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. A NOTE ON GREEN FUNCTORS WITH INFLATION

ALEX BARTEL AND MATTHEW SPENCER

Abstract. This note is motivated by the problem to understand, given
a commutative ring F , which G-sets X, Y give rise to isomorphic F [G]-
representations F [X] ∼= F [Y ]. A typical step in such investigations is
an argument that uses induction theorems to give very general sufficient
conditions for all such relations to come from proper subquotients of
G. In the present paper we axiomatise the situation, and prove such
a result in the generality of Mackey functors and Green functors with
inflation. Our result includes, as special cases, a result of Deligne on
monomial relations, a result of the first author and Tim Dokchitser on
Brauer relations in characteristic 0, and a new result on Brauer relations
in characteristic p > 0. We will need the new result in a forthcoming
paper on Brauer relations in positive characteristic.

1. Introduction

The Burnside ring B(G) of a finite group G is, as a group, the free abelian
group on the set of isomorphism classes of transitive G-sets. Any transitive
G-set is isomorphic to a set of cosets G/H for some H ≤ G, so we may write
elements of B(G) as formal Z-linear combinations of symbols [G/H]. Let A
be a field of characteristic p ≥ 0. The representation ring RA(G) of a finite
group G over A is, as a group, the free abelian group on the set of isomor-
phism classes of finitely generated indecomposable A[G]-modules (not to be
confused with the Grothendieck group of the category of finitely generated
A[G]-modules, which is also sometimes denoted by RA(G)). For every finite
group G there is a natural homomorphism B(G)→ RA(G), which sends the
isomorphism class represented by a G-set X to the isomorphism class of the
A[G]-module A[X] with a canonical A-basis given by the elements of X, and
with G acting by permutations on this basis. Let KA(G) denote the kernel
of this homomorphism. It is easy to see that KA(G), as a subgroup of B(G),
only depends on the characteristic of A, and we refer to elements of KA(G)
as Brauer relations of G in characteristic p.

It is an old problem, with many applications in number theory and ge-
ometry, to understand the structure of KA(G) for all finite groups G. See
e.g. [1, §1] for a brief overview of the history of the problem and of some
of the applications. The most efficient and, from the point of view of num-
ber theoretic and geometric applications, the most useful way of giving a
complete characterisation of KA(G), not just as an abstract group, but with
an explicit description of generators, is to view KA(G) as a Mackey functor
with inflation. We briefly explain informally what this means, and refer to
Section 2 for the formal discussion.
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If H is a subgroup of a finite group G, then Brauer relations of H can
be induced to Brauer relations of G. Moreover, if Ḡ is a quotient of a finite
group G, then Brauer relations of Ḡ can be lifted to Brauer relations of G.
Let ImprimKA

(G) be the subgroup of KA(G) generated by all relations that
are induced from proper subgroups or lifted from proper quotients, and let
PrimKA

(G) be the quotient KA(G)/ ImprimKA
(G). If one can give, for every

finite group G, generators of PrimKA
(G), then one obtains a list of Brauer

relations with the property that all Brauer relations in all finite groups are
Z-linear combinations of inductions and lifts of relations in this list.

In [1] the structure of PrimKA
(G) has been completely determined, in the

above sense, in the case when A has characteristic 0. The following theorem
was a crucial step towards that result. If q is a prime number, then a group
is called q-quasi-elementary if it has a normal cyclic subgroup of q-power
index. A group is called quasi-elementary if it is q-quasi-elementary for some
prime number q.

Theorem 1.1 ([1], Theorem 4.3). Let G be a finite group that is not quasi-
elementary. Then:

(a) if all proper quotients of G are cyclic, then PrimKQ(G) ∼= Z;
(b) if q is a prime number such that all proper quotients of G are q-quasi-

elementary, and at least one of them is not cyclic, then PrimKQ(G) ∼=
Z/qZ;

(c) if there exists a proper quotient of G that is not quasi-elementary, or
if there exist distinct prime numbers q1 and q2 and, for i = 1 and
2, a proper quotient of G that is non-cyclic qi-quasi-elementary, then
PrimKQ(G) is trivial.

Moreover, in all cases, PrimKQ(G) is generated by any element of KQ(G) ⊆
B(G) of the form [G/G] +

∑
H�G aH [G/H], aH ∈ Z.

Deligne [7] had proven a similar result on relations between monomial
representations, see Theorem 5.1 below.

The main motivation for this paper is to understand PrimKA
(G) when A

has positive characteristic. To that end, we prove the following characteristic
p analogue of Theorem 1.1, which will be used in a forthcoming paper to
give a characterisation of PrimFp(G). If p and q are prime numbers, then a
group is called p-hypo-elementary if it has a normal p-subgroup with cyclic
quotient, and it is called a (p, q)-Dress group if it has a normal p-subgroup
with q-quasi-elementary quotient.

Theorem 1.2. Let G be a finite group that is not a (p, q)-Dress group for
any prime number q. Then:

(a) if all proper quotients of G are p-hypo-elementary, then PrimKFp (G) ∼=
Z;

(b) if q is a prime number such that all proper quotients of G are (p, q)-
Dress groups, and at least one of them is not p-hypo-elementary, then
PrimKFp (G) ∼= Z/qZ;

(c) if there exists a proper quotient of G that is not a (p, q)-Dress group for
any prime number q, or if there exist distinct prime numbers q1 and
q2 and, for i = 1 and 2, a proper quotient of G that is a non-p-hypo-
elementary (p, qi)-Dress group, then PrimKFp (G) is trivial.
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Moreover, in all cases, PrimKFp
(G) is generated by any element of KFp(G) ⊆

B(G) of the form [G/G] +
∑

H�G aH [G/H], aH ∈ Z.

To prove part (b) of Theorem 1.2, we prove an induction theorem for
(p, q)-Dress groups, which we believe to be of independent interest. It is a
characteristic p analogue of the main Theorem of [8].

Theorem 1.3. Let p and q be prime numbers, let G be a (p, q)-Dress group
that is not p-hypo-elementary, and let a be an integer. Then there exists an
element in KFp(G) of the form a[G/G] +

∑
H�G aH [G/H], aH ∈ Z if and

only if q|a.

In fact, we deduce Theorems 1.1 and 1.2, as well as Deligne’s theorem
on monomial relations, as special cases of a general result on kernels of
morphisms between Green functors with inflation. This formalism, which is
a mix of axiomatisations that have appeared in the literature many times
before, see e.g. [12] and [4], will be introduced in Section 2. In Section
3 we recall the concept of primordial groups for a Mackey functor. Our
main theorems on kernels of morphisms of Green functors will be proven in
Section 4. Section 5 is devoted to concrete applications, and it is there that
we prove Theorems 1.1, 1.2, and 1.3.

Acknowledgements. During parts of this project, the first author was
partially supported by a Research Fellowship from the Royal Commission
for the Exhibition of 1851, and by an EPSRC First Grant, and the second
author is supported by an EPSRC Doctoral Grant. We would like to thank
these institutions for their financial support. We would also like to thank
an anonymous referee for a careful reading of the paper and for numerous
helpful suggestions.

Our rings are always assumed to be associative, with a unit element. Let
R be a commutative ring. By an R-algebra we mean a ring A equipped with
a map R→ Z(A), where Z(A) denotes the centre of A. If p is a prime ideal
of R, then Rp denotes the localisation of R at p. In this paper, R will always
denote a domain, and U , H, G, and K will always denote finite groups.

2. Mackey and Green functors with inflation

One can find many variations on the theme of Mackey functors in the
literature. The axiomatisation that we need is very similar to those of [12, 4].

Definition 2.1. A global Mackey functor with inflation (MFI) over R is a
collection F of the following data.

• For every finite group G, F(G) is an R-module;
• for every monomorphism α : H ↪→ G of finite groups, F∗(α) : F(H)→
F(G) is a covariant R-module homomorphism (which we think of as
induction);
• for every homomorphism ε : H → G of finite groups, F∗(ε) : F(G)→
F(H) is a contravariant R-module homomorphism (which we think
of as restriction when ε is a monomorphism, and as inflation when ε
is an epimorphism);

satisfying the following conditions.
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(MFI 1) Transitivity of induction: for all group monomorphisms U
β
↪→ H

α
↪→

G, we have F∗(αβ) = F∗(α)F∗(β).
(MFI 2) Transitivity of restriction/inflation: for all group homomorphisms

U
β→ H

α→ G, we have F∗(αβ) = F∗(β)F∗(α).
(MFI 3) For all inner automorphisms α : G→ G, we have F∗(α) = F∗(α) = 1.
(MFI 4) For all automorphisms α : G→ G, we have F∗(α) = F∗(α−1).
(MFI 5) The Mackey condition: for all pairs of monomorphisms α : H ↪→ G

and β : K ↪→ G, we have

F∗(β)F∗(α) =
∑

g∈α(H)\G/β(K)

F∗(φg)F∗(ψg),

where φg is the composition

φg : β(K)g ∩ α(H)
cg→ β(K) ∩ gα(H) ↪→ β(K)

β−1

→ K,

cg denoting conjugation by g, and ψg is the composition

ψg : α(H) ∩ β(K)g ↪→ α(H)
α−1

→ H.

(MFI 6) Commutativity of induction and inflation: whenever there is a com-
mutative diagram

H

ε
��

α // G

δ
��

H̄
β // Ḡ,

where ε, δ are epimorphisms, and α, β are monomorphisms, we have
F∗(δ)F∗(β) = F∗(α)F∗(ε).

We will often use the following more intuitive notation: if F is an MFI,
and α : H ↪→ G is a monomorphism, we will write ResG/H for F∗(α), and
IndG/H for F∗(α). The suppressed dependence on α and F will not cause

any confusion. Similarly, if ε : G→ Ḡ is an epimorphism with kernel N , we
will write InfG/N for F∗(ε).

Definition 2.2. A Green functor with inflation (GFI) over R is an MFI F
over R, satisfying the following additional conditions.

(GFI 1) For every finite group G, F(G) is an R-algebra.
(GFI 2) For every homomorphism α : H → G of finite groups, F∗(α) is a

homomorphism of R-algebras.
(GFI 3) Frobenius reciprocity: for every monomorphism α : H ↪→ G, and for

all x ∈ F(H), y ∈ F(G), we have

IndG/H(x) · y = IndG/H(x · ResG/H(y)),
y · IndG/H(x) = IndG/H(ResG/H(y) · x).

Definition 2.3. A morphism from an MFI (respectively GFI) F to an MFI
(respectively GFI) G is a collection r of R-module (respectively R-algebra)
homomorphisms rG : F(G) → G(G) for each finite group G, commuting in
the obvious way with F∗,F∗,G∗,G∗.

Definition 2.4. Let F be a GFI over R. A (left) module under F is an
MFI M over R, satisfying the following conditions.
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(MOD 1) For every group G, M(G) is an R-linear (left) F(G)-module, i.e.
there is a map F(G)×M(G)→M(G) factoring through F(G)⊗R
M(G).

(MOD 2) For every homomorphism ε : H → G of finite groups, and for all
x ∈ F(G), y ∈M(G), we have

M∗(ε)(x · y) = F∗(ε)(x) · M∗(ε)(y).

(MOD 3) For every monomorphism α : H ↪→ G, and for all x ∈ F(H), y ∈
M(G), we have

F∗(α)(x) · y = F∗(α)(x · M∗(α)(y)).

Example 2.5. The following are examples of GFIs over Z.

(a) The Burnside ring functor B: for a finite group G, B(G) is the free
abelian group on isomorphism classes [X] of finite G-sets, modulo the
relations [XtY ]−[X]−[Y ] for all G-sets X, Y , and with multiplication
defined by [X] · [Y ] = [X×Y ]. Here, B∗ is the usual induction of G-sets,
and B∗ is inflation/restriction of G-sets.

(b) The representation ring functor RF over a given field F : for a finite
group G, RF (G) is the free abelian group on isomorphism classes [V ] of
finitely generated F [G]-modules, modulo the relations [U⊕V ]−[V ]−[U ],
and with multiplication defined by [U ] · [V ] = [U ⊗F V ], with diagonal
G-action on the tensor product. As in the previous example, (RF )∗ is
induction of modules, and (RF )∗ is inflation/restriction.

(c) The monomial ring functor M: for a finite group G, M(G) is the free
abelian group on conjugacy classes of symbols [H,λ], where H runs over
subgroups of G, and λ runs over complex 1-dimensional representations
of H, and with multiplication defined by

[H,λ] · [K,χ] =∑
g∈H\G/K [gH ∩K,ResgH/(gH∩K)

gλ · ResK/(gH∩K) χ].

If α : U ↪→ G is a monomorphism, [H,λ] ∈ M(U), and [K,χ] ∈ M(G),
then

M∗(α)([H,λ]) = [α(H), λ ◦ α−1],
M∗(α)([K,χ]) =∑
g∈α(U)\G/K

[α−1(α(U) ∩ gK),ResgK/(α(U)∩gK)
gχ ◦ α].

Every GFI is a module under itself, called the (left) regular module. We
also have the obvious notions of sub-MFIs, sub-GFIs, and submodules.

Definition 2.6. A left ideal of a GFI is a sub-MFI that is also a submodule
of the left regular module.

Definition 2.7. Let r : F → G be a morphism of MFIs over R. Its ker-
nel K is defined as follows: for every finite group G, we define K(G) =
ker(r(G) : F(G) → G(G)); for every homomorphism ε : H → G of groups,
we define K∗(ε) = F∗(ε)|F(G); and for every monomorphism α : H → G of
groups, we define K∗(α) = F∗(α)|F(H). The image of a morphism is defined
analogously. Let F be a sub-MFI (respectively an ideal) of the MFI (re-
spectively GFI) G. The quotient Q = G/F is defined as follows: for every
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finite group G, we define Q(G) = G(G)/F(G); for every homomorphism
ε : H → G, we define Q∗(ε) = G∗(ε) (mod F(H)); and for every monomor-
phism α : H → G, we define Q∗(α) = G∗(α) (mod F(G)).

The proof of the following is routine and will be omitted.

Lemma 2.8. (a) Let r : F → G be a morphism of MFIs over R. Then its
kernel is a sub-MFI of F , and its image is a sub-MFI of G.

(b) Let r : F → G be a morphism of GFIs over R. Then its kernel is an
ideal of F , and its image is a sub-GFI of G.

(c) Let F be a sub-MFI of an MFI G. Then the quotient G/F is an MFI.
(d) Let F be an ideal of a GFI G. Then G/F is a GFI.

Example 2.9. The following are some motivating examples for this work.

(a) There is a GFI morphism m′C : M→ RC, sending, for every finite group
G, a symbol [H,λ] ∈ M(G) to IndG/H λ ∈ RC(G). The kernel of m′C
was investigated by, among many others, Langlands [10], Deligne [7],
Snaith [11], Boltje [3], and Boltje–Snaith–Symonds [5].

(b) Let F be a field. There is a GFI morphism mF : B→ RF , which maps,
for every finite group G, a G-set X to the permutation module F [X]
over F . Its kernel KF is the MFI of Brauer relations over F . In [1], an
explicit description of generators of this MFI is given in the case when
F is a field of characteristic 0. The primary motivation for this note
is to give a similarly explicit description when F is a field of positive
characteristic.

3. Primordial groups

If S is a commutative R-algebra, and F an MFI (respectively GFI) over
R, then S ⊗R F , defined in the obvious way, is an MFI (respectively GFI)
over S. If R = Z, then we will suppress any mention of R, and will just say
“F is a MFI (respectively GFI)”. Throughout the rest of the paper, Q will
denote the field of fractions of R. For a prime ideal p of R, we will write Fp

for Rp ⊗R F , and FQ for Q⊗R F .

Notation 3.1. Let F be an MFI, and let X be a class of groups closed
under isomorphisms. For every finite group G, we define the following R-
submodules of F(G):

IF ,X (G) =
∑

H≤G, H∈X
IndG/H F(H),

IF (G) =
∑
H�G

IndG/H F(H).

Definition 3.2. Let F be an MFI and let G be a finite group. We say that
G is primordial for F if either G is trivial, or F(G) 6= IF (G). We denote
the class of all primordial groups for F by P(F).

Remark 3.3. Let F be an MFI.

(a) Suppose that X is a class of finite groups that is closed under isomor-
phisms and under taking subgroups, with the property that for every
finite group G, we have F(G) = IF ,X (G). Then it is shown in [13,
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Theorem 2.1] that X contains the closure of P(F) under taking all
subgroups.

(b) Suppose that F is a GFI. Then it follows from axiom (GFI 3) that G
is primordial for F if and only if 1F(G) 6∈ IF (G). It easily follows from
this and from axioms (GFI 2) and (MFI 6) that P(F) is closed under
quotients.

Example 3.4. (a) Every finite group is primordial for the Burnside ring
functor B, and also for BQ. Indeed, no non-zero multiple of the identity
element of B(G) can be contained in the image of induction from proper
subgroups. Similarly, every finite group is primordial for the monomial
ring functor M, and also for MQ.

(b) Recall from Example 2.5 (b) the representation ring functor RC. It
follows from Brauer’s induction theorem [2, Theorem 5.6.4] that P(RC)
is contained in the class of elementary groups, i.e. of direct products of
finite cyclic groups by p-groups. Moreover, it is a theorem of Green [9]
that in fact P(RC) consists precisely of the elementary groups.

(c) Recall from Example 2.9 (a) the GFI morphism m′C : M → RC from
the monomial ring functor to the complex representation ring functor.
It follows from Brauer’s induction theorem that (m′C)G is surjective for
every finite group G, so by the previous example, P(Imm′C) consists
precisely of the elementary groups.

(d) Recall from Example 2.9 (b) the GFI morphism mQ : B→ RQ. Let q be
a prime number. Solomon’s induction theorem implies that P(Im(mQ)q)
is contained in the class of q-quasi-elementary groups, i.e. of semidirect
products C o U , with C finite cyclic and U a q-group. Moreover, it
is a theorem of Dokchitser [8] that if G is q-quasi-elementary, then the
trivial character of G is not in the image of induction of trivial charac-
ters from proper subgroups, so P(Im(mQ)q) is precisely the class of all
q-quasi-elementary groups.

(e) Let mQ be as above. It follows from Artin’s induction theorem [2,
Theorem 5.6.1] that P(Im(mQ)Q) is the class of finite cyclic groups.

(f) Let p be a prime number, and let mFp : B→ RFp be as in Example 2.9
(b). Dress’s induction theorem [1, Theorem 9.4] implies that P(ImmFp)
is contained in the class of all groups that are (p, q)-Dress groups for
some prime number q. We will show in Theorem 5.3 that the trivial
representation of a (p, q)-Dress group is not in the image of induction
of trivial representations from proper subgroups, so in fact, P(ImmFp)
is precisely the class of all finite groups that are (p, q)-Dress groups for
some prime number q.

4. The primitive quotient

In this section, we prove our main theorems on kernels of morphisms of
GFIs. The main results of the section are Theorem 4.6, 4.7, and 4.9.

Lemma 4.1. Let m : F → G be a morphism of GFIs over a ring R with
kernel K, and let G be a finite group. Then the following are equivalent:

(i) the group G is not primordial for Imm;
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(ii) for each proper subgroup H of G, there exists an element xH ∈ F(H)
such that x = 1F(G) +

∑
H�G IndG/H(xH) ∈ K(G).

Proof. By Remark 3.3 (b), G is not primordial for Imm if and only if

mG(1F(G)) ∈
∑
H�G

IndG/H(mH(F(H))) = mG

∑
H�G

IndG/H(F(H)).

This is equivalent to the existence of elements xH ∈ F(H) for H � G such
that x = 1F(G) +

∑
H�G IndG/H(xH) ∈ K(G). �

Definition 4.2. Let G be a finite group, let F be a GFI over R, and letM
be a module under F . Let D(G) be an R-subalgebra of the centre of F(G).
Define the set of D-imprimitive elements of M(G) by

ImprimM,D(G) = D(G) ·

∑
H�G

IndG/HM(H) +
∑

16=N/G
InfG/NM(G/N)

 .

This is an R-submodule ofM(G). Define the D-primitive quotient ofM(G)
to be the quotient of R-modules

PrimM,D(G) =M(G)/ ImprimM,D(G).

When D(G) is generated by 1F(G) over R, we will drop it from the notation.

Notation 4.3. For the rest of the section, we put ourselves in the following
situation. We fix a morphism m : F → G of GFIs over a domain R with the
property that F(H) is R-torsion free for all finite groups H, and we let K
denote its kernel. Recall from Lemma 2.8 that K is an ideal of F . Further,
we fix a finite group G, and an R-subalgebra D(G) of the centre of F(G).
Assume for the rest of the section that the R-module F(G) is generated by
IF (G) and D(G).

Lemma 4.4. Under the hypotheses of Notation 4.3, let M be any module
under F , and let x be any element of M(G). Then the R-submodule of
M(G) generated by D(G) · IM(G) and D(G) · x is an F(G)-submodule.

Proof. Let Θ be an element of the R-module D(G) · IM(G) +D(G) · x, and
let α ∈ F(G). If α = IndG/H y for some y ∈ F(H), where H is a proper
subgroup of G, then by property (MOD 3), α ·Θ = IndG/H(y ·ResG/H Θ) ∈
IM(G). If, on the other hand, α ∈ D(G), then α·Θ ∈ D(G)·IM(G)+D(G)·x
by definition. Since F(G) is assumed to be generated by IF (G) and byD(G),
it follows that α ·Θ ∈ D(G) · IM(G) +D(G) · x for all α ∈ F(G). �

Lemma 4.5. Under the hypotheses of Notation 4.3, suppose that the equiva-
lent conditions of Lemma 4.1 are satisfied for m and G, and let x ∈ K(G) be
an element of the form x = 1F(G) +

∑
H�G IndG/H(xH), where xH ∈ F(H).

Then
K(G) = D(G) · IK(G) +D(G) · x.

Proof. Let I = D(G) · IK(G) +D(G) · x ⊆ K(G). We claim that K(G) ⊆ I.
Let y ∈ K(G). Lemma 4.4 implies that I is an ideal of F(G). Since we have
x ∈ D(G) · x ⊆ I, it follows that y · x ∈ I. Also,

y · x− y =
∑
H�G

y · IndG/H(xH) =
∑
H�G

IndG/H(ResG/H(y) · xH)
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is in IK(G), and therefore in I. It follows that y = y · x + (y − y · x) ∈ I.
Thus K(G) ⊆ I, and the proof is complete. �

Theorem 4.6. Under the hypotheses of Notation 4.3, suppose that there is
a non-trivial normal subgroup N of G such that G/N is not primordial for
Imm. Then PrimK,D(G) is trivial.

Proof. By Lemma 4.1, applied to the quotient G/N , there exists an element
z = 1F(G/N) +

∑
H/N�G/N Ind(G/N)/(H/N)(xH) ∈ K(G/N). Since N is non-

trivial, the inflation x = InfG/N z is contained in ImprimK,D(G). It follows
from Lemma 4.5 that K(G) = D(G) · IK(G) +D(G) ·x ⊆ ImprimK,D(G), as
claimed. �

Theorem 4.7. Under the hypotheses of Notation 4.3, suppose that G is
non-trivial, and that PrimK,D(G) is non-trivial. Then G is an extension of

the form 1 → Sd → G → H → 1, where S is a finite simple group, and H
is primordial for Imm.

Proof. By the existence of chief series, there exists a normal subgroup of G
that is isomorphic to Sd, where S is a finite simple group, and d ≥ 1 is an
integer. By Theorem 4.6, the quotient G/Sd is primordial for Imm. �

Assumption 4.8. In addition to the assumptions of Notation 4.3, we now
assume that:

• the ring R is a Euclidean domain;
• for every normal subgroup N of G, the inflation map InfG/N : F(G/N)→
F(G) is injective;
• for every quotient G/N , the R-module F(G/N) is generated by IF (G/N)

and 1. In particular, the subalgebra D(G) will be assumed to be generated
by 1F(G) over R, and will now be dropped from the notation.

Theorem 4.9. Under the hypotheses of Notation 4.3 and Assumption 4.8,
suppose that G is primordial for FQ and not primordial for Imm. Let a be
the ideal of R generated by all those a ∈ R for which there exists a proper
quotient G/N and an element a1F(G/N) + y ∈ K(G/N) with y ∈ IF (G/N).
Then PrimK(G) is isomorphic to R/a and is generated by the image of any
element of the form x = 1F(G) +

∑
H�G IndG/H xH ∈ K(G).

Proof. By Lemma 4.5, the quotient PrimK(G) is generated by any x ∈ K(G)
of the form x = 1F(G) +

∑
H�G IndG/H xH , where xH ∈ F(H). Since by

assumption G is primordial for FQ, Remark 3.3 (b) implies that ax 6∈ IK(G)
for any non-zero a ∈ R. It also follows from the same remark and from the
assumptions 4.3 and 4.8 that any element of K(G) can be uniquely written as
a1F(G) + y, where a ∈ R and y ∈ IF (G), and analogously for any element of
K(G/N) for every normal subgroup N of G. We deduce that the annihilator
a ⊆ R of x+ ImprimK(G) ∈ PrimK(G) is generated, as an R-module, by all
those a ∈ R for which there exists a non-trivial normal subgroup N of G
and an element a1F(G/N) + y ∈ K(G/N), where y ∈ IF (G/N). Moreover,
we then have PrimK(G) ∼= R/a, as claimed. �

Corollary 4.10. Under the hypotheses of Theorem 4.9, if all proper quo-
tients of G are primordial for (Imm)Q, then PrimK(G) is isomorphic to R.



10 A NOTE ON GREEN FUNCTORS WITH INFLATION

Proof. Since all proper quotients G/N are primordial for (Imm)Q, Remark
3.3 (b) implies that the ideal a of Theorem 4.9 is zero. �

Corollary 4.11. Under the hypotheses of Theorem 4.9, suppose that there
exists a prime ideal p of R such that for every prime ideal q 6= p there exists a
proper quotient of G that is not primordial for (Imm)q. Then PrimK(G) ∼=
R/pn, where n is the smallest non-negative integer for which there exists
a proper quotient G/N and an element a1F(G/N) + y ∈ K(G/N) with a ∈
pn \ {0} and InfG/N y ∈ IF (G).

Proof. Let q 6= p be a prime ideal of R. By Lemma 4.1, applied to the map
Fq → Gq and to a proper quotient G/N 6∈ P((Imm)q), there exists a ∈ a
that is not in q, where a is the ideal of Theorem 4.9. Since R is a Euclidean
domain, this implies that a = pn for some integer n ≥ 0. �

Corollary 4.12. Under the hypotheses of Theorem 4.9, suppose that for
every non-zero prime ideal p of R there exists a proper quotient of G that is
not primordial for (Imm)p. Then PrimK(G) is trivial.

Proof. Let p be any non-zero prime ideal. By Lemma 4.1, applied to the
map Fp → Gp and to a proper quotient G/N 6∈ P((Imm)p), there exists
a ∈ a that is not in p, where a is the ideal of Theorem 4.9. Since R is a
Euclidean domain, it follows that 1 ∈ a. �

5. Applications

In this section we explicate the results of Section 4 in the case of mono-
mial relations and of Brauer relations. The main new results are on Brauer
relations in positive characteristic, but we also show how to derive some
known results on monomial relations and on Brauer relations in character-
istic 0 from the formalism of GFIs. In particular, we prove Theorems 1.1,
1.2, and 1.3 from the introduction. The following result, although not ex-
plicitly stated, is proved in [7] along the way to a complete classification of
monomial relations in soluble groups.

Theorem 5.1 (Deligne–Langlands, [7]). Let K′C be the kernel of the mor-
phism of GFIs m′C : M→ RC as in Example 2.9 (a). Let G be a finite group
that has a non-trivial normal subgroup N such that G/N is not elementary.
Let D(G) be generated over Z by symbols [G,λ], as λ runs over isomorphism
classes of 1-dimensional representations of G. Then PrimK′C,D

(G) is trivial.

Proof. By Example 3.4 (c), the primordial groups for Imm′C are precisely
the elementary groups, and every group is primordial for MQ (see Example
3.4 (a)). It easily follows that the assumptions of Notation 4.3 are satisfied
for this morphism of GFIs and this choice of D(G). The result therefore
follows from Theorem 4.6. �

Theorem 5.2 (Bartel–Dokchitser, [1]). Let KQ be the kernel of the mor-
phism of GFIs mQ : B → RQ as in Example 2.9 (b), and let G be a finite
group that is not quasi-elementary. Then:

(a) if all proper quotients of G are cyclic, then PrimKQ(G) ∼= Z;
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(b) if q is a prime number such that all proper quotients of G are q-quasi-
elementary, and at least one of them is not cyclic, then PrimKQ(G) ∼=
Z/qZ;

(c) if there exists a proper quotient of G that is not quasi-elementary, or
if there exist distinct prime numbers q1 and q2 and, for i = 1 and
2, a proper quotient of G that is non-cyclic qi-quasi-elementary, then
PrimKQ(G) is trivial.

Moreover, in all cases, PrimKQ(G) is generated by any element of KQ(G) ⊆
B(G) of the form [G/G] +

∑
H�G aH [G/H], aH ∈ Z.

Proof. By Example 3.4 (e), P((ImmQ)Q) is the class of cyclic groups. Let
q be a prime number. By Example 3.4 (d), P(ImmQ) is the class of
quasi-elementary groups, and P((ImmQ)q) is the class of q-quasi-elementary
groups. Moreover, if U is a non-cyclic q-quasi-elementary group, then by [8],
there exists an element of KQ(U) ⊆ B(U) of the form q[U/U ]+

∑
H�U aH [U/H].

Since every finite group is primordial for B, the hypotheses of Theorem 4.9
are satisfied. Part (a) of the theorem therefore follows from Corollary 4.10.
Finally, note that if q1 and q2 are distinct prime numbers, then a finite
group is both q1-quasi-elementary and q2-quasi-elementary if and only if it
is cyclic. Parts (b) and (c) of the theorem therefore follow from Corollaries
4.11 and 4.12, respectively. �

Fix a prime number p. The rest of the section is devoted to the kernel
KFp of the morphism of GFIs mFp : B→ RFp as in Example 2.9 (b).

First, we prove Theorem 1.3, which is a characteristic p analogue of the
main result of [8]. We recall the statement.

Theorem 5.3. Let q be a prime number, let G be a (p, q)-Dress group that is
not p-hypo-elementary, and let a be an integer. Then a[G/G] ∈ IImmFp (G)

if and only if q|a.

Proof. Since G is a (p, q)-Dress group, it is an extension of a q-group U by a
normal p-hypo-elementary subgroup N = P oC, where P is a p-group and
C is cyclic of order coprime to pq.

First we prove that if a[G/G] ∈ IImmFp (G), then q|a. Suppose that there

exist integers aH for H � G such that

aFp[G/G] =
∑
H�G

aHFp[G/H] ∈ RFp(G),

where the sum runs over representatives of conjugacy classes of subgroups
of G, and where Fp[G/H] ∈ RFp(G) denotes the linear permutation mod-
ule IndG/H 1H over Fp. By restricting to the normal p-hypo-elementary
subgroup N , we find that

aFp[N/N ] =
∑
H�G

aH
∑

g∈G/HN

Fp[N/N ∩ gHg−1].(5.4)

By Conlon’s Induction Theorem [6, Lemma 81.2], p-hypo-elementary groups
are primordial for ImmFp , so the coefficient of Fp[N/N ] on the right hand
side of equation 5.4 must be equal to a:

a =
∑

N≤H�G
aH ·#(G/H).
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But for every H � G that contains N , the quantity #(G/H) is divisible by
q, so a is divisible by q, as claimed.

Now we show that q[G/G] ∈ IImmFp (G). First, we treat a special case:

assume that P is the trivial group, so that G ∼= C oU is non-cyclic q-quasi-
elementary, where C is cyclic of order coprime to pq. Assume further that
either p 6= q, or U acts faithfully on C. By [8], there exists an element
x = q[G/G] +

∑
H�G aH [G/H] ∈ KQ(G). By Artin’s Induction Theorem

[2, Theorem 5.6.1], this is equivalent to the statement that there exists an
x ∈ KQ(G) as above such that for all cyclic subgroups H ≤ G, we have
fH(x) = 0, where fH : B(G)→ Z is defined on a G-set X as the number of
fixed points #XH . But under the hypotheses onG, the cyclic subgroups ofG
are precisely the p-hypo-elementary subgroups of G. By Conlon’s Induction
Theorem [6, Lemma 81.2], the above statements are therefore equivalent to
the existence of an element x = q[G/G] +

∑
H�G aH [G/H] ∈ KFp(G), as

required.
Now, we deduce the general case. Given a non-p-hypo-elementary (p, q)-

Dress group G, let G̃ = G/P . This is a non-cyclic q-quasi-elementary group,

G̃ = C o U , where U is a q-group, and C is cyclic of order coprime to pq.
Let K be the kernel of the action of U on C. If K = U and p = q, then
G̃ ∼= C × U , and G is p-hypo-elementary, contradicting the assumptions.
Otherwise, Ḡ = G̃/K is as in the special case above, so there exists an
element x = q[Ḡ/Ḡ] +

∑
H�Ḡ aH [Ḡ/H] ∈ KFp(Ḡ). Taking the inflation of x

to G yields the desired element of KFp(G), and the proof is complete. �

Corollary 5.5. Let q be a prime number. Then P((ImmFp)q) is the class
of (p, q)-Dress groups.

Proof. By Dress’s Induction Theorem in the version as stated in [1, Theorem
9.4], and by Remark 3.3 (a), all primordial groups for (ImmFp)q are (p, q)-
Dress groups. The reverse inclusion follows from Theorem 5.3. �

Theorem 5.6. Let G be a finite group that is not a (p, q)-Dress group for
any prime number q. Then:

(a) if all proper quotients of G are p-hypo-elementary, then PrimKFp (G) ∼=
Z;

(b) if q is a prime number such that all proper quotients of G are (p, q)-
Dress groups, and at least one of them is not p-hypo-elementary, then
PrimKFp (G) ∼= Z/qZ;

(c) if there exists a proper quotient of G that is not a (p, q)-Dress group for
any prime number q, or if there exist distinct prime numbers q1 and
q2 and, for i = 1 and 2, a proper quotient of G that is a non-p-hypo-
elementary (p, qi)-Dress group, then PrimKFp (G) is trivial.

Moreover, in all cases, PrimKFp
(G) is generated by any element of KFp(G) ⊆

B(G) of the form [G/G] +
∑

H�G aH [G/H], aH ∈ Z.

Proof. By Conlon’s Induction Theorem [6, Lemma 81.2], P((ImmFp)Q) is
the class of p-hypo-elementary groups. Let q be a prime number. By Corol-
lary 5.5, P((ImmFp)q) is the class of (p, q)-Dress groups, and P(ImmFp)
is the class of all groups that are (p, q′)-Dress groups for some prime num-
ber q′. Moreover, if U is a non-p-hypo-elementary (p, q)-Dress group, then
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by Theorem 5.3, there exists an element of KFp(U) ⊆ B(U) of the form
q[U/U ] +

∑
H�U aH [U/H]. Part (a) of the theorem follows from Corollary

4.10. Finally, note that if q1 and q2 are distinct prime numbers, then a finite
group is both a (p, q1)-Dress group and a (p, q2)-Dress group if and only if
it is p-hypo-elementary. Parts (b) and (c) of the theorem therefore follow
from Corollaries 4.11 and 4.12, respectively. �
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