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Abstract

Object tracking is one of the most important tasks in many applications of computer
vision. Many tracking methods use a fixed set of features ignoring that appearance of a
target object may change drastically due to intrinsic and extrinsic factors. The ability to
dynamically identify discriminative features would help in handling the appearance vari-
ability by improving tracking performance. The contribution of this work is threefold.
Firstly, this paper presents a collection of several modern feature selection approaches
selected among filter, embedded, and wrapper methods. Secondly, we provide extensive
tests regarding the classification task intended to explore the strengths and weaknesses of
the proposed methods with the goal to identify the right candidates for online tracking.
Finally, we show how feature selection mechanisms can be successfully employed for
ranking the features used by a tracking system, maintaining high frame rates. In partic-
ular, feature selection mounted on the Adaptive Color Tracking (ACT) system operates
at over 110 FPS. This work demonstrates the importance of feature selection in online
and realtime applications, resulted in what is clearly a very impressive performance, our
solutions improve by 3% up to 7% the baseline ACT while providing superior results
compared to 29 state-of-the-art tracking methods.

1 Introduction

The last decade has seen a revolution in the theory and application of computer vision. Many
powerful algorithms for visual tracking have been proposed [1, 9, 16, 18]. Most of the track-
ing systems employ a set of features which are used statically across successive frames [17].
It is well known that tracking deals with image streams that change over time [7], therefore,
data will easily produce frames in which the object has low-contrast or the target region
is blurred (e.g. due to the motion of the target or camera), in these cases to obtain robust
tracking a great deal of prior knowledge about scene structure or expected motion is im-
posed [3, 34, 38], and thus tracking success is bought at the price of reduced generality.
Selecting the right features plays a critical role in tracking [6, 7, 12, 31]. Trackers which
comprises feature selection strategies into their inner engines can be flexible enough to han-
dle gradual changes in appearance in real scenarios [9]. The degree to which a tracker can
discriminate a target from its surroundings is directly related to this flexibility. Since fore-
ground and background appearance can also drastically change as the target object moves
from place to place, tracking features should also need to adapt.

Many feature selection methods used in off-line settings (e.g., bioinformatics, data min-
ing [14, 26, 28, 36]) have been so far largely neglected, to the best of our knowledge, at the
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Figure 1: Comparison of feature selection approaches embedded on the ACT tracker in chal-
lenging situations such as fast motion, out-of-view, occlusion, illumination variation, motion
blur. The results of ACT, ACTFisher, ACTMI, ACT-mRMR and ACTinffs are represented
by red, green, blue, black and pink boxes respectively.

level of online visual tracking, especially under the hard constraint of speed required for tar-
get tracking. The contribution of this work is threefold. Firstly, we propose a pool of modern
feature selection algorithms (among filter, embedded, and wrapper methods) selected so as to
meet the requirements of a real-time application. Secondly, we investigate the strengths and
weaknesses of these methods for a classification task in order to identify the right candidates
for visual tracking. Finally, the selected candidates are embedded on the Adaptive Color
Tracking system [9] (ACT). We extensively test the solutions on 50 test sequences from the
Online Object Tracking [35] (OTB-50) benchmark. Our solutions’ performance has been
evaluated with the same protocol and methodology provided by the OTB-50 benchmark.
The baseline ACT and its variants, with different feature selection mechanisms, have been
also compared against 29 state-of-the-art trackers (it is worth noting that 10 of them use
feature selection as part of their framework).

This paper demonstrates the importance of feature selection in online and realtime ap-
plications, resulted in what is clearly a very impressive performance. Figure 1.A presents
tracking results in an environment of illumination variations, occlusions, out-of-views, fast
motion among other challenging aspects. The example frames are from the Matrix and liquor
sequences. All the feature selection approaches performs favorably against the baseline ACT
tracker (red box).

The rest of the paper is organized as follows: Section 2 presents a brief look at on-
line feature selection for visual tracking, mostly focusing on the comparative approaches we
consider in this study. In Section 3 we present the ACT tracker, and in Section 4 how we
embedded feature selection in it. Section 5 presents the proposed set of feature selection
methods and the computational complexity is given. Extensive experiments are reported in
Section 6. In Section 6.1 we analyze the strengths and weaknesses of the proposed method
regarding the classification task. In Section 6.2 we introduce the dataset, define the evalua-
tion methodology and report results. Finally, in Section 7, conclusions are given.

2 Related Work

The problem of real-time feature selection has, to the best of our knowledge, rarely been
addressed in the literature, especially under the hard constraint of speed required for target
tracking.This section presents the related literatures of real-time feature selection for target
tracking, mainly focusing on the comparative approaches used in the experimental section.
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The Variance Ratio (VR) [7] tracker is an online feature ranking mechanism based on apply-
ing the two-class variance ratio to log likelihood distributions computed for a given feature
from samples of object and background pixels. This feature ranking approach is embedded
in a tracking system that selects top-ranked features for tracking. Other recent variants of
VR are provided by the Video Verification of Identity (VIVID) testbed [6] which includes
the mean shift (MS-V), template matching (TM-V), ratio shift (RS-V), and peak difference
(PD-V) methods. Another robust tracker is the Sparsity-based Collaborative Model [39]
(SCM), it is an object tracking algorithm which uses a robust appearance model that exploits
both holistic templates and local representations, it is based on the collaboration of genera-
tive and discriminative modules where feature selection is part of the framework. Moreover,
the On-line AdaBoost (OAB) [12] tracker, by using fast computable features like Haar-like
wavelets, orientation histograms, local binary patterns, selects the most discriminating fea-
tures for tracking resulting in stable tracking results. OAB method does both - adjusting to
the variations in appearance during tracking and selecting suitable features which can learn
object appearance and can discriminate it from the surrounding background.

Semi Boosting Tracker (SBT) and Beyond Semi Boosting Tracker (BSBT) [31] are mul-
tiple object tracking approaches which extend semi-supervised tracking by object specific
and adaptive priors. Valuable information which would be ignored in a pure semi-supervised
approach is safely included in the prior using a detector for validation and a tracker for sam-
pling. The prior is interpreted as recognizer of the object as similar objects are distinguished.
The tracked objects are used to train local detectors to simplify detection in the specific
scene. By using feature selection the classifier framework is able to track various objects,
even under appearance changes and partial occlusions, in challenging environments.

Finally, the Scale of the Mean-Shift [S5] (SMS) is another efficient technique for tracking
2D blobs through an image. Lindeberg’s theory of feature scale selection based on local
maxima of differential scale-space filters is applied to the problem of selecting kernel scale
for mean-shift blob tracking.

3 The Adaptive Color Tracking System

The ACT system [9] is one of the most recent solutions for tracking, which extends the CSK
tracker [17] with color information. ACT exploits color naming (CNs), proposed in [33]
(i.e., the action of assigning linguistic color labels to image pixels), to target objects and
learn an adaptive correlation filter by mapping multi-channel features into a Gaussian kernel
space. Schematically, the ACT tracker contains three improvements to CSK tracker: (i) A
temporally consistent scheme for updating the tracking model is applied instead of training
the classifier separately on single samples, (i1) CNs are applied for image representation, and
(111) ACT employs a dynamically adaptive scheme for selecting the most important combi-
nations of colors for tracking.

In the ACT framework, for the current frame p, CNs are extracted and used as fea-
tures for visual tracking. Moreover, a grayscale image patch is preprocessed by multi-
plying it with a Hann window [9], then, the final representation is obtained by stacking
the luminance and color channels. The ACT algorithm considers all the extracted appear-
ances x” to estimate the associated covariance matrix C,. A projection matrix B, with
orthonormal column vectors, is calculated by eigenvalue decomposition (EVD) over Cp. Let
x’f be the D;-dimensional learned appearance. Thus, the projection matrix B), is used to
compute the new D;-dimensional feature map xzp of the appearance by the linear mapping
x? (myn) = ngg (m,n),¥Ym,n. The projection matrix B, is updated by selecting the D, nor-
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malized eigenvectors of R, (see Eq.1), that corresponds to the largest eigenvalues.

p—1
R,=C,+ ) BjA;B}, (1)
j=1

where C), is the covariance matrix of the current appearance and A; is a Dy x D, diago-
nal matrix of weights needed for each basis in B,. Finally, D, represents the number of
dimensions where the D features are projected on.

Summarizing, B), is used to transform the original feature space to yield a subspace by
performing dimensionality reduction. Finally, the projected features are used to compute the
detection scores and the target position in in the new frame p+ 1 (see [9, 17] for further
details).

4 Embedding Feature Selection

We present a collection of modern algorithms in Sec. 5, suitable to be embedded on the ACT
system. For all of them, the following steps are taken in the embedding procedure. Firstly,
the ACT appearances x are extracted for object and background classes, and computed using
samples taken from the most recently tracked frame. Secondly, feature ranking is applied in
a supervised/unsupervised manner depending on the selection method. This important step
can be interpreted as ranking by relevance the dimensions of the feature vector x (10-D),
where features in the first ranked positions are tailored to the task of discriminating object
from background in the current frame (note: in Section 6.2 the first 4 features have been
selected). Finally, the most discriminative features are used to estimate the C covariance
matrix used to feed the ACT. This procedure enables ACT to continually update the set of
features used, which turns out to better separate the target from its immediate surroundings.

5 Feature Selection Methods

In this work we propose a pool of modern feature selection methods with the goal in mind to
choose some good candidates among them for a final application in real-time visual tracking.
Relief-F [23] is a widely used randomized, iterative, and supervised approach that computes
the quality of the features according to how well their values differentiate data samples that
are near to each other; it does not take into account the redundancy of features, and per-
formance decreases with few data. Similar problems affect SVM-RFE [15], which is an
embedded method that selects features in a sequential, backward elimination manner, rank-
ing high a feature if it strongly separates the samples by means of a linear SVM (see Table 1
in Section. 5 for further details). An effective yet fast filter method is the Fisher method [14],
it computes a score for a feature as the ratio of interclass separation and intraclass variance,
where features are evaluated independently, and the final feature selection occurs by aggre-
gating the m top ranked ones. Other widely used filters are based on mutual information, such
as Mutlnf [36] and mRMR [26]. The former considers as a selection criterion the mutual
information between the distribution of the values of a given feature and the membership to
a particular class.The latter employs the minimal-redundancy maximal-relevance criterion,
mRMR [26]. mRMR is an efficient incremental search algorithm. Relevance scores are
assigned by maximizing the joint mutual information between the class variables and the
subset of selected features. The computation of the information between high-dimensional
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Acronym Type CL Compl.
SVM-RFE [15] e s O(T?nlogyn)
Inf-FS [28] f u On*37(1+7))
Relief-F [23] f S O(iTnC)
FSV [4, 13] w s N/A
Mutlnf [36] f s ~ O(n*T?)
mRMR [26] f s O(n’T?)
Fisher [14] f S O(Tn)

Table 1: List of the feature selection approaches considered in the experiments, specified
according to their Type, class (Cl.), and complexity (Compl.). As for the complexity, T is
the number of samples, n is the number of initial features, i is the number of iterations in the
case of iterative algorithms, and C is the number of classes. The complexity of FSV cannot
be specified since it is a wrapper (it depends on the chosen classifier).

vectors is impractical, as the time required becomes prohibitive. To face this problem the
mRMR propose to estimate the mutual information for continuous variables using Parzen
Gaussian windows. This estimate is based on a heuristic framework to minimize redundancy
and uses a series of intuitive measures of relevance and redundancy to select features. We
also compare our approach against the graph-based method Inf-FS [28]. The inf-FS is an
unsupervised filter method. In the Inf-FS formulation, each feature is a node in the graph,
weights are given by mixture of correlation and standard deviation between feature distri-
butions. A path over the graph is seen as a possible selection of features. A path integral
process is then applied and the higher the final score, the most important (or most different)
the feature. As a result, this method assigns a score of “importance” to each feature by taking
into account all the possible feature subsets as paths on a graph. Table 1 lists the proposed
methods, reporting their fype, that is, f = filters, w = wrappers, e = embedded methods, and
their class, that is, s = supervised or u = unsupervised (using or not using the labels as-
sociated with the training samples in the ranking operation). Additionally, we report their
computational complexity (if it is documented in the literature).

6 Experiments

6.1 Experiment 1: Classification Task

This section proposes a set of tests on the PASCAL VOC-2007 [11] dataset. In object recog-
nition VOC-2007 is a suitable tool for testing models, therefore, we use it as reference bench-
mark to assess the strengths and weaknesses of using feature selection approaches regarding
the classification task while taking care at their execution times. For this reason, we compare
seven modern approaches where their details are reported in Table 1.

This experiment considers as features the cues extracted with a deep convolutional neural
network architecture (CNN). We selected the recent pre-trained model called Googl.eNet [32],
which achieves the new state of the art for classification and detection in the ImageNet Large-
Scale Visual Recognition Challenge 2014 (ILSVRC14). We use the 1,024-dimension acti-
vations of the last five layers as image descriptors (5,120 features in total). The VOC-2007
edition contains about 10,000 images split into train, validation, and test sets, and labeled
with twenty object classes. A one-vs-rest SVM classifier for each class is learnt and eval-
uated independently and the performance is measured as mean Average Precision (mAP)
across all classes.
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Figure 2: Varying the cardinality of the selected features. The image classification results
achieved in terms of mean average precision (mAP). The execution times for each method
(in seconds) are reported within the brackets, while selecting the first 128 and 256 features
from the total 5, 120.

Figure 2 serves to analyze and empirically clarify how well important features are ranked
high by several feature selection algorithms, selecting 128 features on the left and 256 fea-
tures on the right from the 5,120 available. We report as curves the performance in terms
of mean average precision (mAP) on the twenty object classes represented by intuitive icons
on the abscissa axis. The legends report the mAP in percentage and the average execution
time for each method. It is worth noting that Fisher method achieved the best performance
(77.44% as mean mAP on the two tests) followed by the wrapper method FSV (76.08%) and
the embedded SVM-RFE (75.97%). The quality of the ranking is compared with the exe-
cution time of each method. The average time spent by each method to produce the output
for each class shows the supremacy of the Fisher approach which thanks to its low computa-
tional complexity free of hidden constants completes the task in less than a second (0.16 as
mean time on the two tests). The fastest approaches after Fisher, are Mutlnf (6.42), inf-FS
(12.72), SVM-RFE (13.08), and mRMR (30.46) that are all under the minute while ReliefF
(1,189.50) and FSV (3,028.50) are not comparable in terms of time.

6.2 Experiment 2: Feature selection for single object tracking

Taking advantage from the results reported in the previous section, we decided to use the
following four candidate methods: Mutlnf, Fisher, Inf-FS, and mRMR. In particular, we take
care that execution times of these methods meet the requirements for a real-time application.
What is remarkable is that most of these methods achieved good results in terms of aver-
age precision for classification and may be examples worth using in tracking. We discarded
SVM-REFE because it becomes unstable at some values of the feature filter-out factor [24],
1.e., the number of features eliminated in each iteration. We selected the mRMR since in em-
bedded methods, the classifier characteristics such as SVM weights in SVM-RFE provide a
criterion to rank features based on their relevancy, but they do not account for the redundancy
among the features, while mRMR takes into account both relevancy and redundancy. As a
result, our pool consists of 4 filter methods which evaluate a feature subset by looking at the
intrinsic characteristics of data with respect to class labels and do not incorporate classifier
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Attr || Description

1 Illumination Variation, the illumination in the target region is significantly changed.

2 Scale Variation, the ratio of the bounding boxes of the first frame and the current frame
is out of the range [1/t;, ], ts > 1 (£,=2).

3 Occlusion, the target is partially or fully occluded.

4 Deformation, non-rigid object deformation.

5 Motion Blur, the target region is blurred due to the motion of target or camera.

6 Fast Motion, the motion of the ground truth is larger than tm pixels (tm=20).

7 In-Plane Rotation, the target rotates in the image plane.

8 Out-of-Plane Rotation, the target rotates out of the image plane.

9 Out-of-View, some portion of the target leaves the view.

10 Background Clutters, the background near the target has the similar color or texture

as the target.

11 Low Resolution, the number of pixels inside the ground-truth bounding box is less

than tr (tr =400).

Table 2: The OTB-50 benchmark includes 50 test sequences from recent literatures and 11
attributes, which represents the challenging aspects in visual tracking (table from [35]).

operation into the selection process.

In line with Section 4, we embedded these methods on the ACT system obtaining four
variants: ACTMI for Mutlnf, ACTFisher, ACTinffs, and ACT-mRMR. We compare them
against the baseline ACT, and also against 29 different state-of-the-art trackers shown to
provide excellent results in literature. Some trackers include feature selection within their
framework such as the VIVID tracker suite (VR-V, PD-V, RS-V, MS-V, and TM-V), SCM,
OAB, SBT and BSBT, and SMS (see Sec. 2 for further details). Other trackers used for
the comparison are the following: CSK [17], CPF [27], Struck [16], CXT [10], VTD [20],
VTS [21], LSK [22], KMS [8], Frag [1], MIL [2], CT [37], TLD [19], IVT [29], DFT [30],
ASLA [18], LIAPG [3], ORIA [34], MTT [38], and LOT [25].

6.3 Datasets

The OTB-50 benchmark is a tracking dataset with 50 fully annotated sequences to facilitate
tracking evaluation. The sequences used in our experiments pose challenging situations
such as motion blur, illumination changes, scale variation, heavy occlusions, in-plane and
out-plane rotations, deformation, out of view, background clutter and low resolution (see
Table 2).

6.4 Results

Generally, trackers evaluation performance is done by running them throughout a test se-
quence with the initialization from the ground truth position in the first frame and reporting
the average precision and success rate. Therefore, we use the same evaluation methodology
used in OTB-50, where precision and success rate have been used for quantitative analysis.
The former, is a widely used metric, it is the average Euclidean distance between the center
locations of the tracked targets and the manually labeled ground truth. As aresult, a precision
plot shows the percentage of frames whose estimated locations is within the given threshold
distance of the ground truth. The latter, success rate, measures the bounding box overlap
between the tracked bounding box r; and the ground truth bounding box r,. The success plot
shows the ratio of successful frames as the thresholds varied from O to 1. When we consider
the initialization from the ground truth in the first frame we refer this as one-pass evaluation
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Figure 3: Precision and success plots over all 50 sequences provided by the OTB-50 bench-
mark. Only the top 10 (out of 34) trackers are displayed for clarity. The mean precision and
success scores for each tracker are reported in the legend.

(OPE). Figure 3.(A-B) shows precision and success plots for OPE criterion.

Note that ACTMI, ACTFisher and ACTInfFS improve the baseline ACT tracker more
than 3% in mean distance precision, and more than 2% on bounding box overlaps. Feature
selection methods used in this work perform variable rankings, for such a reason we decided
to reduce the problem dimensionality by 60%, so the amount of selected features is up to
4. Since trackers may be sensitive to the initialization, in [35] other two ways to analyze
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Figure 4: This figure presents three challenging tracking problems that illustrate the benefits
of combining online feature selection with object tracking.

a tracker’s robustness to initialization have been proposed. These tests are referred as tem-
poral robustness evaluation (TRE) and spatial robustness evaluation (SRE). As for SRE, the
initial bounding box in the first frame is sample by shifting or scaling the ground truth. Fig-
ure 3.(C-D) reports tracking results for the SRE criterion, we used 8 spatial shifts and 4 scale
variations. Thus we evaluated each tracker 12 times for SRE. In TRE tests, the tracker is
initialized at different 7 time instances. At each time, the initial bounding box location is set
according with the ground truth, then the tracker run to the end of the sequence. We applied
perturbations at 20 different times to each tracker TRE. Figure 3.(E) shows how ACTMI
improves the baseline ACT by 2% in mean distance precision. In both cases, Figure 3.(E-F),
ACTMI, ACTinffs, and ACT-mRMR perform favorably to the baseline ACT. Noteworthy,
averaging precision scores across the three criteria, ACTMI (62.6% / 19.0 fps) define in gen-
eral the new top-score on this benchmark, followed by ACTinffs (62.2% / 111.4 fps) where
both overcome the ACT (59.9% , 196 fps). As for the other trackers, SCM (58.9% / 0.5 fps)
and Struck (61.7% / 20.2). As a result, ACTinffs turns out to be the best trade-off between
accuracy (62.2%) and speed (111.4 fps). We say ACTinffs has the same order of magnitude
of the ACT in terms of fps.

Figure 4 shows example precision plots of different attributes. Note, only the top 10
trackers out of 34 are displayed. From left to right: in-plane rotation (comprises 31 se-
quences), illumination variations (25 sequences) and motion blur (12 sequences). As for
in-plane rotation, Figure 4 shows a scenario where the ACT overcomes the competitors, in
such a case feature selection allows to improve its performance by 4.5%. Illumination vari-
ation and motion blur scenarios represent a more challenging task, where the appearance of
the target changes drastically due to extrinsic factors, the ability to identify the most dis-
criminative features for the current frame allows to obtain an improvement in precision up to
7.6% and 7.2% respectively, and at the same time to overcome the methods in comparison.

For all the attributes the ACTMI, ACT-Fisher, and ACTinffs provide superior results
compared to existing methods. This is due to the fact that feature selection allows a photo-
metric invariance while preserving discriminative power. Even in those situations where the
baseline ACT does not perform top performance, feature selection permits to overcome the
other methods (e.g., for motion blur ACTMI improves the ACT by 7% in precision).

7 Conclusions

In this paper we evaluated a collection of seven modern feature selection approaches, used in
off-line settings so far. We investigated the strengths and weaknesses of these algorithms in
a classification setting to identify the right candidates for a real-time task. We selected four
candidates who meet the requirements of speed and accuracy for visual tracking. Finally,
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we showed how these feature selection mechanisms can be successfully used for ranking
features combined with the ACT system, and, at the same time, maintaining high frame rates
(ACTinffs operates at over 110 FPS). Results show that our solutions improve by 3% up to
7% their baseline. Moreover, ACTMI resulted in a very impressive performance in precision,
providing superior results compared to 29 state-of-the-art tracking methods. We hope that
this work motivates researchers to take into account the use of fast feature selection methods
as an integral part of their tracker systems. For the sake of repeatability, a code library will
be posted on the project page to provide the material needed to replicate our experiments.
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