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Abstract

In this paper, scale-adaptive simulation is used to study store tra-

jectory variability for releases from transonic weapon bays. The scale-

adaptive simulation captures the essential physics of the flow in the

weapon bay, and its speed of computation allows for several trajecto-

ries to be computed within reasonable time. The results of the simu-

lations are treated as a statistical set and a metric is put forward to

decide the minimum number of simulations necessary to establish the

mean and the standard deviation of the releases. Averaging the results

of all trajectories was useful in developing an overall understanding

of the bay pressure field role on the store trajectories. Filtering the

obtained trajectories provided insight in the flow frequencies affecting

the forces acting on the store and the coordinates of its CG during

releases. For the store employed in this study, less than 1 month of

CPU time is needed for the complete set of simulations to be obtained

making this method promising as a further test before flight testing.
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Latin

Cp Pressure coefficient (-)

Cx, Cy, Cz Axial, side and normal force coefficients (-)

Cl, Cm, Cn Rolling, pitching and yawing moment coefficients (-)

D Cavity depth (m)

dref Store reference diameter (m)

f Frequency (Hz)

Ix, Iy, Iz Moment of inertia of the store (kg.m2)

k Specific turbulent kinetic energy (m2/s2)

L Cavity length (m)

Ls Store length (m)

ms Mass of the store (kg)

M
∞

Free-stream Mach number (-)

p, q, r roll, pitch and yaw rates (deg/s)

p Pressure (Pa)

qs Free-stream dynamic pressure (Pa)

Q Adimensional flow momentum (-)

ReL Reynolds number based on cavity length (-)

S Base area of the store (m2)

u, v, w Velocity components (m/s)

t Time (s)

U
∞

Free-stream Velocity (m/s)

W Cavity width (m)

We Maximum envelope width

X, Y, Z Cartesian coordinates (m)

Xb, Yb, Zb Store reference coordinates (m)
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Greek

∆ Statistical convergence index

µ(t, n) Average of n trajectories(-)

ω Specific turbulence dissipation rate (1/s)

φ, θ, ψ Roll, pitch and yaw angles (deg)

ρ Density (kg/m3)

Acronyms

AEDC Arnold Engineering Development Center

CFD Computational Fluid Dynamics

CG Gravity Center

DES Detached Eddy Simulation

FS Full Stroke

HS Half Stroke

HMB Helicopter Multi-Block

LES Large Eddy Simulation

MFRT Minimum Frequency to Reconstruct Trajectory

NED North East Down

RK4 Runge-Kutta method 4th order

SAS Scale Adaptive Simulation

SST Shear Stress Transport

6DoF Six-Degree of Freedom
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1 Introduction

Weapon bays enhance the stealth of modern military aircraft. However,

when exposed to the air flow during store delivery, those cavities generate

strong acoustic fields. Their noise comprises broadband and tonal noise,

called Rossiter modes [1], produced by a complex interaction between the

shear layer and the aft bay wall [2, 3].

The acoustic field around an ideal cavity is well studied as documented

in Lawson and Barakos [4]. For weapon bays, their unsteady flow affects the

loads on the released stores, and leads to trajectory variability. To guarantee

safe store separation from weapon bays, the statistics of the trajectories have

to be known. Although effective, flight tests [5] are expensive, and limited at

critical conditions[6]. On the other hand, weapon bay flows can be simulated

with CFD using Detached Eddy Simulation (DES), or Large Eddy Simulation

(LES) [7]. As shown by Babu et al.[8] Scale-Adaptive Simulations (SAS) [9]

can reduce the simulation time almost by an order of magnitude, and resolve

well the cavity flow. This means that practical calculations of store releases,

and statistical analyses of their trajectory variability are now possible.

CFD studies of store releases are rare, and few use a time accurate ap-

proach [10, 11, 12, 13], coupling CFD with a 6DoF method to compute the

models trajectory. Kim et al.[14] computed releases using k − ω SST and

DES from an ideal cavity at Mach 0.95. Four drops at different time in-

stances showed trajectory variability due to changes in the store loads. The

same drops repeated with steady blowing at the leading lip of the cavity

appeared to reduce the variability. Nevertheless, studying store release vari-

ability is challenging, and more work is needed to explain the relationship

between the fluctuations in the store loads and the obtained trajectories.
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In view of the above, this paper presents the first statistical study on tra-

jectory variability using coupled computations employing high fidelity CFD

and Six Degree of Freedom model of the store. This work treats the store

release problem in a statistical way analysing several trajectories. The paper

suggests a statistical metric to decide the number of trajectories needed to

quantify variability. In addition, analysis of the results using filtering, re-

veals the origin of trajectory variability and its relationship with the inertial

properties of the store.

2 CFD Methodology

2.1 CFD Solver

The Helicopter Multi-Block (HMB3) [15] code is used in the present work.

The solver is described in references [8, 16, 17, 18] and has been extensively

validated for cavity flows. DES is by far the most common way to account

of the effect of the turbulence of cavity flows. Nevertheless, DES is still

expensive especially when several computations of store releases are neces-

sary. In order to investigate trajectory variability, promising results with

SAS method [9] encouraged Babu et al.[8] to use this approach for weapon

bay flows. Their results suggest that SAS captures the essential physics of

the weapon bay, and at the same time, provides a significant reduction of

CPU time by almost an order of magnitude. For this reason SAS is also

used in the present work. Only the 6DoF method used for store trajectory

is shown here.
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2.2 6DoF Method

The store motion during release was described using six rigid-body degrees

of freedom (three body position coordinates and three body attitudes) and

was strongly coupled with HMB3. This approach assumes that store release

computations use the chimera method, so that a store has its own grid. The

store motion is described using earth and store reference systems. The earth

system uses the North East Down (NED) convention where, X is positive

north, Y is positive east and perpendicular to X axis, and Z is positive

towards the earth centre. The store system Xb, Yb, Zb is right-handed and

coincident with the earth system at carriage, with respect to the roll, pitch

and yaw axes. The store translation is described using the earth system, and

the store rotations using Euler angles and the store system. The computed

position and orientation are applied at every instance in time to the store

grid. Force and moment coefficients acting on the store, as obtained from

   Earth Axis
System (NED)

Store Axis System
  (view from rear)

Store Axis System

Figure 1: Orientation of store axes with respect to the earth axes [19].
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HMB3, are applied into the translational and rotational equations of motion

[19] of a store in body axes:

Longitudinal Acceleration:
du

dt
= rv − qw − g sin θ(CxqsS)/ms, (1)

Lateral Acceleration:
dv

dt
= pw − ru+ g cos θ sinφ(CyqsS)/ms, (2)

Vertical Acceleration:
dw

dt
= qu− pv + g cos θ cosφ(CzqsS)/ms, (3)

Roll Acceleration:
dp

dt
= Cl(qsSdref/Ix) + qr[(IyIz)/Ix], (4)

Pitch Acceleration:
dq

dt
= Cm(qsSd/Iy) + pr[(IzIx)/Iy], (5)

Yaw Acceleration:
dr

dt
= Cn(qsSd/Iz) + pq[(IxIy)/Iz]. (6)

In the above, ms is the mass of the store and qs is the free-stream dynamic

pressure. u, v and w are the velocity components of the store. p, q and r are

the roll, pitch and yaw rates, respectively, of the store. Cx, Cy and Cz are the

axial, side and normal force coefficients, respectively, and Cl, Cm and Cn are

the rolling, pitching and yawing moment coefficients, respectively, acting on

the store. Cm is positive nose up. dref is the store reference diameter and S

its base area. Ix, Iy, Iz are the moments of inertia of the store about the X, Y

and Z axis respectively. As the store used in this project is symmetric about

the Xb − Yb plane, the off-diagonal products of inertia terms, are ignored.

The equations for the angular velocities[19] in terms of the Euler angles

are then:

dψ

dt
= (q sinφ+ r cosφ)/ cos θ, (7)

dθ

dt
= q cosφ− r sinφ, (8)

dφ

dt
= p+ (

dψ

dt
). sin θ (9)
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The translational components are calculated in the earth axis system

and the angular components are calculated using the Euler angles. The

integration of the equations of motion are done with the Runge-Kutta method

of order 4 (RK4). Figure 1 presents the employed frame of reference and the

adopted conventions.

2.3 Solution Monitoring

In this work, the time is expressed in terms of cavity travel time, which is

the time it takes for a flow particle moving at U
∞

to run the cavity length L.

The aerodynamic moments on the complete store (body and fins included)

were computed about the store centre of mass. The force (Cforce) and mo-

ment coefficients (Cmoment) are computed using:

Cforce =
F

1

2
ρ∞U2

∞
S

and Cmoment =
M

1

2
ρ∞U2

∞
drefS

(10)

where F and M are forces and moments, dref is the store diameter, and

S = πd2ref/4 is the store reference area.

The boundaries of the shear layer are defined as the strictly positive values

of Q, product between the flow momentum, and the local contribution to the

displacement thickness of the shear layer. Negative values due to the cavity

flow re-circulation are set to zero:

Q = max

(

0,
ρu

ρ
∞
U
∞

(

1−
u

U
∞

))

(11)

3 Validation of the CFD Method

The CFD method has been validated for the M219 cavity flow[20], and results

can be found in reference [17]. Nevertheless, validation for store release

separation is given here.
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The following section presents validation of the 6DoF method in HMB3

for the widely used wind tunnel test conducted at the AEDC[21]. Sev-

eral studies have utilised this test case, using structured[22, 23, 24, 25],

unstructured[26, 27, 28, 29, 30, 31] and meshless solvers[32], to validate the

prediction of the store trajectory, making it a popular validation case. The

test provided pressure data for a geometrically simple wing and store under

mutual interference as well as a realistic trajectory. AEDCs 4-Foot Tran-

sonic Aerodynamic Wind Tunnel (4T) was used for the test together with

its captive trajectory support system to simulate the motion of the store and

the Mach number was 0.95.

3.1 Model Geometry and Release Conditions

The computational model was based on the wind tunnel geometry as reported

in [21] (Figure 2). The properties of the store and ejectors are summarised

in table 1. While the wind tunnel test consisted of a wing, pylon and store

configuration, the pylon was omitted from the computational model to sim-

plify the overset mesh in the region where the pylon and the store are almost

in contact. Nevertheless, good agreement was found in the loads between

experiments and CFD. The wind tunnel test model was of 5% scale of a

generic full-scale wing/pylon/store.

Figure 2: Wing store configuration and ejector position.
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Characteristics

Weight 8896.4 N

Centre of Gravity 1.41 m (aft of store nose)

Roll Inertia (Ix) 27.12 kg.m2

Pitch Inertia (Iy) 488.1 kg.m2

Yaw Inertia (Iz) 488.1 kg.m2

Forward Ejector Location 1.24 m (aft of store nose)

Forward Ejector Force 10675.7 N

Aft Ejector Location 1.75 m (aft of store nose)

Aft Ejector Force 42702.9 N

Ejector Stroke Length 0.1 m

Table 1: Full-scale store and ejector characteristics[21].

3.2 Decoupled Analysis

Prior to running a fully coupled trajectory computation in HMB3, a de-

coupled approach was taken to compare the wind tunnel trajectory to that

obtained from the 6DoF method in HMB3. Force and moment coefficients

from the wind tunnel data were used as input. In this way the 6DoF method

is tested without the expense of computing the flow at every instance in time.

Figure 3 shows a comparison of the wind tunnel trajectory to the tra-

jectory computed by the 6DoF method in HMB3 through the decoupled

approach, for the full available signal length of 0.92s. WT is the wind tunnel

data, and NUM the decoupled results from HMB3. Velocity components

and CG displacements agreed well with wind tunnel data, however small

differences can be seen in the pitch and yaw rates and hence the pitch and

9



(a) Velocities (m/s) (b) CG Displacements (m)

(c) Angular Rates (deg/s) (d) Euler Angles (deg)

Figure 3: Comparison of trajectories from a decoupled approach and wind

tunnel data[21].

yaw angle. The initial part of the trajectory, controlled by the ejector forces

compared closely to wind tunnel data, however, after about 0.3s the pitch

and yaw rate started to drift away from wind tunnel data. This behaviour

over time, especially in pitch rate and attitude, was also reported in previous

studies[22, 28, 29].
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3.3 Store Loads and Trajectory

Computations were run at a Mach number of 0.95 and Reynolds number of

1.0.106 (based on the root chord of the wing). The store release computation,

solving the Euler equations of motion, was initiated from a solution around

the store at carriage position, after the flow was fully developed. The store

loads obtained through HMB3 agreed with the wind tunnel data. Figure

4 shows the trajectory of the store starting from the carriage position at

time t = 0.0s with a time step of 0.1s computed with HMB. The trajectory

visualised here shows the store having an initial nose-up pitching moment as

expected from the difference in force between the forward and aft ejectors.

The store recovers from the pitch, and is seen to have a growing positive

yawing moment over time.

Figure 4: Store trajectory released from the wing at different time instances.

Figure 5 presents a comparison of the trajectory computed using HMB3

and the wind tunnel data. The forces, velocities, displacements, moments,

angular rate and Euler angles, in the missile axes, were compared for 0.4s

of the simulation. It is apparent that the force coefficients, velocity and

location of the CG closely matched the wind tunnel data. The store moved

slightly rearward and inboard as it moved further away from the wing. Small

discrepancies were seen in the moment coefficients that were carried into the

angular rates and Euler angles.
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(a) Force Coefficients (b) Moment Coefficients

(c) Velocities (m/s) (d) Angular Rates (deg/s)

(e) CG Displacements (m) (f) Euler Angles (deg)

Figure 5: Trajectories comparison between HMB3 and wind tunnel data[21].

WT: Wind tunnel.
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Initially, there was a slight underprediction of the rolling moment and

overprediction of the pitching and yawing moment coefficients. The initial

overprediction in the pitching moment coefficient did not affect the initial

part of the trajectory in terms of gravity center location or pitch attitude

as the ejector and gravity forces dominated the aerodynamic forces and mo-

ments in that direction.

The effect of the ejectors is seen clearly in the pitch rate that grows

positively for the initial 0.5 seconds of the release. Once the ejector stroke

ended, the aerodynamic pitching moment on the store began to reduce. The

pitch and yaw curves showed a slight divergence from the wind tunnel data

after about 0.3 seconds of the release. This divergence over time was not only

observed in the original study by Fox[21], but in other studies[22, 28, 29] as

well.

4 Geometric and Computational Model for

Trajectory Variability

The computations were carried using HMB3 and the Scale-Adaptive Simu-

lation with a timestep equal to 1% of the cavity length travel time (0.12ms).

The cavity mesh was composed of 30.5 million cells, and the store mesh of

4.2 million cells. The free-stream Mach number was 0.85 and the Reynolds

number based on the cavity length (ReL) was 6.5 million (Figure 6). The

cavity had a length to depth ratio of 7, and was 3.59m long, and 1.03m wide.

The store is 90% of the cavity length with four fins in a cross configuration.

The non dimensional moments of inertia I/(ms.L
2

s) are 4, 0.10−4 about the

roll axis and 7, 3.10−2 about the pitch and yaw axes, with the centre gravity

13



at mid length.

Figure 6: Geometry, cavity axes, and the store at carriage position.

The store release included three phases. At carriage (Z/D=-0.5), the

store was fixed while the flow was allowed to develop. Then, during the

stroke phase, the store was pushed towards the cavity opening. During

this phase, a vertical velocity of 5m/s was imposed on the store, with other

degrees of freedom set to zero. This phase ended when the stroke length was

reached. The full stroke was half a cavity depth (0.257m). In addition, a

half stroke was also used (0.129m). Finally the store was free to move under

the aerodynamic forces. Twenty computations were carried out, 5 applying a

full stroke (FS) length and 15 applying a half stroke (HS) length, at different

release times. The computations are summarised table 2.
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ID Stroke Start Stroke

Travel Time / Time (ms) Length (m)

FS2000 20 / 13 0.257

FS2400 24 / 62 0.257

FS2600 26 / 87 0.257

FS3000 30 / 137 0.257

FS3400 34 / 187 0.257

HS2000 20 / 13 0.129

HS2200 22 / 37 0.129

HS2400 24 / 63 0.129

HS2600 26 / 87 0.129

HS2800 28 / 113 0.129

HS3000 30 / 137 0.129

HS3200 32 / 162 0.129

HS3400 34 / 189 0.129

HS3600 36 / 212 0.129

HS3800 38 / 238 0.129

HS4000 40 / 263 0.129

HS4200 42 / 289 0.129

HS4600 46 / 339 0.129

HS5000 50 / 390 0.129

HS5400 54 / 440 0.129

Table 2: List of computations carried out to demonstrate the trajectory

variability.
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5 Results and Discussion

5.1 Statistical Analysis of the Trajectories

Figures 7a and 7b present the vertical velocity w, and the displacement Z

for the full and half stroke releases, as functions of time. The variability is

negligible, of the order of 5cm, and the vertical displacement Z appears to

be mainly driven by gravity. For a better reading, the trajectories are shown

as function of Z/D in the following. The longitudinal and the span-wise

amplitudes of displacement, not shown in the figures, are of the order of 1

cm, and are also negligible compared to the vertical displacement. The store

angles shown in figure 7 have broader variability, with the roll angle varying

between -5 and 6 degrees, the pitch between 2 and 4 degrees, and the yaw

between -1 and 1 degrees at one cavity depth away from the cavity opening

(Z/D=1). The roll rate reaches peak values (up to 80deg/s), and the curves

have more frequency content compared to the pitch and yaw angles.

Amongst other possible criteria, statistical convergence is tested here us-

ing the maximum of the normalised difference between the average of n+1,

and n trajectories:

∆µ =
max|µ(t, n+ 1)− µ(t, n)|

We

(12)

with µ(t, n) the average of n trajectories, where t covers the complete time

of simulation. The envelope of the trajectory is defined as the maximum dif-

ference between minimum, and maximum over all the releases and all store

vertical positions. We is the largest envelope width over all positions, and

indicated by dashed lines in figures 7 and 10. Figure 8 shows the convergence

of the proposed metric for all store releases in a random order. A trajectory

component is considered as converged if the difference (∆µ) between two con-
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Figure 7: Trajectory of full and half stroke cases.
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secutive averages is less than 5%. As can be seen in figure 15, the averages

substantially fluctuate with less than 10 drops due to the flow variability. For

example, the roll angle may even change sign for two consecutive releases.

The number of releases to converge the statistics depends on the order of the
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Figure 9: Number of release required to reach convergence.

trajectories. To minimise this effect, ∆µ is computed for 100.000 random tra-

jectory permutations. For each permutation, the number of releases required

to converge the statistics is computed, and figure 9 summarises the number

of permutations. On average, the statistics converge with 12.6 releases, and

after 17 releases, the average is always converged. Consequently, this average

is seen as converged for this case, and the results can now be used to compute

a mean flow and assess its effects on the trajectory.

Figure 10 shows the forces driving the trajectories. The curves appear

to be very noisy. The largest variability is seen for the roll angle that is

sensitive to the high flow frequencies, due to the roll inertia being two orders

of magnitude smaller than the inertia in pitch and yaw.

5.2 Mean Flow

Taking all the trajectories with full and half stroke, an averaged trajectory

was constructed, considering all times of the simulations from stroke ini-

tiation until a common point in time corresponding to the shortest of the
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Figure 10: Force and moment coefficients during full and half stroke releases.

simulated trajectories (FS3400). Figure 11 shows the average trajectory in

continuous lines, and the standard deviation in dashed lines, for the vertical

store displacement, and all store rotations. The vertical velocity does not

increase linearly during the release, as a strong normal aerodynamic force

appears when the store interacts with the shear layer at Z/D=0.2. The av-

eraged pitch angle grows with the distance from the cavity, and the pitching

moment reaches a peak at Z/D=0.35.

Figures 12a and 12b show the distributions of vertical force Cz and pitch-

ing moment Cm coefficients along the store length, averaged over all releases.

The loads were integrated on the store body and fins, in sections of 3.5%

of the store length, and the vertical axis represents the store CG position
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Figure 11: Averaged translations and rotations with half and full stoke re-

leases. 21



during the release. The two main sources of loads are localised near the front

of the store, where the flow encounters the store nose, and near the fins.

The Cp distribution averaged over all releases is also shown at the mid-span

plane of the cavity (Figures 12c to 12f). The averaged results are shown

(a) Cz : Vertical Force (b) Cm : Pitching Moment

YX

Z
Cp: ­0.2 ­0.16 ­0.12 ­0.08 ­0.04 0 0.04 0.08 0.12 0.16 0.2

U

(c) Cp −0.40 < Z/D < −0.30 (Inside) (d) Cp 0.00 < Z/D < 0.10 (Shear Layer)

(e) Cp 0.35 < Z/D < 0.45 (Max Cm) (f) Cp 0.90 < Z/D < 1.00 (Away)

Figure 12: Averaged store loads, and pressure coefficient at cavity mid-span.
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for four bands: for the store inside the cavity (−0.40 < Z/D < −0.30), at

the shear layer (0.00 < Z/D < 0.10), at the peak of pitching moment Cm

(0.35 < Z/D < 0.45) and far from the cavity (0.90 < Z/D < 1.00).

Inside the cavity (Figure 12c), a small pressure gradient between the up-

per and bottom surfaces of the store, explains the small averaged loads at

this position, and the small differences between full and half stroke releases.

When the store crosses the bay opening (Figure 12d), it is at the interface be-

tween the cavity and the free-stream conditions, leading to a strong average

pressure gradient at its mid length. A further contribution to the aerody-

namic normal force is due to the impact of the shear layer on the store nose.

Nevertheless, the effects of the ejector push and gravity dominate. Away

from the cavity, at the peak of pitching moment (Figure 12e), there is a large

increase of the pressure at the aft cavity wall, leading to an increase of the

vertical force on the fins, and to the peak of pitching moment. The free-

stream impacting on the pitched store nose, also contributes to the larger

pitching moment at this position. Going further away (Figure 12f), the pres-

sure gradients due to the cavity flow decrease, and the loads at the store nose

and the fins dominate.

Using equation 11, the flow momentum is shown in figure 13 averaged

over all releases at the previous store positions, inside the cavity, at shear

layer, at the peak of pitching moment, and far from the cavity. As the store

travels towards the far-field, the shear layer is deflected into the cavity by the

store, more than for the clean cavity flow. This results in a pressure peak at

the aft wall, leading to the peak of pitching moment. Away from the cavity,

the store effect reduces, and the shear layer becomes characteristic of a clean

cavity flow.
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Figure 13: Flow momentum at the cavity mid-span.

5.3 Filtered Loads

The store forces are decomposed in pressure and viscous contributions for

release HS2600 (Figure 14). All trajectory components are driven by the

pressure forces, and only the drag force (Cx) noticeably depends on viscosity.

Store angles not shown here are also driven by pressure forces. The load

fluctuations driving the trajectory variability are very noisy, and difficult to

interpret (Figure 15). To determine the frequency bands that drive the tra-

jectories, a low pass Butterworth filter of 4th order is applied to the signals,

minimising the band overlapping, and signal distortion [33]. The Butter-

worth filter have some advantages in processing noisy signals removing the

highest frequencies without affecting the main tones. In the following, trajec-

tories computed with unfiltered loads are denoted as ”original”, in contrast

to the ”filtered” ones. For each trajectory, the Minimum Frequency required
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Figure 14: Decomposition of the HS2600 store forces in pressure and viscous

components.
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Figure 15: Original and filtered pitch for the case HS2600.

to Reconstruct the Trajectory (MFRT) is found by limiting the error be-

tween the original and the filtered signals, to 0.05 degrees in angle, and 1

mm in translation over the complete trajectory. This is done by scanning

the signals in steps of 3Hz, from 3 to 300Hz and applying filtering. Figure

15 shows pitch moment, and store pitch angle from the trajectory HS2600.

The filtering dramatically reduces the spectral content of the moment signal.

However, the filtered pitch angle matches perfectly the original signal.
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Figure 16 summarises the MFRT frequencies for the different computed

cases. The black lines correspond to the frequencies of the cavity modes.

As can be seen, different trajectory parameters are driven by different fre-

quency ranges. The longitudinal displacement is dictated by Cx, which is

sensitive to frequencies bellow the first cavity mode (24Hz). The span-wise

and vertical displacements are dictated by Cy, and Cz respectively, and are

driven by frequencies bellow cavity mode 2 (55Hz), with some limited influ-

ence of frequencies up to 170Hz in the span-wise direction. The pitch and the

yaw angles are on average, influenced by frequencies bellow the third cavity

mode(87Hz), and in some cases by frequencies up to 200Hz. Finally, the roll

angle is sensitive to frequencies even above 300Hz.
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Figure 16: MFRT for the different releases and force/moment coefficients.
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Figure 17 shows the filtered loads for the different releases. Cx (Figure

17a) only depends on the store position, meaning that the longitudinal dis-

placement is driven by the mean flow. The filtered Cy, Cl and Cn fluctuate

around zero, and are influenced by local asymmetries of flow inside the bay.

The filtered Cz and Cm (Figures 17e and 17d) significantly fluctuate around
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Figure 17: Filtered force and moment during full and half stroke releases.
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the averaged release, and show the largest excursions from it.

The store loads fluctuate under the action of three main pressure contri-

butions. First, the tonal fluctuations caused by standing waves oscillations

(typical in cavity flows), lead to variability regarding the time of release [34].

In addition, the turbulence also increases the variability in time, mainly for

the roll angle. Finally, the store/shear layer interaction differs depending on

the store trajectory history and the instantaneous flowfield. This interaction,

and the associated trajectory variability, can be captured only if the loads

are fully coupled with the flowfield, which means that coupled CFD/6DoF

calculations are needed.

6 Conclusions

Scale-Adaptive Simulations of store release from weapon bays show that it

is possible to numerically estimate store trajectory variability. A statistical

metric was proposed to identify the minimum number of simulations neces-

sary for capturing the mean and standard deviation of the trajectories. For

the store at hand, twelve trajectories were necessary mainly due to variability

in roll associated with the low roll inertia. Using the averaged flow data, the

trajectory phases were identified and the role of the pressure field inside the

cavity was clarified. Then, filtering of the simulation results, revealed that

only the roll angle was driven by the finest fluctuations in the flowfield while

the vertical displacement of the store was driven by the ejection velocity and

gravity. This is reinforced by the relatively low pitch angle of the store dur-

ing the release, leading to a reduced effect of the aerodynamic lift generated.

The present results suggest that the proposed method is efficient and can be

used for initial investigations of store clearance before flight testing.
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