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.
SIMPLICITY OF TWISTS OF ABELIAN VARIETIES

ALEX BARTEL

Abstract. We give some easy necessary and sufficient criteria for twists
of abelian varieties by Artin representations to be simple.

1. Introduction

Let A/k be an abelian variety over a field, let R ≤ End(A) be a com-
mutative ring of endomorphisms of A (here and in the sequel, we regard
the abelian varieties as schemes over a base, and this is also the category
in which our morphisms will live; in particular, End(A) denotes endomor-
phisms of A defined over k; the same remark applies to statements like “A
is principally polarised”, etc.), and let K/k be a finite Galois extension with
Galois group G. Let Γ be an R[G]-module, together with an isomorphism
ψ : Rn → Γ for some n. Attached to this data is the so-called twist of A
by Γ, denoted by B = Γ⊗R A, which is an abelian variety over k with the
property that the base change BK = B ×k K is isomorphic to (AK)n.

As soon as n > 1, B is, by its very definition, never absolutely simple.
But it can be simple over k, and to know when this is the case is important
for some applications, see e.g. [4]. If A′ is a proper abelian subvariety of
A, then Γ ⊗R A′ is a proper abelian subvariety of Γ ⊗R A. Similarly, if
Γ′ ≤ Γ is an R-free R[G]-submodule of strictly smaller R-rank, then Γ′⊗RA
is isogenous to a proper abelian subvariety of Γ ⊗R A. The purpose of this
note is to point out that, under some mild additional hypotheses (and in
particular over number fields in the generic case, when Endk̄(A)

∼= Z), these
are the only two ways in which B can fail to be simple.

As a concrete example, we mention the following generalisation of Howe’s
analysis [4]:

Theorem 1.1. Let A/k be a simple abelian variety of dimension 1 or 2

over a number field, let p be an odd prime number and let K/k be a Galois

extension with Galois group G of order p. If A is not absolutely simple or

not principally polarised, assume that p > 3. Let I be the augmentation ideal

in Z[G], i.e. the kernel of the map Z[G] → Z, g 7→ 1 ∀g ∈ G. Then I ⊗Z A
is simple if and only if End(A) ⊗ Q does not contain the quadratic subfield

of Q(µp).

Remark 1.2. If p = 2, then I ⊗Z A is a quadratic twist of A, and so also
simple if A is. Since, for all p, I ⊗ Q is the unique non-trivial irreducible
Q[G]-module, the theorem completely deals with simplicity of those twists of
elliptic curves and of principally polarised absolutely simple abelian surfaces
that are trivialised by a cyclic prime degree extension.

Remark 1.3. By computing the endomorphism ring of I ⊗ Q as a Q[G]-
module, Howe [4] showed part of one implication in the case dim(A) = 1:
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he proved that if E/k is a non-CM elliptic curve, then I ⊗Z E is simple. In
the proof of the theorem that we present, one does not need to know the
endomorphism ring of I ⊗ Q to deduce the result for elliptic curves; one
does, however, need to know it to prove the statement for abelian surfaces.

The same technique yields uniform statements for higher dimensional
abelian varieties, where the restriction on p depends on the dimension of
the variety:

Theorem 1.4. Fix an integer d. There exists an integer p0 such that for all

number fields k, all simple abelian varieties A/k of dimension d, all primes

p > p0, and all Galois extensions K/k with cyclic Galois group G of order p,
the twist I⊗ZA is simple if and only if End(A)⊗Q does not contain a subfield

of Q(µp) other than Q. Here, I is, as in Theorem 1.1, the augmentation

ideal in Z[G].

Similarly concrete results can be obtained for twists by other represen-
tations, and we give several more examples in the same vein in the last
section.

Acknowledgements. I would like to thank Barinder Banwait for bringing
Howe’s paper to my attention, which motivated this work. Many thanks are
due to Victor Rotger for very helpful email correspondence. I gratefully ac-
knowledge the financial support by the Royal Commission for the Exhibition
of 1851.

2. Endomorphisms of twists of abelian varieties

In this section we begin by recalling (see [9, §III.1.3]) the definition of a
twist of an abelian variety by an Artin representation, and then give suffi-
cient conditions for the endomorphism ring of such a twist to be an integral
domain, equivalently for the twist to be simple. We strongly recommend
[6] for a very thorough treatment of twists of abelian varieties, and, more
generally, of commutative algebraic groups.

Let Y/k be an abelian variety, and K/k a finite Galois extension with
Galois group G. A K/k-form of Y is a pair (X, f), where X/k is an abelian
variety, and f : YK → XK is an isomorphism, defined over K. There
is an obvious notion of isomorphism between such pairs, and the set of
isomorphism classes of K/k-forms of Y is in bijection with the pointed set
H1(G,Aut YK), where the G-action on AutK Y is given by1 φσ = σ ◦φ◦σ−1

for σ ∈ G and φ ∈ Aut(YK). The bijection is given by assigning to a K/k-
form (X, f) the cocycle represented by σ 7→ f−1fσ, where, as before, fσ is
defined to be σ ◦ f ◦ σ−1.

Now, suppose that A/k is an abelian variety, and R ≤ End(A) a commu-
tative ring. With K/k and G as above, let Γ be an R[G]-module, together
with an R-module isomorphism ψ : Rn → Γ for some n ∈ N. Then the map
aΓ : σ 7→ ψ−1ψσ = ψ−1 ◦ σ ◦ ψ ∈ GLn(R) ≤ AutK An defines a cocycle
in H1(G,Aut(AK)n). Indeed, note that since G acts trivially on automor-
phisms of An that are defined over k, as is the case for GLn(R) ≤ Aut(AK)n,

1we adhere to the common convention that the superscript for the action is written on
the right, even though this is actually a left action
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1-cocycles whose image lies in GLn(R) are simply group homomorphisms.
The twist B of A by Γ, written B = Γ⊗R A is, by definition, the K/k-form
of An corresponding to the cocycle aΓ.

We now come to the endomorphism ring of B. Our aim is to find criteria
for B to be simple, equivalently for End(B) to be a division ring. In the-
ory, one can easily describe End(B) in terms of the G-module structure of
EndK(A) and EndR(Γ):

Lemma 2.1. There is an isomorphism

End(Γ⊗R A)
∼→ (EndR(Γ)⊗ EndK(A))G.

Proof. This immediately follows from [6, Proposition 1.6], by noting that
the absolute Galois group of k acts on Γ through the quotient G. �

However, in the most general form, this description is not easy to use for
determining when the right hand side of the equation is a division ring. On
the other hand, generically the situation is much better.

Assumption 2.2. For the rest of this section, assume that End(A) =
End(AK). Since we are interested in criteria for B to be simple, we will
also assume from now on that A itself is simple, therefore so is AK by the
previous assumption.

Remark 2.3. This assumption is generically satisfied over number fields in
the following sense: fix an abelian variety A over a number field k, and a
Galois group G. A result of Ribet and Silverberg [10, 7] says that, given any
subring O ⊆ Endk̄(A) there exists a unique minimal extension LO/k such
that O ⊆ EndLO

(A). So EndK(A) = End(A) whenever K ∩ LS = k.

Notation 2.4. The following notation will be retained throughout the pa-
per:

• K/k — a Galois extension of fields with Galois group G;
• A/k — a simple abelian variety;
• S = End(A);
• R ≤ S — a commutative subring;
• Γ — an R-free R[G]-module;
• B = Γ⊗R A — the twist of A by Γ, which is an abelian variety over
k;

• D = S ⊗Z Q — a division algebra;
• F = R⊗Z Q — a field contained in D;

Under Assumption 2.2, Lemma 2.1 becomes

End(B) ∼= EndR[G](Γ)⊗R S.(2.5)

In general, it is a subtle question with a rich literature when the tensor
product of two division rings over a common subring is a division ring. But
for a generic polarised abelian variety, S = Z. More generally, if S is com-
mutative, Schur’s Lemma furnishes an elementary answer to the question of
simplicity of B:

Proposition 2.6. Assume, in addition to Assumption 2.2, that S is com-

mutative, i.e. that D is a field. Then B is simple if and only if Γ ⊗R D is

a simple D[G]-module.
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Proof. The twist B is simple if and only if End(B) is a division ring, if and
only if

End(B)⊗Z Q ∼= EndR[G](Γ)⊗R D

is a division algebra. It is an elementary computation that when S is com-
mutative, EndR[G](Γ)⊗RD is precisely the endomorphism ring of the D[G]-
module Γ⊗R D, the isomorphism given by

EndR[G](Γ)⊗R D → EndD[G](Γ⊗R D),

α⊗ f 7→ (γ ⊗ g 7→ α(γ)⊗ fg).

We deduce that, by Schur’s Lemma, B is simple if and only if Γ⊗R D is a
simple D[G]-module. �

There is slightly different way of phrasing this discussion, which is closer
to Howe’s original proof. Since AK is assumed to be simple, S is a division
ring, and EndK(An) ∼=Mn(S), the n-by-nmatrix ring over S. Since the base
change of B to K is isomorphic to (AK)n, any endomorphism of B gives rise
to an endomorphism of (AK)n, i.e. an element of Mn(S). Conversely, it is
easy to characterise the elements of Mn(S) that descend to endomorphisms
of B:

Proposition 2.7 ([4], Proposition 2.1). An element of Mn(S) descends to

an endomorphism of B if and only if it commutes with all elements of the

image of G under the cocycle aΓ : G→ GLn(R) ≤ GLn(S).

Now, we merely need to observe that, as we remarked above, the cocycle
aΓ is in fact nothing but the group homomorphismG→ Aut(Γ) with respect
to an R-basis on Γ. The commutant of its image inMn(S) is the intersection
ofMn(S) with the commutant of the image of aΓ inMn(D), whereD = S⊗Q

is, as in Proposition 2.6, assumed to be a field. Moreover, since for any
x ∈ Mn(D), some integer multiple of x lies in Mn(S), the commutant of
aΓ(G) in Mn(S) is a division ring if and only if its commutant in Mn(D) is
a division algebra. By Schur’s Lemma, the latter is the case if and only if
Γ⊗R D is simple.

Another example in which equation (2.5) can be completely analysed is
when D = S ⊗ Q is a quaternion algebra over F = R ⊗ Q. In that case, a
theorem of Risman [8] asserts that if D′ is any division algebra over F , then
D ⊗F D

′ has zero-divisors if and only if D′ contains a splitting field for D.
So we immediately deduce:

Proposition 2.8. Assume, in addition to Assumption 2.2, that D is a

quaternion algebra over F = R ⊗ Q. Then B is simple if and only if

EndF [G](Γ⊗ F ) contains no splitting field of D.

A generalisation in a slightly different direction is the special case that
L = EndR[G](Γ)⊗Q is a field:

Proposition 2.9. Assume, in addition to Assumption 2.2, that L is a field.

Suppose also that R is contained in the centre of End(A). Then B is simple

if and only if L intersects every splitting field of D in F = R⊗Q.
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Proof. This follows from the general theory of division algebras, see e.g. [1,
§74A]. Indeed, let Z be the centre of D. If L ∩ Z 6= F , then certainly
L⊗F D is not a division algebra, since L⊗F Z is not a field. Suppose that
L ∩ Z = F , so that L ⊗F Z is a field. Then L ⊗F D is a simple algebra
with centre L⊗F Z. The dimension of D over F is equal to the dimension
of L ⊗F D over L, and their respective dimensions over their centres are
therefore also equal. So L intersects a splitting field of D in a field that is
bigger than F if and only if the index of L⊗F D is smaller than that of D
if and only if L⊗F D has zero divisors. �

3. Consequences

We first explain how to deduce Theorem 1.1 from Propositions 2.6 and
2.8.

Let G be cyclic of odd prime order p. Recall that I ≤ Z[G] is defined to
be the augmentation ideal in Z[G], I = ker(

∑
g∈G ngg 7→

∑
g∈G ng). The

complexification I⊗C is isomorphic to the direct sum of all non-trivial simple
C[G]-modules, which are all Galois conjugate. It is therefore easy to see that
I ⊗Z Q is a simple Q[G]-module, and that moreover, given any number field
D, I ⊗Z D is reducible if and only if D intersects Q(µp) non-trivially.

First, let A/k be an elliptic curve over a number field. Then End(A)⊗Q

is a field, and the fact that End(A) = End(AK) for an odd degree extension
K/k follows from classical CM theory, see e.g. [5, Chapter 3]. Thus, the
dimension 1 case of Theorem 1.1 follows from Proposition 2.6.

The dimension 2 case is more subtle. Let A/k be an absolutely sim-
ple abelian surface over a number field. Then End(Ak̄) ⊗ Q is one of the
following:

(1) Q,
(2) a real quadratic number field,
(3) a CM field of degree 4,
(4) an indefinite quaternion algebra over Q.

We first claim that in all four cases, End(A) = End(AK) for an odd degree
extensionK/k. This is clear in case 1, and in case 3 this follows from classical
CM theory, see e.g. [5, Chapter 3]. For case 2, observe that the absolute
Galois group of k acts on End(Ak̄)⊗Q by Q-algebra automorphisms. If the
endomorphism algebra is a quadratic field, then the action factors through
a quotient of Gal(k̄/k) of index at most 2, which proves the claim. Finally,
case 4 is handled by [2, Theorem 1.3].

If A/k̄ is isogenous to a product of elliptic curves, then there are more
possibilities for the structure of End(A), which have been classified in [3,
Theorem 4.3]. It follows from this classification that if End(A) ⊗ Q is a
division algebra, then it is still either isomorphic to Q or a quadratic field
or a quaternion algebra, and that moreover End(A) = End(AK) for any
extension K/k of degree coprime to 6. So the dimension 2 case of Theorem
1.1 follows from Proposition 2.6 when End(A) ⊗ Q is a field, and from
Proposition 2.8 when it is a quaternion algebra, which covers all possible
cases.

To deduce Theorem 1.4 from Proposition 2.9, we use a result of Silverberg,
which we will rephrase slightly for our purposes: for any fixed d, there exists
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a bound b depending only on d (specifically, b = 4(9d)4d is enough), such
that for all abelian varieties over number fields A/k of dimension d, and all
extensions K/k of prime degree greater than b, End(A) = End(AK). Theo-
rem 1.4 is an immediate consequence of this result together with Proposition
2.9, because EndQ[G](Γ⊗Q) ∼= Q(µp).

Proposition 2.6 has an application to questions of simplicity of Weil re-
strictions of scalars. If A/k is a simple abelian variety, and K/k is a fi-
nite Galois extension with Galois group G, then the Weil restriction of
scalars WK/k(AK) is never simple, since there is a surjective trace map
WK/k(AK) → A. Its kernel is, up to isogeny, precisely the twist I ⊗Z A,
where I is the augmentation ideal in Z[G]. The following is therefore an
immediate consequence of Proposition 2.6:

Corollary 3.1. Let A/k be an abelian variety with End(Ak̄) = Z. Let K/k
be a finite Galois extension with Galois group G. The kernel of the trace

map WK/k(AK) → A is simple over k if and only if G has prime order.

Proof. Cyclic groups of prime order are precisely the finite groups with only
two rational irreducible representations, i.e. those for which I ⊗Z Q is a
simple Q[G]-module. �

If K/k is Galois with dihedral Galois group G of order D2p, p an odd

prime, then there is a unique intermediate quadratic extension k′ = k(
√
d)/k,

and for any abelian variety A/k, WK/k(AK) ∼ A × Ad × X2, where Ad is
the quadratic twist of A by k′/k. The remaining factor X (up to isogeny)
is the twist of A by a lattice in the (p − 1)-dimensional irreducible rational
representation ρ of G, which is the sum of all the two-dimensional complex
representations of G.

Corollary 3.2. Let E/k be an elliptic curve over a number field, K/k,X
as above. Then X is simple.

Proof. The values of each irreducible two-dimensional character of G gen-
erate the maximal real subfield Q(µp)

+ of the p-th cyclotomic field, and
they are all Galois conjugate over Q. They will therefore remain conjugate
over any imaginary quadratic field, so the conclusion holds even when E has
CM. �

We conclude with an amusing example of a “symplectic twist”. Let E/k
be an elliptic curve over a number field, let K/k be Galois with Galois group
Q8, the quaternion group. There are three intermediate quadratic fields, and
correspondingly, the Weil restriction WK/k(EK) has, up to isogeny, four
factors E,E1, E2, E3 that are quadratic twists of E. Write WK/k(EK) ∼
E × E1 × E2 × E3 ×H.

Corollary 3.3. Let K/k, E/k, H be defined as above. Then H is simple,

unless E has CM by an imaginary quadratic field Q(
√
−d) with d equal to

the sum of three squares, in which case H is isogenous to a product of two

isomorphic simple factors.

Proof. The factor H is (up to isogeny) the twist of E by two copies of the
standard representation of Q8. The endomorphism algebra of this represen-
tation is isomorphic to Hamilton’s quaternions, which is split by precisely
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the imaginary quadratic fields Q(
√
−d) for which d is the sum of three

squares. �
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