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Abstract 23 

 24 

The diet provides carbohydrates that are non-digestible in the upper gut and are major carbon and 25 

energy sources for the microbial community in the lower intestine, supporting a complex metabolic 26 

network. Fermentation produces the short-chain fatty acids acetate, propionate and butyrate, which 27 

have health-promoting effects for the human host. Here we investigated microbial community 28 

changes and short-chain fatty acid production during in vitro batch incubations of 15 different non-29 

digestible carbohydrates, at two initial pH values with faecal microbiota from three different human 30 

donors. To investigate temporal stability and reproducibility, a further experiment was performed 31 

one year later with four of the carbohydrates. The lower pH (5.5) led to higher butyrate and the 32 

higher pH (6.5) to more propionate production. The strongest propionigenic effect was found with 33 

rhamnose, followed by galactomannans, whereas fructans and several α- and β-glucans led to higher 34 

butyrate production. 16S rRNA gene-based qPCR analysis of 22 different microbial groups together 35 

with 454 sequencing revealed significant stimulation of specific bacteria in response to particular 36 

carbohydrates. Some changes were ascribed to metabolite cross-feeding, eg. utilization by 37 

Eubacterium hallii of 1,2-propanediol produced from fermentation of rhamnose by Blautia spp. 38 

Despite marked inter-individual differences in microbiota composition, short-chain fatty acid 39 

production was surprisingly reproducible for different carbohydrates, indicating a level of functional 40 

redundancy. Interestingly, butyrate formation was influenced not only by the overall % butyrate-41 

producing bacteria in the community but also by the initial pH, consistent with a pH-dependent shift 42 

in the stoichiometry of butyrate production. 43 

 44 

 45 

 46 

  47 
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Introduction 48 

 49 

The relationship between the gut microbiota and host health is well established. The highest 50 

concentration and diversity of gut microbes is found in the colon, which acts as a fermentor system 51 

for dietary compounds that escape the digestive system of the host. Quantitatively, non-digestible 52 

dietary carbohydrates (NDCs) are the main energy sources for bacterial growth in the colon. It is 53 

estimated that between 20 and 60 g of NDCs, including plant cell wall polysaccharides, resistant 54 

starches (RS), oligosaccharides and sugar alcohols, escape the digestive enzymatic breakdown and 55 

reach the human colon each day (Cummings and Macfarlane, 1991). Over the last years research has 56 

established that gut bacteria possess an enormous variety of carbohydrate-degrading enzyme 57 

activities which allow them to access NDCs (Flint et al., 2012). Microbial fermentation of NDCs 58 

mainly leads to the production of the short chain fatty acids (SCFA) acetate, propionate and butyrate, 59 

and of lactate, succinate, ethanol, methane, carbon dioxide and hydrogen (Cummings and 60 

Macfarlane, 1991). SCFAs are of particular interest for maintaining host health as they are known 61 

not only to contribute directly to energy metabolism, but also have positive effects on the host’s 62 

physiology. Butyrate is mainly metabolised by colonic cells (Hamer et al., 2008), whereas acetate 63 

and propionate are absorbed and metabolised by the liver and peripheral organs (Den Besten et al., 64 

2013). Besides serving as an energy source, SCFA are associated with a number of health benefits 65 

for the host. Whereas butyrate and propionate have been shown to modulate cell differentiation and 66 

to exert anti-carcinogenic and anti-inflammatory effects (Hamer et al., 2008; Louis et al., 2014), 67 

acetate and propionate are of interest because of their potential to enhance satiety and suppress 68 

appetite either through receptor-mediated or other central mechanisms (Frost et al., 2014; Arora et 69 

al., 2011). 70 

The intake of NDCs can have direct (primary) and secondary effects on the microbial community 71 

in the large intestine, and therefore on the host’s physiology. Particular NDCs can lead to the 72 
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stimulation of specialised groups of microorganisms that possess the carbohydrate active enzymes 73 

necessary for their utilization (Flint et al., 2012). Through cross feeding, NDC breakdown 74 

intermediates or fermentation products from primary degraders can serve as substrates for secondary 75 

degraders, which are not directly capable of degrading a certain carbohydrate. This has been 76 

demonstrated in vitro (Belenguer et al., 2006; Rogowski et al., 2015) and reflects the complex nature 77 

of the intestinal ecosystem. The decrease of pH in the colon due to the production of SCFAs can also 78 

lead to selective effects on the microbial community as has been demonstrated in vitro (Walker et al., 79 

2005; Duncan et al., 2009). 80 

The human gut microbiota is composed of several phyla, with the Firmicutes and Bacteroidetes 81 

being the most abundant. Firmicutes not only include the major butyrate producing species (Louis et 82 

al., 2010), but also include propionate producers and acetogens (Louis et al., 2014; Reichardt et al., 83 

2014). Bacteroidetes possess genes encoding for the succinate pathway and therefore represent the 84 

main propionate producers in the gut (Reichardt et al., 2014). Many Bacteroides species are able to 85 

degrade a wide range of soluble plant cell wall polysaccharides (Flint et al., 2012; Martens et al., 86 

2014). Firmicutes, on the other hand, tend to have fewer genes involved in carbohydrate breakdown 87 

(Flint et al., 2012), but specific members appear to play key roles in insoluble polysaccharide 88 

degradation (Ze et al., 2013). For example, Ruminococcus bromii is of key importance for the 89 

degradation of resistant starch (Ze et al., 2015). 90 

It is important to obtain a good understanding of how different NDCs are degraded and how this 91 

affects the gut microbiota and its fermentation products in order to reach conclusions on their effects 92 

upon the host’s health. This study investigated the degradation of 15 different NDCs by human 93 

faecal bacteria during in vitro fermentations. They included α- and β-glucans, pectins, 94 

galactomannans, arabinoxylan and fructans to achieve a good representation of different dietary 95 

NDCs. Fermentations were run at two different initial pH values to simulate proximal and distal 96 

colon conditions. The aim was to gain a comprehensive overview of the microbial changes and 97 
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SCFA production in a complex community of human faecal microbiota in response to NDC 98 

breakdown. 99 

 100 

Methods 101 

 102 

In vitro fermentations  103 

Anaerobic in vitro incubations were carried out in a total volume of 10 ml in triplicate in Hungate 104 

tubes sealed with butyl rubber stoppers and screw caps (Bellco Glass, Shrewsbury, UK). The 105 

medium (details provided in supplementary methods) contained minerals, bile salts, volatile fatty 106 

acids, vitamins and 0.2% (wt/vol) of the test NDC. Cysteine was added to the medium following 107 

boiling and dispensed into Hungate tubes while they were flushed with CO2. The vitamin solution 108 

and the NDCs were added from stock solutions after autoclaving of the medium, directly before 109 

inoculation with the faecal suspension. NDC stock solutions were prepared anaerobically by flushing 110 

with CO2 at 1% in water and boiled for 1 min. 15 different NDCs (Table 1) were used in 111 

fermentation 1 and five in fermentation 2 to assess reproducibility. The supplier of two of the NDCs 112 

used in fermentation 2 was changed (Table 1), as this study formed part of a larger project that 113 

investigated carbohydrate effects in vivo (to be reported elsewhere). Ethical approval for the study 114 

was granted by the Rowett Institute Ethical review panel (number 09/005). 115 

 Fresh faecal samples were obtained from 4 different donors (fermentation 1, donors 1, 2, 3; 116 

fermentation 2, approximately 12 months later, donors 2b, 3b, 4) with no history of gastrointestinal 117 

disorders or antibiotic treatment for at least 3 months prior to the study. Faecal samples were 118 

processed within 2 h after defecation. Eight ml of pre-reduced phosphate buffered saline were added 119 

to 2 g of faecal sample and then homogenised in a Dispomix Drive (Medic Tools, Lussiwag, 120 

Switzerland) and 0.5 ml of the homogenised faecal suspension was used as an inoculum for the 121 

fermentation tubes (final faecal concentration: 1%). Incubations for each NDC were carried out in 122 
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triplicate at pH 5.5, and 6.5 respectively, on a rotator (Stuart SB3, Bibby Scientific, Stone, UK) at 25 123 

rpm for 24 h at 37 ˚C. A no-NDC control was run in triplicate with every fermentation experiment. 124 

At 0 h, 6 h and 24 h an aliquot of 2 ml was taken from the fermentation vessels and centrifuged at 125 

10000 x g for 10 min at 4˚C. The supernatant was stored at -20˚C for analysis of SCFA. The cell 126 

pellet was re-suspended in 800 µl of sodium phosphate buffer and 122 µl of MT buffer, transferred 127 

to a Lysing Matrix E tube (all part of the FastDNA® spin kit for soil, MP Biomedicals, Illkirch, 128 

France) and stored at -70˚C until DNA extraction. Six h samples were processed if the 24 h sample 129 

was not available, as growth had taken place by then. Only primary data of those samples were 130 

included (Tables S1A and S2B/C, shown in grey font), and they were excluded for any statistical 131 

analyses. 132 

 133 

DNA extractions 134 

DNA from the faecal inoculates and the cell pellets from the fermentation experiments (resuspended 135 

in buffer and stored as described above) was extracted using the FastDNA® spin kit for soil (MP 136 

Biomedicals, Illkirch, France). For the DNA extraction of the faecal inoculates an aliquot of 500 µl 137 

of the homogenised faecal suspension was transferred to a Lysing Matrix E tube and 300 µl of 138 

sodium phosphate buffer and 122 µl of MT buffer was added. The samples were stored at -70 ˚C 139 

until DNA extraction.  140 

 141 

SCFA analysis 142 

SCFA concentrations were measured in culture supernatants (0.5 ml) using gas chromatography as 143 

described previously (Richardson et al., 1989). After derivatisation, 1 μl of sample was analysed 144 

using a Hewlett-Packard gas chromatograph fitted with a fused silica capillary column with helium 145 

as a carrier gas. The SCFA concentrations were calculated from the relative response factor with 146 

respect to the internal standard 2-ethylbutyrate. 147 
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 148 

Quantitative PCR 149 

The pooled triplicate DNA samples from the in vitro fermentations 1 and 2 were analysed by 150 

quantitative real time PCR as described previously (Fuller et al., 2007; Ramirez-Farias et al., 2009) 151 

with the following modifications. Reactions were performed in duplicate with iTaqTM Universal 152 

SYBR® Green Supermix (Bio-Rad, Hemel Hempstead, UK) in a total volume of 10 μl with primers 153 

at 500 nM and 5 ng of DNA in optical-grade 384-well plates sealed with optical sealing tape in the 154 

presence of 1 μg/ml herring sperm DNA (Promega, Madison, WI, USA). Amplification was 155 

performed with a CFX384TM Real-time System (Bio-Rad, Hemel Hempstead, UK) with the 156 

following protocol: one cycle of 95 ºC for 3 min, 40 cycles of 95 ºC for 5 s and annealing 157 

temperature as per Table S3 for 30 s, 1 cycle of 95 ºC for 10 s and a stepwise increase of the 158 

temperature from 65 ºC to 95 ºC (at 5 s per 0.5 ºC) to obtain melt curve data. Primers used for the 159 

quantification of the specific bacterial groups are given in Table S3. Standard curves consisted of 160 

dilution series of amplified bacterial 16S rRNA genes from reference strains. The abundance of 16S 161 

rRNA gene was determined from standard curves and bacterial groups were either expressed as a 162 

percentage of total bacteria determined by universal primers or as 16S rRNA gene copies per ml 163 

culture. The detection limit was determined with negative controls containing only herring sperm 164 

DNA.  165 

 166 

454 sequencing 167 

Amplicon sequencing of the V1-V3 region of the 16S rRNA genes was performed on GS FLX 454 168 

platform by the Centre of Genomic Research of the University of Liverpool and Bioinformatics were 169 

conducted in-house using Mothur v. 1.34.4. software platform (Schloss et al., 2009) on the 170 

University of Aberdeen’s HPC cluster (Maxwell). Full details are given in supplementary methods. 171 

Reads per sample varied from 426 to 82 791 (average 9069.1 ± 11044.5). Good’s coverage was over 172 
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95% for all but one sample (Table S2B) and rarefaction and collectors curves (Fig. S1) showed that a 173 

good coverage was achieved for all samples. Exclusion of samples with Good’s coverage of less than 174 

97% resulted in very similar results (Table 2) and subsampling to 426 sequence reads per sample 175 

revealed that the relative abundance of the top 50 OTUs (representing >88% of all reads) was very 176 

similar to the full dataset (Fig. S2). It was therefore decided to work with the full dataset to preserve 177 

as much of the data as possible. OTUs were generated at ≥97% sequence identity, which resulted in 178 

1552 OTUs (Table S2C), and the relative abundance was calculated. OTUs with an overall 179 

abundance of >100 reads (201 OTUs, 95.6-99.8% of sequence reads per sample) were analysed 180 

using the BLAST algorithm (Altschul et al., 1990) and compared to the taxonomy from the SILVA 181 

database (Quast et al., 2013). OTUs were then assigned to their corresponding qPCR assays if 182 

possible as detailed in supplementary methods and Table S2A. 183 

 184 

Polysaccharide analysis  185 

All analyses were performed in duplicate. To evaluate authenticity and purity of the NDCs used in 186 

this study, their monosaccharide composition was analysed by HPAEC-PAD after acid hydrolysis as 187 

described previously (Wefers and Bunzel, 2015). Details of the hydrolysis conditions for the 188 

different NDCs are given in supplementary methods. The laminarin from Shaanxi Pioneer Biotech 189 

showed significant differences compared to the other polysaccharides, because extremely low levels 190 

of glucose (ca. 2 mg/g) were observed. To double-check these results and to get further structural 191 

insights, glycosidic linkage types of the two laminarin samples were analysed by methylation 192 

analysis as described previously (Wefers and Bunzel, 2015; for details see supplementary methods). 193 

The total ion current chromatograms also showed significant differences between the two 194 

polysaccharides, with the laminarin from Shaanxi Pioneer Biotech showing only trace amounts of the 195 

expected partially methylated alditol acetates (Fig. S3). Thus, based on the analyses described here, a 196 

main portion of the NDC purchased from Shaanxi Pioneer Biotech does not appear to be laminarin.  197 
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 198 

Statistical analysis 199 

Data from each fermentation study were analysed by ANOVA with random effect for Donor and 200 

fixed effects for NDC, pH, and their interaction, followed by post-hoc t-test.  Principal Components 201 

Analysis and Partial Least Squares were used to investigate associations between bacteria and SCFA 202 

production. Associations of interest were quantified by random effects regression with Donor as 203 

random effect and with pH, microbial abundance and their interaction as fixed effects. The 204 

agreement between the 454 sequencing and qPCR methods between corresponding bacterial groups 205 

(expressed as percentage of total bacteria) was investigated by linear regression. Full details are 206 

given in Supplementary methods. 207 

For the regression analyses P<0.05 was regarded significant. For the ANOVA analyses and 208 

subsequent post-hoc comparisons, however, to reduce the reporting of false positives due to the large 209 

number of comparisons, an effect was considered significant only when P<0.001. 210 

 211 

 212 

Results  213 

 214 

SCFA from in vitro batch culture incubations 215 

Anaerobic incubations were conducted with 15 different NDCs as energy sources (Table 1; 0.2% 216 

w/v) in the presence of human faecal slurries from three healthy donors (fermentation 1) at initial pH 217 

values of 5.5 and 6.5. For five NDCs, another fermentation was carried out approximately one year 218 

later to assess reproducibility of the responses (fermentation 2, two of the three donors were the same 219 

as in fermentation 1). Profiles of net SCFA production after 24 hours of incubation differed between 220 

NDCs, especially for those from different NDC classes. Analysis of the chemical composition of 221 

NDCs used (shown in Table S4) led to the elimination of one of the sources of laminarin (see 222 
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Methods) whereas the composition of all other NDCs was consistent with their description. For 223 

NDCs used in both fermentations the SCFA profiles were very reproducible (Fig. 1).  224 

After 24 hours the cumulative amount of fermentation acids produced was significantly higher at 225 

pH 6.5 compared to pH 5.5 in both fermentations (Table S5, P<0.001). The main SCFAs produced 226 

were acetate, propionate and butyrate, with pH 6.5 leading to higher acetate and propionate and pH 227 

5.5 to higher butyrate formation for most NDCs (Fig. 1, P<0.001). The branched-chain fatty acids 228 

iso-butyrate and iso-valerate as well as formate, valerate, and lactate were only detected in minor 229 

amounts (<1.13 mM each), while succinate was not detected in any of the incubations. 230 

When individual NDCs were compared to the no-NDC control, starch, β-glucan and 231 

inulin/oligofructose gave rise to significantly (P<0.001) increased butyrate concentrations when the 232 

initial pH was 5.5. At an initial pH of 6.5, this butyrogenic effect was seen for inulin/oligofructose 233 

but not for the starches (Fig. 1). Pyrodextrin, laminarin, rhamnose, rhamnogalacturonan and the two 234 

galactomannans all gave rise to increased propionate at initial pH 5.5. These same NDCs increased 235 

propionate when the initial pH was 6.5, but in addition pullulan, β-glucan and some of the inulin-236 

type NDCs also promoted propionate significantly at the higher pH (all P<0.001). The NDC that 237 

stands out with regard to propionate production however is rhamnose. The absolute amount produced 238 

was between 1.5- and 5.5-fold higher than in the presence of the other NDCs, and the molar ratio 239 

(40-42% of total SCFA) was similar to the percentage of acetate in both fermentations and 240 

independent of the pH (Fig. 1, Table S5).  241 

 242 

Microbial population changes detected by qPCR  243 

The microbial composition of the in vitro incubations from both fermentation experiments was 244 

analysed using qPCR against 21 different bacterial species and groups, in addition to total bacteria 245 

and methanogenic Archaea (Table S3). Analysis of the inocula revealed high inter-individual 246 

variability of bacterial composition as well as intra-individual differences for the donors used in both 247 



11 
 

fermentations (donor 2 and 3). In addition to quantitative differences, certain microbial groups were 248 

only found in some faecal samples (some ruminococci, Coprococcus eutactus, Eubacterium eligens, 249 

certain bifidobacteria and methanogenic Archaea), and none of the donors had detectable levels of 250 

Prevotella spp. (Table S1A). After 24 hours of incubation the total amount of bacteria had increased 251 

in all incubations, including the no-NDC control (average fold change of total 16S rRNA gene copies 252 

8.0±2.5). In order to investigate bacterial changes specific to the different NDCs, the data were 253 

expressed as the ratio of the absolute 16S rRNA gene copies per ml culture between each 254 

carbohydrate incubation and the no-NDC control after 24 hours of incubation (Fig. 2, Table S1B). 255 

For several bacterial groups and NDCs, responses were similar in the different donors. Thus, R. 256 

bromii significantly (P<0.001) increased on both types of resistant starch at both pH values, with 257 

highest levels reached at pH 5.5 (Fig. 2). Bifidobacteria and several other Firmicutes, especially the 258 

Roseburia group, also increased on resistant starches and pullulan, in particular at the lower pH 259 

value, but due to inter-individual variability this mostly did not reach significance. Barley ß-glucan 260 

resulted in significant increases in the Roseburia group at both pH values in fermentation 2, whereas 261 

R. inulinivorans showed a significant increase on laminarin only at pH 6.5 (Fig. 2, all P<0.001). At 262 

the lower pH value, Blautia spp. increased significantly on barley β-glucan in fermentation 1, 263 

whereas at the higher pH value, Bacteroides spp. increased on two of the three ß-glucan-type 264 

incubations (Fig. 2). Coprococcus eutactus, which was only detected in one donor, increased 265 

dramatically on barley ß-glucan in both fermentations at both pH tested, but not with laminarin (Fig. 266 

2). 267 

Rhamnose led to a significant (P<0.001) increase of both Eubacterium hallii and Blautia spp. at 268 

both pH values in fermentation 2, whereas this response was weaker and only observed for Blautia 269 

spp. at pH 5.5 in fermentation 1 (Fig. 2). NDCs of the pectin class resulted in the highest fold 270 

changes relative to the no-NDC control for F. prausnitzii, E. hallii and B. bifidum at pH 5.5, but this 271 

did not reach significance. At pH 6.5, F. prausnitzii and E. hallii showed a significant response on 272 
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apple pectin during fermentation 2, whereas Bacteroides spp. increased significantly (P<0.001) on 273 

rhamnogalacturonan. Eubacterium eligens, which was not detected in all donors (Table S1), 274 

competed poorly on most of the NDCs tested (fold changes relative to no-NDC control <1; Fig. 2), 275 

but showed a numerical increase for the pectin-type NDCs (Fig. 2), especially at the higher pH value. 276 

For the two galactomannans, C. eutactus (present in only one donor, Table S1) increased relative to 277 

no-NDC control, and Bacteroides spp. had significantly (P<0.001) higher levels on guar 278 

galactomannan at pH 6.5. Bifidobacteria showed the strongest response to arabinoxylan, at pH 5.5, 279 

which reached significance for B. longum, whereas Roseburia spp. increased significantly on 280 

arabinoxylan at pH 6.5 only (Fig. 2). 281 

The inulin-type fructans tested resulted in significant (P<0.001) increases of the Roseburia group 282 

and A. hadrus at pH 5.5. Increases were also seen for several other groups, including bifidobacteria, 283 

R. bromii (pH 5.5 only) and Blautia spp., but were mostly not significant (P>0.001, Fig. 2, Table 284 

S1B). Interestingly Bifidobacterium spp. showed mostly higher increases on oligofructose than on 285 

medium- or long-chain inulin (Fig. 2). Individual Bifidobacterium species were subject to large inter-286 

individual differences (Fig. 3). For example, B. adolescentis and B. longum, detected in all donors, 287 

responded with higher increases on oligofructose in donor 1 and 3, whereas for donor 2 stronger 288 

responses were seen with the longer chain inulin-type fructans. B. adolescentis showed a much 289 

stronger stimulation in donor 2 compared to B. longum, regardless of the type of fructan, whereas B. 290 

longum achieved high levels of stimulation on various NDCs in the other donors. The B. catenulatum 291 

group responded strongly to several NDCs in donor 1, whereas B. bifidum showed the strongest 292 

response to fructan-type NDCs in donor 3 (Fig. 3).  293 

Interestingly, the R. flavefaciens group, Oscillibacter group, Dorea spp. and Negativicutes group 294 

were not significantly stimulated by any of the NDCs tested (P>0.001, Fig. 2). Methanogenic 295 

Archaea did not exhibit big increases compared to no-NDC control for most incubations they were 296 

detected in (Table S1). Regression analysis of SCFA and bacterial groups showed a significant 297 
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(P<0.05) positive correlation of Bacteroides spp. and propionate production and of A. hadrus, F. 298 

prausnitzii and Roseburia group, respectively, and butyrate production (Fig. S4).  299 

 300 

Relationship between microbiota composition and SCFA formation 301 

In addition to qPCR, the influence of the different NDCs on the microbiota of fermentation 1 was 302 

analysed using 454 sequencing. Like qPCR, operational taxonomic unit (OTU) analysis revealed 303 

large inter-individual differences in the inocula. In the sample of donor 1 and donor 3 we detected 304 

116 and 114 different OTUs, respectively, with an abundance of >100 reads, whereas the inoculum 305 

of donor 2 contained 162. OTU 1 (Blautia obeum) was the most abundant OTU in donors 2 and 3 306 

and the second most abundant in donor 1 after OTU 8 (A. hadrus) (Table S2). Statistical analysis of 307 

all OTUs that were detected in at least two thirds of all samples after 24 h of incubation revealed that 308 

17 OTUs, covering a range of different Bacteroidetes and Firmicutes species, were significantly 309 

(P<0.001) increased compared to the inoculum on at least one NDC (Table 2). 310 

In order to compare the qPCR results with sequencing results, the OTUs were assigned to groups 311 

that would be targeted by the qPCR primers used (Fig. S5, Table S2). This led to an assignment rate 312 

of 29.2-83.2% per sample (average 59.1%) of all sequences. The results in Fig. S5 show that the 313 

changes detected by 454 sequencing agree well with those detected by qPCR. This applies for 314 

example to the increase in Blautia spp. with rhamnose, in R. bromii with RS and in A. hadrus with 315 

fructans. Correlations were calculated between relative data from qPCR and the sum of OTUs 316 

assigned to the corresponding primer set. Significant (P<0.05) correlations were found for all OTU 317 

groups which could be assigned to corresponding qPCR primers, except for the Oscillibacter group 318 

(Fig. S6). Weaker correlations likely reflect technical differences arising from either qPCR or 319 

sequencing methodology, or a limited understanding of the groups under study, which may affect the 320 

accuracy of assigning sequence OTUs to the corresponding qPCR group. Bifidobacteria were not 321 
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included in this comparison as they are underestimated by 454 sequencing with the primers used here 322 

(Walker et al., 2015).  323 

Heat map analysis of relative OTU abundance revealed high inter-individual variation (Fig. S7, 324 

100 most abundant OTUs). Propionate- and butyrate-producing status was assigned to all classified 325 

OTUs (Table S2A; 39-87% of sequence data per sample assigned to fermentation product formation 326 

based on at least 97% sequence identity to known species) and heat maps for propionate- and 327 

butyrate-producing OTUs, respectively, were generated (Fig. 4). This shows that different OTUs 328 

contribute to SCFA production in different donors. However, regression analyses of the sum of all 329 

propionate- or butyrate-producing bacteria (as percentage of total sequences) to percentage 330 

propionate or butyrate produced over 24 h of incubation showed a strong correlation (Fig. 5, P<0.001 331 

for both SCFAs). For propionate the initial pH of the incubations had no effect on this relationship, 332 

but for butyrate a strong effect of initial pH was found (Fig. 5, P<0.001). Partial least squares 333 

regression was carried out on all classified OTUs to reveal any associations with acetate, propionate 334 

or butyrate, which revealed some strong associations that mostly were individual-specific (Table 335 

S2A). These may reflect not just a direct conversion of NDCs to SCFA, but could also include cross-336 

feeding effects. 337 

Relative qPCR and SCFA data obtained from NDCs that were examined in years one and two 338 

after 24 h of incubation were further analysed by principal component analysis. This revealed some 339 

clustering by donor, but the samples originating from the same donor in different years showed little 340 

overlap, showing a relatively large intra-individual variation (Fig. S8A). Rhamnose incubations in 341 

particular clustered separately and were associated with propionate production, Blautia spp. and E. 342 

hallii (Fig. S8B&D). Long-chain inulin also tended to result in a bigger difference to no-NDC 343 

control than the other NDCs examined (Fig. S8B). A separation by pH could be observed especially 344 

for the NDCs other than rhamnose, which was associated with butyrate formation at pH 5.5 and 345 

propionate formation at pH 6.5 (Fig. S8C&D). 346 
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 347 

Discussion 348 

 349 

This study investigated the impact of 15 different NDCs upon microbiota composition in anaerobic 350 

batch cultures inoculated with human faecal samples. The in vitro batch culture system provided a 351 

fast and cost effective way to study the effects of an extensive set of NDCs on the microbial 352 

community from four donors. Because the pH of batch cultures cannot be controlled precisely as 353 

acids are produced during incubation, we set the initial pH at two different values (5.5 and 6.5) to 354 

simulate prevailing conditions in the healthy proximal and distal colon. Using 0.2% carbohydrate, we 355 

anticipate that acid production during incubation will have reduced the pH further by 0.5-1 unit by 356 

24 hours so that growth will have occurred largely under mildly acidic conditions. When pH is 357 

controlled at 6.5 using a continuous flow fermentor system, we have shown that Bacteroides spp. 358 

outcompete Firmicutes and Actinobacteria within the human colonic microbiota for soluble 359 

carbohydrate substrates (Walker et al., 2005; Duncan et al., 2003; Chung et al., 2016). By contrast in 360 

the present study, this dominance of Bacteroides spp. was curtailed by the lower pH conditions, and 361 

probably also by the reduction in the peptide content of the medium (to 0.1% casitone and 0.1% 362 

yeast extract). This has helped to reveal the response of Firmicutes and Actinobacteria to different 363 

carbohydrates. Lowering of gut pH due to increased fermentation may also contribute to the reduced 364 

abundance of Bacteroides species often observed in human dietary trials with NDC (Martinez et al., 365 

2013; Duncan et al. 2009). 366 

An overview of the major microbiota responses on the different carbohydrate classes and 367 

corresponding pathways for SCFA formation is provided in Fig. 6. The NDC that promoted by far 368 

the highest SCFA proportion of propionate was rhamnose. This can be explained by the fact that 369 

rhamnose is fermented via the propanediol pathway in some anaerobic bacteria, yielding propionate 370 

and sometimes also propanol (Reichardt et al., 2014; Scott et al., 2006; Louis and Flint, 2017). The 371 
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distribution of the propanediol pathway of propionate formation from deoxy sugars is however quite 372 

limited, being found so far in Roseburia inulinivorans and in Blautia spp. (Reichardt et al., 2014). 373 

This fits very well with the observed highly specific enrichment of Blautia spp. on rhamnose that 374 

was detected both by 16S rRNA-based qPCR and sequence analysis. In other bacteria that can utilise 375 

deoxy sugars, such as Bacteroides spp. (Rodionova et al., 2013) and Anaerostipes rhamnosivorans 376 

(Bui et al., 2014), propionate is not formed and 1,2-propanediol is an end product. E. hallii also 377 

showed a high qPCR ratio for rhamnose relative to the no-NDC control. Existing E. hallii strains are 378 

not known to grow on rhamnose (Holdeman and Moore, 1974), but its stimulation is likely to be 379 

indirect, due to cross-feeding of 1,2-propanediol formed from rhamnose by Bacteroides spp. and A. 380 

rhamnosivorans, since a recent study demonstrated the ability of E. hallii to metabolise 1,2-381 

propanediol (Engels et al., 2016). E. hallii also has the ability to utilize lactate (Duncan et al., 2004), 382 

which is a major fermentation product of Blautia faecis (Park et al., 2013), the Blautia species that 383 

was most strongly stimulated by rhamnose in these experiments. The propanediol pathway may also 384 

contribute significantly to propionate formation from rhamnose residues on rhamnogalacturonan and 385 

pectin (25.3 and 4.8% of monosaccharide composition, Table S4), but for the remaining 386 

polysaccharides it is expected that propionate will originate mainly via the succinate pathway found 387 

in the Bacteroidetes (Reichardt et al., 2014). Consistent with this, the level of propionate produced 388 

showed a significant correlation with the abundance of Bacteroides spp. based on qPCR results (Fig. 389 

S4). Based on sequencing data, relative propionate production correlated more strongly with the sum 390 

of all propionate producers (Fig. 5) than with propionate producers that employ either the succinate 391 

or propanediol pathway (data not shown), confirming that both pathways contribute to propionate 392 

formation. The percentage of butyrate among SCFA was highest for fructans at both initial pHs, and 393 

for pullulan, resistant starch type II and III and β-glucan at pH 5.5. This appeared to reflect the 394 

stimulation of known butyrate-producing species, in particular the Roseburia group, F. prausnitzii, 395 

A. hadrus, and C. eutactus, depending on the NDC.  396 
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A number of responses to particular NDCs agreed well with previous reports from in vivo and in 397 

vitro studies. They include stimulation of R. bromii on resistant starch (Ze et al., 2013; Ze et al., 398 

2015; Walker et al., 2011; Abell et al., 2008; Martínez et al., 2010), of bifidobacteria (Ramirez-399 

Farias et al., 2009; Scott et al., 2014; Selak et al., 2016; McLaughlin et al., 2015), butyrate-400 

producing Roseburia/Eubacterium rectale group and A. hadrus (Louis et al., 2010; Scott et al., 2014; 401 

van den Abbeele et al., 2011) and Dorea longicatena (Taras et al., 2002) on inulin type fructans, and 402 

of Bacteroides spp., F. prausnitzii and E. eligens on pectin-type NDCs (Chung et al., 2016; Lopez-403 

Siles et al., 2012; Salyers et al., 1977). Arabinoxylan increased bifidobacteria at the lower pH, which 404 

reached significance for B. longum based on qPCR results. This is in agreement with another in vitro 405 

study that investigated pure culture growth of different Bifidobacterium species and found good 406 

growth on arabinoxylan only for strains belonging to B. longum (McLaughlin et al., 2015). 407 

SCFA production was surprisingly reproducible for the different NDCs investigated here 408 

compared to the high microbiota variation between donors, which indicated that different OTUs 409 

contributed to NDC breakdown and SCFA formation in the different donors. For example, OTU 11 410 

(closest relative R. bromii, 94% identity) responded strongly to resistant starch in donor one, whereas 411 

it was low in donor 3 and OTU 9 (R. bromii, 99%) responded strongly to resistant starch in this 412 

donor (Fig. S7). When looking specifically at propionate- or butyrate-producing bacteria, it becomes 413 

clear that they show a heterogeneous response to different carbohydrates (Fig. 4), but their combined 414 

response correlates very strongly with the corresponding SCFA output (Fig. 5), revealing functional 415 

redundancy in the microbiota. The activities of each microbiota member will be dependent not only 416 

on their genetic potential to degrade certain NDCs and produce certain SCFA, but also on their 417 

interaction with other microbes and their competitive fitness. This likely underlies the different 418 

response seen for some OTUs in different donors (for example, OTU 8, A. hadrus (100%) showing 419 

an increase on arabinoxylan in donor 1 and 3, but not donor 2). The poor response of R. 420 

inulinivorans on inulin and rhamnose likely also reflects its poor ability to compete effectively in the 421 
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complete microbiota, despite the fact that it can grow on those NDCs in pure culture (Reichardt et 422 

al., 2014; Scott et al., 2014; Duncan et al., 2006). This agrees with a human intervention study, 423 

which also failed to see an increase in this species after inulin supplementation in subjects with high 424 

baseline levels of this species (Louis et al., 2010). 425 

Our data also reveal that while the % butyrate among SCFA products was related to the 426 

proportion of butyrate-producing bacteria, the initial pH altered this relationship considerably (Fig. 427 

5). It is known that species such as F. prausnitzii and Roseburia spp. that use the butyryl-428 

CoA:acetate CoA-transferase route for butyrate formation, exhibit a shift in fermentation 429 

stoichiometry in pure culture at lower pH (5.5) in favour of greater butyrate production and greater 430 

acetate consumption per mol of carbohydrate consumed (Louis and Flint, 2017; Kettle et al., 2015). 431 

The relationships seen in Fig. 5 indicate that this shift in stoichiometry applies also to butyrate 432 

production by the mixed community, while propionate production was simply related to the % 433 

propionate-producing bacteria regardless of the initial pH. 434 

In conclusion, the work presented here is one of few in vitro studies that compares the impact of a 435 

large variety of NDCs on the composition and metabolic activity of the human faecal microbiota. 436 

Some of the NDCs investigated here are currently classed as prebiotics, but this study does not reveal 437 

a clear distinction between those and NDCs currently classed as dietary fibre, in terms of a selective 438 

stimulation of specific bacteria. Prebiotic NDCs are considered to have consequences for health 439 

mainly through their impact upon the gut microbiota. These impacts can be ascribed to two types of 440 

mechanism. First, as shown here, prebiotics can promote the growth of a limited number of bacterial 441 

species, boosting their populations and their representation within the gut microbiota, although the 442 

pattern of stimulation can vary between microbiota from different individuals. Some of these bacteria 443 

may interact with the host’s immune system, but we can expect that inter-individual variability in the 444 

microbiota and the selective effects of different NDCs may result in wide variation in health 445 

consequences. Second, we know that the metabolites produced by the microbial community have 446 
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important consequences for health. Here our results suggest, at least for short chain fatty acids, that 447 

the consequences of NDC fermentation are likely to be more consistent between individuals. This is 448 

explained by the large number of gut anaerobes capable of producing the major SCFA, resulting in 449 

functional redundancy that tends to mask inter-individual variation at the species level. Thus we have 450 

shown that, in spite of inter-individual differences in microbiota composition, SCFA profiles were 451 

very similar for each individual and for a given NDC. We should also note however that for 452 

metabolites whose production is limited to a smaller number of species, individual variability is 453 

likely to be correspondingly greater. In addition, if keystone species are absent, the capacity of the 454 

microbiota to ferment NDC can be greatly reduced, as shown for individuals lacking R. bromii on 455 

diets high in RS (Walker et al., 2011). There is currently much debate on the prebiotic concept, and 456 

the stipulation that they have to selectively stimulate certain microbes is increasingly challenged 457 

(Louis et al., 2016; Bindels et al., 2015; Steinert et al., 2016). The data presented here are in support 458 

of a more general definition with regard to the modulation of the gut microbiota in order to achieve a 459 

beneficial effect on the host.  460 
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Figure legends 605 

 606 

Figure 1: Net SCFA production after 24 h incubation of human faecal samples with different NDCs. 607 

Average of three donors in 2 fermentations (f1 and f2) at pH 5.5 and 6.5 (t=24 h minus t=0, standard 608 

error of the difference and percentages given in Table S5). Faecal donors were donor 1, 2 and 3 in f1; 609 

and 2, 3 and 4 in f2. Analysed by ANOVA with donor as random effect and with NDC, pH and their 610 

interaction as fixed effects. NDCs that differ (P<0.001) from the no-NDC control for each of the two 611 

pH levels are indicated by *. 612 

 613 

Figure 2: Increase of bacterial groups analysed by qPCR after 24 h incubation of human faecal 614 

samples with different NDCs. Average of three donors in 2 fermentations (f1 and f2) at pH 5.5 and 615 

pH 6.5 in relation to the increases with no NDC (given as relative fold change). Faecal donors were 616 

donor 1, 2 and 3 in f1 (for pH 5.5 only donors 1 and 3 were included, as no-NDC control was 617 

available at 24 h for donor 2; data for all donors are shown in Table S1) and 2, 3 and 4 in f2. 618 

Bacterial 16S rRNA gene copies/ml culture were expressed relative to the no-NDC control for each 619 

donor and pH. The log-transformed ratios were analysed by ANOVA with donor as random effect 620 

and with NDC, pH and their interaction as fixed effects. Presented here are the back-transformed 621 

mean log ratios. Test NDCs that differ (P<0.001) from the no-NDC control for each of the two pH 622 

levels are shown in bold and with a border. Rhamnogal.ur., rhamnogalacturonan; gal.man., 623 

galactomannan; MC, medium-chain; LC, long-chain. †, bacterial group not detected in all donors. 624 

 625 

Figure 3: Growth response of individual Bifidobacterium species on α-glucans, arabinoxylan and 626 

fructans. Data shown are from individual faecal incubations (fermentation 1 donor 1, 2, 3; 627 

fermentation 2 donor 2b, 3b, 4) analysed by qPCR after 24 h incubation at pH 5.5. At 0 h, 628 

Bifidobacterium species levels in all donors ranged from 6.1×104 to 9.7×106/ml (see Table S1). 629 
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 630 

Figure 4: Relative abundance of propionate- and butyrate-producing OTUs with at least 97% 631 

sequence identity to known bacterial species after 24 h incubation of human faecal samples from 632 

fermentation 1 with different NDCs (white – black: panel A, Propionate producing OTUs 0 – 34%; 633 

panel B, Butyrate producing OTUs 0 – 24%). Rationale for assignment of SCFA production capacity 634 

is given in Table S2A. Relative production of the corresponding SCFA is given at the top of each 635 

heat map (white – black: panel A, Propionate % 0 - 43%; panel B, Butyrate % 0 – 47%). OTUs 636 

showing a significant (P<0.001) increase under certain conditions, compared to inoculum, are 637 

indicated by * (for details see Table 2). AP, apple pectin; AX, arabinoxylan; BG, ß-glucan; Ca, carob 638 

galactomannan; Gu, guar galactomannan; i, inoculum; I-GP, medium-chain inulin; I-HP, long-chain 639 

inulin; La, laminarin; no, no-NDC; OF, oligofructose; Pu, pullulan; Py, pyrodextrin; RG, 640 

rhamnogalacturonan; Rh, rhamnose; RSII, type II resistant starch; RSIII, type III resistant starch. 641 

Panel A: Acr, acrylate pathway; Pdu, propanediol pathway. 642 

 643 

Figure 5: Relationship between sum of all propionate- or butyrate-producing OTUs with at least 644 

97% sequence identity to known bacterial species after 24 h of incubation of human faecal samples 645 

from fermentation 1, expressed as percentage of total sequences, and SCFA production. Relative 646 

propionate or butyrate production (percentage of total SCFA produced) was regressed on percentage 647 

of propionate or butyrate producers, using mixed effect models with donor as random effect and with 648 

fixed effects for pH, percentage producers, and their interaction. pH 5.5, crosses; pH 6.5, triangles. 649 

Lines correspond to the fit for each pH where a significant effect of pH was observed (B, solid line 650 

pH 5.5, dashed line pH 6.5). 651 

 652 

Figure 6: Overview of known fermentation pathways for SCFA formation in human gut bacteria. 653 

NDC class colour is based on whether they mainly stimulated propionate (red) or butyrate (blue) 654 
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production or both (purple) (see Fig. 1). Responses of gut bacteria to different NDCs detected in this 655 

study are shown above each NDC class; significant responses detected by qPCR (see Fig. 2, 656 

compared to no-NDC) and 454 sequencing (see Table 2, compared to inoculum, only OTUs with 657 

>97% identity to known species given) are shown in black, non-significant qPCR-based responses 658 

with a fold change >10 are shown in grey. 659 

 660 

Supplementary Information 661 

 662 

Fig. S1: Rarefaction curves of 454 sequencing data. The inset shows collectors curves of observed 663 

OTUs for the two samples with the lowest number of sequences. 664 

 665 

Fig. S2: Relative abundance of 50 most abundant OTUs after 24 h incubation of human faecal 666 

samples from fermentation 1 with different NDC from full sequence dataset (A) compared to 667 

corresponding OTUs after subsampling to 426 sequence reads (B). 668 

 669 

Fig. S3: Total ion current chromatograms of laminarin purchased from Sigma (A) and Shaanxi 670 

Pioneer Biotech (B). Marked partially methylated alditol acetates were identified by their mass 671 

spectra and semiquantitatively determined by GC-FID. 672 

 673 

Fig. S4: Relationship between log bacterial 16S rRNA gene copies/ml culture and propionate or 674 

butyrate production. Combined qPCR data from fermentations f1 and f2 for Bacteroides spp. (A), A. 675 

hadrus (B), F. prausnitzii (C) and the Roseburia groups (D). SCFA production was regressed on log 676 

bacterial 16S rRNA gene copies/ml culture observed at 24 h using a mixed effects model with donor 677 

and year within donor regarded as random effects, and with fermentation, pH, log bacterial 16S 678 

rRNA gene copies/ml culture, and their interactions as fixed effects. Significant effects (P<0.05) are 679 
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listed above each plot. pH 5.5: blue, pH 6.5: red, fermentation 1: circles, fermentation 2: +. Lines 680 

correspond to the fit for each year and pH combination (solid lines: fermentation 1, dashed lines: 681 

fermentation 2). 682 

 683 

Fig. S5: Relative abundance of OTUs after 24 h incubation of human faecal samples with different 684 

NDCs. Average data from three donors from fermentation 1 analysed by 454 sequencing. OTUs are 685 

grouped together per corresponding qPCR assay. Assignment of individual OTUs to corresponding 686 

qPCR groups are given in Table S2A. This figure also provides a comparison of the microbiota 687 

composition between the inoculum and no-NDC (24 h incubation) control. Certain groups, notably 688 

Blautia spp., Roseburia and E. hallii, appear to have decreased in relative abundance from the 689 

inoculum to the 24 h incubation (no-NDC) at both pH values. Possibly these groups may be less able 690 

to replicate and/or become more prone to cell lysis in the absence of an added carbohydrate energy 691 

source; this effect may therefore have amplified some of the changes shown in Fig. 2, which 692 

compares 24 h incubations with and without added NDCs. 693 

 694 

Fig. S6: Linear regression analysis between microbial composition as determined by qPCR and 454 695 

sequencing. The analysis was performed for bacterial groups that were detected by both methods (C. 696 

eutactus was only found in D3 by qPCR, corresponding OTU-137 was found in 6 and 3 of 31 697 

samples, respectively, in D1 and D2, see Table S2). Blue, donor 1; green, donor 2; purple, donor 3; 698 

lighter colours pH 5.5; darker colours pH 6.5. 699 

 700 

Fig. S7: Relative abundance of 100 most abundant OTUs after 24 h incubation of human faecal 701 

samples from fermentation 1 with different NDCs (white - black: 0 - 51%). Relative production of 702 

the corresponding SCFA is given at the top of each heat map (white - black: 0 - 47%). OTUs 703 



31 
 

showing a significant increase (P<0.001) under certain conditions, compared to inoculum, are 704 

indicated by * (for details see Table 2). NDC abbreviations as per Fig. 4. 705 

 706 

Fig. S8: Principal component analysis of relative SCFA and qPCR data of NDCs included in both 707 

fermentation years. A: scores plot colour-coded by donor and year. B: scores plot colour-coded by 708 

NDC. C: scores plot colour-coded by pH. NDC abbreviations as per Fig. 4; pH 6.5, italics. D: 709 

loading plot of variables. Ac, acetate; But, butyrate; Prop, propionate; Ahad, A. hadrus; Bact, 710 

Bacteroides spp; Bif, Bifidobacterium spp.; Blaut, Blautia spp.; Dorea, Dorea spp.; Ehal, E. hallii; 711 

Fprau, F. prausnitzii; Neg, Negativicutes; Osc, Oscillibacter group; Rbro, R. bromii; Rfla, R. 712 

flavefaciens group; Rinul, R. inulinivorans; Ros, Roseburia group. 713 

 714 

Table S1: qPCR analysis of faecal incubations. A: 16S rRNA gene copies per ml culture for each 715 

donor in the inoculum and after 24 h of incubation (grey font: 6 h of incubation as 24 h sample was 716 

not available). Key for bacterial groups given to right of table; colour shading by conditional 717 

formatting per bacterial group (yellow low - green high values); nd: not detected. B: Average fold 718 

change and confidence interval (for groups present in all donors) after growth on different NDCs 719 

compared to no-NDC control after 24 h of incubation (6 h samples were excluded). 720 

 721 

Table S2: 454 sequencing analysis of faecal incubations of fermentation experiment 1. A: Average 722 

relative abundance of operational taxonomic units (OTUs, 97% sequence identity; abundance > 100 723 

reads; complete dataset given in C below, row 839) after 24 h of incubation of human faecal samples 724 

(n=3, fermentation 1, 6 h samples were excluded; individual donor data are given under B below, 725 

row 213) with different NDCs at pH 5.5 and 6.5. Assignment to butyrate or propionate producing 726 

status based on closest known species is given in columns AR-AY; Partial least squares regression of 727 

association with acetate, propionate or butyrate in columns AX-BJ. B: Relative abundance of 728 
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operational taxonomic units per individual donor after 24 h incubation (grey font: 6 h of incubation 729 

as 24 h sample was not available; empty cells: not enough sequences obtained for those samples). C: 730 

Number of sequence reads obtained per sample for all 1552 OTUs (97% identity; grey font: 6 h of 731 

incubation as 24 h sample was not available). 732 

 733 

Table S3: Quantitative PCR primers and annealing temperatures used in this study. 734 

 735 

Table S4: Monosaccharide composition (mol%) of the NDCs used in this study. Monosaccharides 736 

were analysed by HPAEC-PAD after methanolysis followed by TFA hydrolysis (apple pectin and 737 

rhamnogalacturonan I), mild TFA hydrolysis (oligofructose, medium-chain inulin, and long-chain 738 

inulin), and sulfuric acid hydrolysis (all other samples). 739 

 740 

Table S5: Net SCFA production and proportions after 24 h incubation of human faecal samples with 741 

different NDCs. Average and individual data from 2 fermentations (f1: d1, 2, 3 and f2: d2, 3, 4) at 742 

pH 5.5 and 6.5. 743 

 744 
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Table 1: NDCs used for anaerobic in vitro incubations with human faecal samples in fermentation (f) 1 and 2 and their suppliers. 

Class NDC Commercial name and supplier f1 f2 

α-glucans Pyrodextrin Fibersol-2; gifted by Matsutani, Itami-City, Japan x  

 Pullulan Megazyme, Bray, Ireland (Cat No P-PULLN) x  

 Resistant starch type II Hylon VII, National Starch & Chemical Comp., Bridgewater, USA x  

 Resistant starch type III Novelose330, National Starch & Chemical Comp., Bridgewater, USA  x  

ß-glucans β-Glucan from barley  Megazyme, Bray, Ireland (Cat No P-BGBL) x  

 β-Glucan from barley  Glucagel, PolyCell Technologies, Crookston, USA  x 

 Laminarin  Sigma Aldrich, UK (Cat No L9634) x  

 "Laminarin"1 Shaanxi Pioneer Biotech, China  x 

Methyl-pentose Rhamnose  Sigma Aldrich, UK (Cat No W373011) x x 

Pectins Rhamnogalacturonan from potato Megazyme, Bray, Ireland (Cat No P-RHAM1) x  

 Apple pectin  Sigma Aldrich, UK (Cat No 76282) x x 

Galactomannans Carob galactomannan Megazyme, Bray, Ireland (Cat No P-GALML) x  

 Guar galactomannan Megazyme, Bray, Ireland (Cat No P-GGMMV) x  

Hemicellulose Arabinoxylan Megazyme, Bray, Ireland (Cat No P-WAXYL) x  

Inulin-type fructans Oligofructose, DP=2-8 Orafti P95, gifted by Beneo, Tienen, Belgium x  



2 
 

 Medium-chain inulin, average DP≥10 Orafti GR, Beneo, Tienen, Belgium x  

  Long-chain inulin, average DP ≥23  Orafti HP, gifted by Beneo, Tienen, Belgium x x 

1Chemical analysis suggests that a large portion of this NDC does not seem to be bona fide laminarin (for details see Methods) 1 

 2 



 

 
 

Table 2: Operational taxonomic units (OTUs) from 454 sequencing analysis of fermentation 1 exhibiting a significant increase on specific 

NDCs and pH values (P<0.001, see Table S2). 

OTU 

No. 

closest relative bacterial species 

(BLAST) 

Identity Non-digestible carbohydrate 

pH 5.5 pH 6.5 

Otu0002 Faecalibacterium prausnitzii  99% apple pectin1,2 apple pectin1,2 

 carob galactomannan1,2 

Otu0003 Clostridium spiroforme  93% laminarin1,2 

Otu0005 Bacteroides uniformis  100% pyrodextrin1,2 

laminarin1,2 

guar galactomannan1,2 

Otu0006 Blautia faecis  99% rhamnose1,2 rhamnose1,2 

Otu0010 Fusicatenibacter saccharivorans  99% laminarin1 

   carob galactomannan1,2  

Otu0013 Subdoligranulum variabile  99% arabinoxylan1,2 

Otu0017 Oscillibacter ruminantium 96%  rhamnogalacturonan1 

Otu0018 Dorea longicatena  99% pullulan 

guar galactomannan 



 

 
 

   medium-chain inulin1,2  

Otu0024 Lactobacillus rogosae  96% rhamnogalacturonan1 

   guar galactomannan  

Otu0026 Parabacteroides merdae  98% guar galactomannan1 

Otu0027 Bacteroides thetaiotaomicron  99% barley β-glucan1 

Otu0031 unclassified carob galactomannan1 

guar galactomannan guar galactomannan1 

Otu0037 unclassified rhamnogalacturonan1 

Otu0041 Flavonifractor plautii  96% pullulan1 rhamnogalacturonan1 

Otu0043 Eubacterium ventriosum  98% pyrodextrin 

pullulan1 

laminarin1 

Otu0045 Bacteroides ovatus  100% barley β-glucan1 

Otu0055 Clostridium bolteae  97% rhamnogalacturonan   

1also significant after removal of samples with <97% Good’s coverage 1 

2also significant after subsampling to lowest coverage (426 sequence reads) 2 
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f NDC 

p
H

 5
.5

 

Pyrodextrin 1 0.9 1.5 1.2 0.7 1.1 0.5 1.6 1.0 0.8 1.4 1.7 0.7 1.2 0.7 0.8 1.5 1.2 1.0 1.9 3.4 
Pullulan 1 0.6 1.9 3.0 0.7 0.7 0.3 3.1 1.6 1.3 2.1 1.8 0.8 4.3 0.5 0.9 3.5 5.7 4.5 1.9 2.4 
Type II RS 1 0.8 1.9 12.8 1.1 1.1 0.5 3.6 1.3 2.1 2.5 1.8 1.1 5.5 0.7 1.0 8.3 14.9 3.4 7.3 3.8 
Type III RS 1 0.8 2.5 13.8 1.1 1.1 0.4 2.6 1.5 1.6 1.3 1.2 1.2 3.2 0.8 0.8 3.5 6.7 1.7 2.8 2.6 
ß-Glucan 1 0.6 2.5 1.2 0.8 1.5 0.3 2.4 2.0 1.4 3.3 4.2 0.8 18.4 0.6 1.1 1.2 0.8 0.8 1.6 2.9 
ß-Glucan 2 1.6 2.2 1.5 nd 0.6 0.6 5.7 2.7 1.7 2.2 2.6 0.7 10.6 0.5 0.7 3.1 3.0 2.3 2.8 1.1 
Laminarin 1 1.2 1.6 1.6 1.2 0.7 0.7 1.6 2.3 1.7 2.1 1.3 2.3 2.0 0.6 0.8 0.7 0.8 0.8 1.0 2.6 
Rhamnose 1 1.0 1.2 1.2 1.2 0.9 0.4 1.3 1.5 3.2 0.7 5.7 0.6 2.3 0.6 0.7 0.7 0.6 0.8 1.0 2.2 
Rhamnose 2 1.7 1.0 1.3 nd 0.3 0.8 1.1 1.1 12.8 0.6 13.3 0.8 2.0 0.4 0.4 1.1 1.1 1.0 1.0 0.9 
Rhamnogal.ur. 1 1.5 2.9 1.2 0.8 1.2 0.5 1.5 0.9 2.6 1.0 1.4 1.1 1.1 1.5 0.6 1.0 1.1 1.2 1.5 3.6 
Apple Pectin 1 0.9 3.4 2.3 0.7 0.9 0.4 1.4 1.2 1.5 1.9 1.3 1.1 2.7 1.5 1.1 2.0 2.1 1.9 2.6 5.3 
Apple Pectin 2 1.3 2.8 1.4 nd 0.3 1.1 1.2 1.2 2.8 0.9 1.6 1.6 1.4 1.7 0.5 2.3 2.2 1.6 1.9 1.4 
Carob gal.man. 1 0.4 0.8 0.4 0.7 0.3 0.1 0.9 0.5 0.4 0.4 0.5 0.5 12.8 0.2 0.3 0.5 0.3 0.2 1.2 2.2 
Guar gal.man. 1 1.2 1.2 1.7 4.6 0.7 0.8 1.8 1.1 0.7 0.6 1.4 1.7 3.7 0.6 0.7 0.7 0.7 0.7 0.8 1.9 
Arabinoxylan 1 0.6 0.9 1.2 0.8 0.9 0.3 1.8 1.4 1.1 2.6 1.2 0.7 1.9 0.5 0.7 5.3 5.5 12.0 4.5 2.9 
Oligofructose 1 0.8 1.8 4.4 1.0 1.3 0.5 3.5 1.6 2.4 4.7 1.9 1.7 4.1 0.7 1.2 7.0 8.0 5.5 7.3 11.5 
MC Inulin 1 0.5 2.4 4.2 0.6 1.2 0.3 4.2 1.6 1.8 5.2 2.2 1.2 4.2 0.5 1.2 1.7 1.8 1.6 2.2 6.7 
LC Inulin 1 0.5 2.2 4.2 0.7 1.0 0.2 3.7 1.4 1.8 5.2 2.8 1.2 4.7 0.5 0.9 1.5 1.5 1.4 1.9 5.9 
LC Inulin 2 0.9 1.9 2.3 1.1 1.3 0.3 3.5 1.1 1.5 7.4 3.1 0.8 2.7 0.4 0.5 5.3 5.3 2.0 1.5 2.1 

p
H

 6
.5

 

Pyrodextrin 1 2.2 0.3 0.5 0.8 0.2 0.4 1.1 0.6 0.1 0.1 0.2 1.4 1.0 0.4 0.3 0.1 0.1 0.7 0.1 nd 
Pullulan 1 2.1 1.2 1.8 1.3 0.8 0.3 2.4 1.2 2.0 1.2 1.6 1.0 2.7 0.8 1.2 2.1 8.3 2.5 0.0 0.8 
Type II RS 1 1.0 1.4 6.3 1.0 0.9 0.4 4.1 1.9 2.3 1.3 2.3 1.2 1.0 0.6 0.6 3.6 4.6 1.7 4.7 0.9 
Type III RS 1 1.2 0.7 7.0 0.9 0.3 0.5 2.0 0.9 0.4 0.2 0.3 1.1 2.1 0.4 0.3 0.4 0.6 0.6 0.1 0.0 
ß-Glucan 1 1.5 0.7 0.4 1.2 0.5 0.3 3.2 3.2 0.3 0.3 0.5 0.7 9.8 0.4 0.4 0.2 0.1 0.4 0.1 nd 
ß-Glucan 2 2.6 2.2 0.9 nd 0.3 0.8 4.6 4.5 3.2 1.7 1.8 0.8 9.5 0.7 1.2 2.5 2.5 2.4 1.8 1.1 
Laminarin 1 2.8 1.0 1.0 0.9 0.8 0.5 1.0 9.0 1.9 1.2 1.5 1.3 0.8 0.6 1.8 1.2 0.8 1.7 1.1 0.7 
Rhamnose 1 1.6 0.6 0.4 0.9 0.3 0.3 0.7 0.6 0.8 0.2 0.7 0.2 1.5 0.3 0.3 0.2 0.2 0.4 0.1 0.0 
Rhamnose 2 1.5 1.3 2.0 nd 0.3 1.2 1.0 0.9 17.9 0.8 12.4 1.0 0.9 0.8 0.7 1.4 1.3 1.1 1.0 0.8 
Rhamnogal.ur. 1 2.6 0.7 0.3 0.7 0.2 0.7 0.5 0.6 0.5 0.2 0.2 1.2 1.4 4.1 0.4 0.1 0.1 0.5 0.2 nd 
Apple Pectin 1 1.2 1.9 0.9 0.9 0.9 0.5 1.1 1.1 1.7 1.1 1.5 1.2 0.9 2.7 0.8 1.6 1.4 1.4 1.5 1.7 
Apple Pectin 2 1.7 5.9 1.3 nd 0.1 1.5 1.2 0.9 7.4 1.0 1.5 1.5 1.1 1.9 0.7 2.4 2.3 1.9 1.7 1.3 
Carob gal.man. 1 1.6 0.6 0.5 1.3 0.3 0.3 1.5 0.7 0.3 0.4 0.4 1.0 5.4 0.3 0.6 0.4 0.4 0.9 0.3 nd 
Guar gal.man. 1 2.2 1.0 1.0 2.2 0.6 0.5 2.5 0.8 1.0 0.9 1.3 1.0 4.7 0.7 1.4 0.4 1.0 1.8 0.8 0.9 
Arabinoxylan 1 1.2 0.3 0.3 0.7 0.1 0.3 5.0 1.2 0.2 0.7 0.2 1.4 1.3 0.3 0.5 0.2 0.1 1.7 0.6 nd 
Oligofructose 1 1.4 1.7 1.8 1.5 1.1 0.4 2.4 1.2 3.7 2.5 2.2 1.5 2.2 0.9 1.0 2.8 9.1 3.2 8.0 3.0 
MC Inulin 1 1.3 1.9 1.6 1.3 1.3 0.4 3.1 1.3 2.9 2.6 2.8 1.4 2.6 0.8 1.2 1.6 7.0 2.3 0.1 2.8 
LC Inulin 1 1.0 1.1 0.8 1.3 0.4 0.3 2.1 1.1 0.4 0.8 0.7 1.3 2.2 0.4 0.5 0.6 1.1 0.9 0.1 nd 
LC Inulin 2 1.6 3.1 1.4 nd 1.1 0.8 2.1 0.9 4.3 3.1 3.3 1.0 1.0 0.6 1.2 5.8 4.9 2.3 1.1 1.5 

fold- 
change: 

≤1 

>1 

>2.5 

>5 

>10 
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Supplementary information 1 

 2 

Supplementary methods 3 

 4 

In vitro fermentations  5 

The medium contained (per L): 1 g casein hydrolysate, 1 g yeast extract, 2 g K2HPO4, 3.2 g 6 

NaHCO3, 4.5 g NaCl, 0.5 g MgSO4.7H2O, 0.4 g CaCl2.2H2O, 0.005 g FeSO4.7H2O, 0.01 g 7 

haemin, 0.05 g bile salts, 0.6 ml resazurin (0.1%), 0.5 g cysteine HCl, 3.6 ml volatile fatty 8 

acid (VFA) solution (containing per 40 ml: 17 ml acetic acid, 1 ml n-valeric acid, 1 ml iso-9 

valeric acid, 1 ml iso-butyric acid), 20 ml NaOH (10 mM), 2 ml mineral solution (containing 10 

per L: 500 mg EDTA, 200 mg FeSO4.7H2O, 10 mg ZnSO4.7H2O, 3 mg MnCl2.7H2O, 30 mg 11 

H3BO3, 20 mg CoCl2.6H2O, 1 mg CuCl2.2H2O, 2 mg NiCl2.6H2O, 3 mg NaMoO4.2H2O, 7.5 12 

mg NaSeO3), 1.4 ml vitamin solution (containing per L: 1 g menadione, 2 g biotin, 2 g 13 

pantothenate, 10 g nicotinamide, 0.5 g cobalamine, 4 g thiamine, 5 g p-aminobenzioc acid; 14 

filter-sterilised) and 0.2% (wt/vol) of the test NDC. NDC stock solutions were prepared 15 

anaerobically by flushing with CO2 at 1% in water and boiled for 1 min. Cysteine was added 16 

to the medium following boiling and dispensed into Hungate tubes while they were flushed 17 

with CO2. The vitamin solution and the NDCs were added from stock solutions after 18 

autoclaving of the medium, directly before inoculation with the faecal suspension. 19 

 20 

454 sequencing 21 

DNA concentrations from the cell pellets of the fermentations were measured using the 22 

Quant-iT™ PicoGreen® dsDNA Assay Kit (Life Technologies, Paisley, UK) and microplate 23 

reader (TECAN Safire II, TECAN, Reading, UK). As triplicate DNA samples showed 24 

comparable concentrations they were pooled into one sample using 10 µl of each 25 



2 
 

DNA/sample, DNA concentrations measured again by NanoDrop (NanoDrop Technologies, 26 

Wilmington, DE, USA) and diluted to 30 ng/µl. PCR of the V1-V3 region of the 16S rRNA 27 

genes was performed in quadruplicate for each pooled sample (template concentration 60 ng) 28 

using primers 7F (5’AGAGTTTGATYMTGG-3’; note that this primer is not optimal for 29 

amplification of Bifidobacterium species) and 534R (5’ATTACCGCGGCTGCTGG-3’) fitted 30 

with the Roche adaptor A (reverse primer) and B (forward primer) fused to the 5’ end of the 31 

primer. The reverse primer additionally contained a 12 nucleotide long unique barcode 32 

sequence. Quadruplicate PCR amplicons were combined and gel purified using the Wizard® 33 

SV Gel and PCR Clean-Up System (Promega, Madison, USA) and DNA concentration 34 

measured using PicoGreen as described above. Amplicons were pre-pooled (50 samples/pool, 35 

2 ng DNA/sample) and sequenced on a GS FLX 454 platform by the Centre of Genomic 36 

Research of the University of Liverpool. Bioinformatics were conducted in-house using 37 

Mothur v. 1.34.4. software platform (Schloss et al., 2009) on the University of Aberdeen’s 38 

HPC cluster (Maxwell). All data extraction, pre-processing, analysis of operational 39 

taxonomic units (OTUs), and classifications were performed using modules implemented in 40 

the Mothur v. 1.34.4. software platform. In total 1 652 684 reads were generated of which 41 

879 706 reads remained in the dataset after several QC steps (denoising and filtering poor 42 

quality reads; removal of chimeric molecules and reads from chloroplast, mitochondria, 43 

archaea, eukaryote and unknown sequences, (Quince et al., 2011)). Two samples failed to 44 

generate any sequences and three samples with reads <20 were excluded from analysis (Table 45 

S2B). OTUs were generated at ≥97% sequence identity, which resulted in 1552 OTUs (Table 46 

S2C), and the relative abundance was calculated on the whole dataset. Rare OTUs only 47 

present in a few samples cannot be analysed statistically for their response to different NDCs, 48 

therefore the reference sequences of OTUs with an overall abundance of >100 reads (201 49 

OTUs, 95.6-99.8% of sequence reads per sample) were analysed using the BLAST algorithm 50 
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(Altschul et al., 1990) and compared to the taxonomy from the SILVA database (Quast et al., 51 

2013) used in the Mothur analysis and assigned accordingly. OTUs were then assigned to 52 

their corresponding qPCR assays if possible. Any OTUs with BLAST assignment to species-53 

level primers below 97% and group-specific primers below 93% were analysed using the 54 

BLAST algorithm against the complete NCBI database (Altschul et al., 1990) and the top 55 

100% identity sequence was inspected for primer binding sites (for details see Table S2A). 56 

Sequencing data generated during this study are available in the SRA database under SRA 57 

accession SRP078412 and is accessible at http://www.ncbi.nlm.nih.gov/sra/SRP078412.  58 

 59 

 60 

Polysaccharide analysis  61 

All analyses were performed in duplicate. To evaluate authenticity and purity of the NDCs 62 

used in this study, their monosaccharide composition was analysed by HPAEC-PAD after 63 

acid hydrolysis as described previously (Wefers & Bunzel, 2015). The fructan samples 64 

(oligofructose, medium-chain inulin, and long-chain inulin) were hydrolysed with 1 M 65 

trifluoroacetic acid (TFA) for 30 min at 70°C, because fructose is degraded at elevated 66 

temperatures and high acid concentrations (Carpita et al, 1991). For the two pectin samples 67 

(apple pectin and rhamnogalacturonan I), methanolysis (1.25 M methanolic HCl, 80°C, 16 h) 68 

followed by TFA hydrolysis (2 M TFA, 121°C, 1 h) was performed (Wefers & Bunzel, 2015; 69 

De Ruiter et al, 1992). All other samples were analysed by sulfuric acid hydrolysis as 70 

described previously (Wefers & Bunzel, 2015; Saeman et al, 1945). Briefly, the 71 

polysaccharides were swollen in 12 M sulfuric acid for 2.5 h, diluted, and hydrolysed for 3 h 72 

at 100°C.  73 

Laminarin samples were analysed by methylation analysis as described previously (Wefers & 74 

Bunzel, 2015). Briefly, laminarin samples from Sigma Aldrich and Shaanxi Pioneer Biotech 75 
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were dissolved in dimethylsulfoxide and methylated by using powdered sodium hydroxide 76 

and methyl iodide. After extraction, trifluoroacetic acid hydrolysis, NaBD4 reduction, and 77 

acetylation, the partially methylated alditol acetates were analysed by GC-MS and GC-FID. 78 

The compounds were identified by their mass spectra and retention times and quantified by 79 

using FID response factors described previously (Sweet et al, 1975).  80 

 81 

 82 

Statistical analysis 83 

Each of the two fermentation studies provided data from three donors, with 15 (fermentation 84 

1) or four (fermentation 2) NDCs plus a no-NDC control tested at two pH levels. The 85 

metabolite data were analysed by ANOVA for each study separately, with donor as random 86 

effect and with NDC, pH and their interaction as fixed effects. To identify NDCs that 87 

stimulate metabolite production, they were compared against the no-NDC control for each of 88 

the two pH levels, based on post-hoc t-tests with the appropriate standard error of the 89 

difference and residual degrees of freedom derived from the ANOVA output. 90 

Bacterial 16S rRNA gene copies/ml culture obtained from qPCR were expressed relative 91 

to the no-NDC control for each donor and pH for each fermentation study. To achieve 92 

normality and constant variance, these ratios were log transformed, and were then analysed 93 

by ANOVA as follows. For fermentation 1, the data from pH 5.5 and 6.5 were analysed 94 

separately (as for this fermentation the 24 h sample for the no-NDC control for donor 2 at pH 95 

5.5 was not available, therefore this donor was omitted for analysis of pH 5.5 data), with 96 

donor as a random effect and NDC as fixed effect. For fermentation 2, donor was taken as 97 

random effect and NDC, pH and their interaction as fixed effects. The mean log ratios and 98 

their corresponding 95% confidence intervals were back-transformed to allow for 99 

presentation of these findings in a meaningful manner (geometric means). To identify NDCs 100 
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that significantly altered the bacterial abundance compared to that of the no-NDC control (i.e. 101 

is the log-transformed ratio significantly different from 0), post-hoc t-tests were performed 102 

with the appropriate SEM and residual degrees of freedom derived from the ANOVA output. 103 

Statistical analysis of the qPCR data was performed only on those bacterial groups that were 104 

present in all three donors for each fermentation study (Table S1). Furthermore, for those 105 

substrates that were tested in both fermentations, the qPCR and SCFA data were summarised 106 

by Principal Components Analysis (PCA). To explore relationships between the bacterial 107 

abundance obtained from qPCR and SCFA production, the SCFA production was regressed 108 

on log bacterial 16S rRNA gene copies/ml culture observed at 24 h using a mixed effects 109 

model, combining data from both fermentations. Variation between donors and variation 110 

between years within donor were incorporated as random effects, and with fermentation, pH, 111 

log bacterial 16S rRNA gene copies/ml culture, and their interactions as fixed effects. 112 

For fermentation 1, percentage bacterial composition data based on 454 sequencing were 113 

analysed by ANOVA with donor as a random effect and with NDC, pH and their interaction 114 

as fixed effects. To identify NDCs that significantly altered the percentage of bacteria 115 

compared to the inoculum, the percentage data were expressed as differences with respect to 116 

the inoculum and then analysed by ANOVA (as described above), followed by post-hoc t-117 

tests with the appropriate SEM and residual degrees of freedom derived from the ANOVA 118 

output. To investigate associations between OTU and SCFA production, OTU which are 119 

known to produce butyrate were aggregated into 'known butyrate producers' and the observed 120 

butyrate production was regressed on these combined OTU, with variation between donors 121 

incorporated as random effect and with % known butyrate producers, pH, and their 122 

interaction as fixed effects. This was repeated in a similar fashion for propionate. 123 

Furthermore, Partial Least Squares, which is an exploratory multivariate analysis, was 124 
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employed to investigate if any OTU whose role in SCFA production is unknown, were 125 

flagged up as being associated with butyrate, propionate, or acetate production.  126 

The agreement between the 454 sequencing and qPCR methods between corresponding 127 

bacterial groups (expressed as percentage of total bacteria) was investigated by linear 128 

regression. 129 

All analyses are based on 24 h samples only. Analyses were performed in R (R Core Team 130 

(2012). R: A language and environment for statistical computing. R Foundation for Statistical 131 

Computing, Vienna, Austria. http://www.R-project.org). The R library nlme was used for 132 

random effects regression. 133 

For the mixed effects regression and simple linear regression P<0.05 was regarded 134 

significant. For the ANOVA analyses and subsequent post-hoc comparisons, however, to 135 

reduce the reporting of false positives due to the large number of comparisons, an effect was 136 

considered significant only when P<0.001. 137 

 138 

 139 
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Supplementary Figures 

 

Fig. S1: Rarefaction curves of 454 sequencing data. The inset shows collectors curves of observed OTUs 
for the two samples with the lowest number of sequences. 
  
Fig. S2: Relative abundance of 50 most abundant OTUs after 24 h incubation of human faecal samples 
from fermentation 1 with different NDC from full sequence dataset (A) compared to corresponding OTUs 
after subsampling to 426 sequence reads (B). 
  
Fig. S3: Total ion current chromatograms of laminarin purchased from Sigma (A) and Shaanxi Pioneer 
Biotech (B). Marked partially methylated alditol acetates were identified by their mass spectra and 
semiquantitatively determined by GC-FID. 
  
Fig. S4: Relationship between log bacterial 16S rRNA gene copies/ml culture and propionate or butyrate 
production. Combined qPCR data from fermentations f1 and f2 for Bacteroides spp. (A), A. hadrus (B), F. 
prausnitzii (C) and the Roseburia groups (D). SCFA production was regressed on log bacterial 16S rRNA 
gene copies/ml culture observed at 24 h using a mixed effects model with donor and year within donor 
regarded as random effects, and with fermentation, pH, log bacterial 16S rRNA gene copies/ml culture, 
and their interactions as fixed effects. Significant effects (P<0.05) are listed above each plot. pH 5.5: blue, 
pH 6.5: red, fermentation 1: circles, fermentation 2: +. Lines correspond to the fit for each year and pH 
combination (solid lines: fermentation 1, dashed lines: fermentation 2). 
  
Fig. S5: Relative abundance of OTUs after 24 h incubation of human faecal samples with different NDCs. 
Average data from three donors from fermentation 1 analysed by 454 sequencing. OTUs are grouped 
together per corresponding qPCR assay. Assignment of individual OTUs to corresponding qPCR groups are 
given in Table S2. This figure also provides a comparison of the microbiota composition between the 
inoculum and no-NDC (24 h incubation) control. Certain groups, notably Blautia spp., Roseburia and E. 
hallii, appear to have decreased in relative abundance from the inoculum to the 24 h incubation (no-NDC) 
at both pH values. Possibly these groups may be less able to replicate and/or become more prone to cell 
lysis in the absence of an added carbohydrate energy source; this effect may therefore have amplified 
some of the changes shown in Fig. 2, which compares 24 h incubations with and without added NDCs. 
  
Fig. S6: Linear regression analysis between microbial composition as determined by qPCR and 454 
sequencing. The analysis was performed for bacterial groups that were detected by both methods (C. 
eutactus was only found in D3 by qPCR, corresponding OTU-137 was found in 6 and 3 of 31 samples, 
respectively, in D1 and D2, see Table S2). Blue, donor 1; green, donor 2; purple, donor 3; lighter colours pH 
5.5; darker colours pH 6.5. 
  
Fig. S7: Relative abundance of 100 most abundant OTUs after 24 h incubation of human faecal samples 
from fermentation 1 with different NDCs (white - black: 0 - 51%). Relative production of the corresponding 
SCFA is given at the top of each heat map (white - black: 0 - 47%). OTUs showing a significant increase 
(P<0.001) under certain conditions, compared to inoculum, are indicated by * (for details see Table 2). 
NDC abbreviations as per Fig. 4. 
  
Fig. S8: Principal component analysis of relative SCFA and qPCR data of NDCs included in both 
fermentation years. A: scores plot colour-coded by donor and year. B: scores plot colour-coded by NDC. C: 
scores plot colour-coded by pH. NDC abbreviations as per Fig. 4; pH 6.5, italics. D: loading plot of 
variables. Ac, acetate; But, butyrate; Prop, propionate; Ahad, A. hadrus; Bact, Bacteroides spp; Bif, 
Bifidobacterium spp.; Blaut, Blautia spp.; Dorea, Dorea spp.; Ehal, E. hallii; Fprau, F. prausnitzii; Neg, 
Negativicutes; Osc, Oscillibacter group; Rbro, R. bromii; Rfla, R. flavefaciens group; Rinul, R. inulinivorans; 
Ros, Roseburia group. 
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