

(there are 16) we see that G is given either by number (1) or by (2) and the two have di¤er-
ent class number quotients. Here is a concrete example: Let F be the splitting field of the
irreducible cubic polynomial

f ðxÞ ¼ x3 � 34x � 6:

The Galois group of F=Q is S3 and the class number quotient is 1=3. Thus, the Galois
module structure of the units of F modulo roots of unity is either (2) or (4) from the above
list. Now, let S consist of the infinite places of F and the unique place above 2. Then, the
S-class number quotient is also 1=3 and so the Galois module structure of the units of F

modulo the roots of unity must be the one numbered (2) in the list.
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