

Gorlatch, S. and Steuwer, M. (2015) Towards high-level programming for systems with

many cores. Lecture Notes in Computer Science, 8974, pp. 111-126.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/148976/

Deposited on: 2 October 2017

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/148976/
http://eprints.gla.ac.uk/148976/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Towards High-Level Programming
for Systems with Many Cores

Sergei Gorlatch and Michel Steuwer

University of Muenster, Germany
gorlatch@wwu.de and michel.steuwer@wwu.de

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-662-46823-4_10.

Abstract. Application development for modern high-performance sys-
tems with many cores, i.e., comprising multiple Graphics Processing Units
(GPUs) and multi-core CPUs, currently exploits low-level programming
approaches like CUDA and OpenCL, which leads to complex, lengthy
and error-prone programs. In this paper, we advocate a high-level pro-
gramming approach for such systems, which relies on the following two
main principles: a) the model is based on the current OpenCL standard,
such that programs remain portable across various many-core systems,
independently of the vendor, and all low-level code optimizations can
be applied; b) the model extends OpenCL with three high-level features
which simplify many-core programming and are automatically translated
by the system into OpenCL code. The high-level features of our pro-
gramming model are as follows: 1) memory management is simplified and
automated using parallel container data types (vectors and matrices);
2) a data (re)distribution mechanism supports data partitioning and gener-
ates automatic data movements between multiple GPUs; 3) computations
are precisely and concisely expressed using parallel algorithmic patterns
(skeletons). The well-defined skeletons allow for semantics-preserving
transformations of SkelCL programs which can be applied in the process
of program development, as well as in the compilation and optimization
phase. We demonstrate how our programming model and its implementa-
tion are used to express several parallel applications, and we report first
experimental results on evaluating our approach in terms of program size
and target performance.

1 Introduction

Modern computer systems become increasingly many-core as they comprise, in
addition to multi-core CPUs, also Graphics Processing Units (GPUs), Intel Xeon
Phi Coprocessors, FPGA, etc. with hundreds and thousands of cores.

The application programming for many-core systems is currently quite complex
and error-prone. As the most prominent example, GPUs are programmed using
explicit, low-level programming approaches CUDA [17] and OpenCL [13]. Even
on a system with one GPU, the programmer is required to explicitly manage
GPU’s memory, including memory (de)allocations and data transfers, and also
to explicitly describe parallelism in the application.

2

For multi-GPU systems, CUDA and OpenCL make programs even more
complex, as codes must explicitly implement data exchanges between the GPUs,
as well as disjoint management of individual GPU’s memories, with low-level
pointer arithmetics and offset calculations.

In this paper, we address these main challenges of the contemporary many-
core programming, and we present the SkelCL (Skeleton Computing Language) –
our high-level approach to program many-core systems with multiple GPUs.

The SkelCL programming model extends the standard OpenCL approach
with the following high-level mechanisms:

1) parallel container data types : data containers (e.g., vectors and matrices) that
are automatically managed on GPUs’ memories in the system;

2) data (re)distributions : a mechanism for specifying suitable data distributions
among the GPUs in the application program and automatic runtime data
re-distribution when necessary;

3) parallel skeletons: pre-implemented high-level patterns of parallel computation
and communication, customizable to express application-specific parallelism
and combinable to larger application codes.

The high-level, formally defined programming model of SkelCL allows for semantics-
preserving transformations of programs for many-cores. Transformations can be
used in the process of high-level program development and in optimizing the
implementation of SkelCL programs.

The remainder of the paper is structured as follows. In Section 2 we describe
our high-level programming model and we illustrate its use for several example
applications in Section 3. Section 4 discusses using transformations for optimizing
skeleton programs, and Section 5 presents our current SkelCL library imple-
mentation. Section 6 reports experimental evaluation of our approach regarding
program size and performance. We compare to related work and conclude in
Section 7.

2 SkelCL: Programming Model and Library

In this section, we first explain our main design principles for a high-level
programming model. We present the high-level features of the SkelCL model and
illustrate them using well-known use cases of parallel algorithms.

2.1 SkeCL as Extension of OpenCL

We develop our SkelCL [21] programming model as an extension of the standard
OpenCL programming model [13], which is currently the most popular approach
to programming heterogeneous systems with various accelerators, independently
of the vendor. At the same time, SkelCL aims at overcoming the problematic
aspects of OpenCL which make its use complicated and error-prone for the
application developer.

3

In developing SkelCL, we follow two major principles:

First, we take the existing OpenCL standard as the basis for our approach.
SkelCL inherits all advantageous properties of OpenCL, including its portability
across different heterogeneous parallel systems and low-lev code optimization
possibilities. Moreover, this allows the application developers to remain in the
familiar programming environment, develop portable programs for various many-
core systems of different vendors, and apply the proven best practices of OpenCL
program development and optimization.

Second, our model extends OpenCL gradually: the program developer can
either design the program from the initial algorithm at a high level of abstraction
while some low-level parts are expressed in OpenCL, or the developer can decide
to start from an existing OpenCL program and to replace some parts of the
program in a step-by-step manner by corresponding high-level constructs. In
both cases, the main benefit of using SkelCL is a simplified software development,
which results in a shorter, better structured high-level code and, therefore, the
overall maintainability is greatly improved.

SkelCL is designed to be fully compatible with OpenCL: arbitrary parts
of a SkelCL code can be written or rewritten in OpenCL, without influencing
program’s correctness. While the main OpenCL program is executed sequentially
on the CPU – called the host – time-intensive computations are offloaded to
parallel processors – called devices. In this paper, we focus on systems comprising
multiple GPUs as accelerators, therefore, we use the terms CPU and GPU, rather
than more general OpenCL terms host and device.

2.2 Parallel Container Data Types

The first aspect of traditional OpenCL programming which complicates appli-
cation development is that the programmer is required to explicitly manage
GPU’s memory (including memory (de)allocations, and data transfers to/from
the system’s main memory). In our high-level programming model, we aim at
making collections of data (containers) automatically accessible to all GPUs in
the target system and at providing an easy-to-use interface for the application
developer. SkelCL provides the application developer with two container classes –
vector and matrix – which are transparently accessible by both, the CPU and
the GPUs. The vector abstracts a one-dimensional contiguous memory area, and
the matrix provides a convenient access to a two-dimensional memory area.

In a SkelCL program, a vector object is created and filled with data as in the
following example (matrices are created and filled analogously):

Vector<int> vec(size);

for (int i = 0; i < vec.size(); ++i){ vec[i] = i; }

The main advantage of the parallel container data types in SkelCL as compared
with the corresponding data types in OpenCL is that the necessary data transfers
between the memories of the CPU and GPUs are performed by the system
implicitly, as explained further in the implementation section.

4

2.3 Data (Re-)Distributions

To achieve scalability of applications on systems comprising multiple GPUs, it is
crucial to decide how the application’s data are distributed across all available
GPUs. Applications often require different distributions for their computational
steps. Distributing and re-distributing data between GPUs in OpenCL is cumber-
some because data transfers have to be managed manually and performed via the
(host) CPU. Therefore, it is important for a high-level programming model to
allow both for describing the data distribution and for changing the distribution
at runtime, such that the system takes care of the necessary data movements.

SkelCL offers the programmer a distribution mechanism that describes how a
particular container is distributed among the available GPUs. The programmer
can abstract from explicitly managing memory ranges which are spread or shared
among multiple GPUs: the programmer can work with a distributed container as
a self-contained entity.

SkelCL currently offers four kinds of distribution: single, copy, block, and
overlap. Fig. 1 shows how a matrix can be distributed on a system with two
GPUs. the single distribution (omitted in the figure) means that matrix whole
data is stored on a single GPU (the first GPU if not specified otherwise). The
copy distribution in Fig. 1 copies matrix data to each available GPU. By the block
distribution, each GPU stores a contiguous, disjoint chunk of the matrix. The
overlap distribution splits the matrix into one chunk for each GPU; in addition,
each chunk contains a number of continuous rows from the neighboring chunks.
Figure 1c illustrates the overlap distribution: GPU 0 receives the top chunk
ranging from the top row to the middle, while GPU 1 receives the second chunk
ranging from the middle row to the bottom.

2.4 Patterns of Parallelism (Skeletons)

While the concrete operations performed in an application are (of course)
application-specific, the general structure of parallelization often follows common
parallel patterns that are reused in different applications. For example, operations
can be performed for every entry of an input vector, which is the well-known map
pattern of data-parallel programming, or two vectors are combined element-wise
into an output vector, which is again the common zip pattern of parallelism.

CPU

GPUs0 1

(a) copy

CPU

GPUs0 1

(b) block

CPU

GPUs0 1

(c) overlap

Fig. 1. Distributions of a matrix in SkelCL (without single).

5

SkelCL extends OpenCL by introducing such high-level programming patterns,
called algorithmic skeletons [10]. Formally, a skeleton is a higher-order function
that executes one or more user-defined (so-called customizing) functions in a pre-
defined parallel manner, while hiding the details of parallelism and communication
from the user. We show here for brevity the definitions of some basic skeletons on
a vector data type. We do this semi-formally, with v, vl and vr denoting vectors
with elements vi, vli and vri where 0 < i ≤ n, correspondingly:

– The map skeleton applies a unary customizing function f to each element of
an input vector v, i. e.:

map f [v1, v2, . . . , vn] = [f(v1), f(v2), . . . , f(vn)]

– The zip skeleton operates on two vectors vl and vr, applying a binary
customizing operator ⊕ pairwise:

zip (⊕) [vl1, vl2, . . . , vln] [vr1, vr2, . . . , vrn] =

[vl1 ⊕ vr1, vl2 ⊕ vr2, . . . , vln ⊕ vrn]

– The reduce skeleton computes a scalar value from a vector using a binary
associative operator ⊕, i. e.:

red (⊕) [v1, v2, . . . , vn] = v1 ⊕ v2 ⊕ · · · ⊕ vn
These basic skeletons can be composed to express more complex algorithms. For
example, the dot product of two vectors a and b of length d is defined as:

dotProduct(a, b) =

d∑
k=1

ak · bk (1)

which can be easily expressed using our basic skeletons zip and reduce, customized
by multiplication and addition, correspondingly:

dotProduct(a, b) = red (+) (zip (·) a b) (2)

As an example of a non-basic skeleton, we present here the allpairs skeleton.
All-pairs computations occur in a variety of applications, ranging from pairwise
Manhattan distance computations in bioinformatics [6] to N-Body simulations in
physics [4]. These applications follow a common computation scheme: for two
sets of entities, the same computation is performed for all pairs of entities from
the first set combined with entities from the second set. We represent entities as
d-dimensional vectors, and sets of entities as corresponding matrices. The allpairs
skeleton with a customizing binary operation ⊕ on vectors is defined as follows:

allpairs(⊕)

 a1,1 · · · a1,d...

...
an,1 · · · an,d

 ,
 b1,1 · · · b1,d...

...
bm,1 · · · bm,d

 def

=

 c1,1 · · · c1,m...
...

cn,1 · · · cn,m

 ,
with entries ci,j computed as follows: ci,j = [ai,1 · · · ai,d]⊕ [bj,1 · · · bj,d].

Let us consider a first simple example application which can be expressed by
customizing the allpairs skeleton with a particular function ⊕. The Manhattan
distance (or L1 distance) is defined for two vectors, v and w, of equal length d:

6

ManDist(v, w) =

d∑
k=1

|vk − wk| (3)

In [6], the so-called Pairwise Manhattan Distance (PMD) is studied as a funda-
mental operation in hierarchical clustering for data analysis. PMD is obtained by
computing the Manhattan distance for every pair of rows of a given matrix. This
computation for arbitrary matrix A can be expressed using the allpairs skeleton
customized with the Manhattan distance defined in (3):

PMD(A) = allpairs(ManDist) (A,A) (4)

3 Programming in SkelCL

In original OpenCL, computations are expressed as kernels which are executed
in a parallel manner on a GPU: the application developer must explicitly specify
how many instances of a kernel are launched. In addition, kernels usually take
pointers to GPU memory as input and contain program code for reading/writing
single data items from/to it. These pointers have to be used carefully, because
no boundary checks are performed by OpenCL.

The programming model of SkelCL differs from OpenCL: rather than writing
low-level kernels, the application developer customizes suitable skeletons by
providing application-specific functions which are often much simpler than kernels
as they specify an operation on basic data items rather than containers. Skeletons
are created as objects by providing customizing functions which, for technical
reasons, must not be recursive and may only contain OpenCL C (not C++) code.

3.1 Example: Dot Product of Vectors

Equation (2) expresses the dot product of two vectors as a composition of
two skeletons, zip and reduce. In SkelCL, a zip skeleton object customized by
multiplication is created and then used as follows:

Zip<float> mult("float func(float x,float y){ return x*y;}");

resultVector = mult(leftVector, rightVector);

The necessary reduce skeleton customized by addition is created similarly as an
object and then called as follows:

Reduce<float> sum("float func(float x,float y){ return x+y;}");

result = sum(inputVector);

These definitions lead directly to the SkelCL code for dot product shown in
Listing 1.1 (8 lines of code plus comments). The OpenCL-based implementation
of dot product provided by NVIDIA [17] requires 68 lines (kernel function: 9 lines,
host program: 59 lines), i.e., it is significantly longer than our SkelCL code.

7

1 skelcl ::init(); /* initialize SkelCL */

2 /* create skeleton objects: */

3 Zip <float > mult(

4 "float mult(float x,float y) {return x*y;}");

5 Reduce <float > sum (

6 "float func(float x,float y) {return x+y;}");

7 /* create input vectors and fill with data: */

8 Vector <float > A(SIZE); fillVector(A);

9 Vector <float > B(SIZE); fillVector(B);

10 /* execute skeleton objects: */

11 Vector <float > C = sum(mult(A,B));

Listing 1.1. A SkelCL code for computing the dot product of two vectors

3.2 Example: Matrix Multiplication

Matrix multiplication is a basic linear algebra operation, which is a building block
of many scientific applications. An n×d matrix A is multiplied by a d×m matrix
B, producing an n×m matrix C = A×B whose element Ci,j is computed as the
dot product of the ith row of A with jth column of B. The matrix multiplication
can be expressed using the allpairs skeleton introduced in Section 2.4 as follows:

A×B = allpairs(dotProduct)
(
A,BT

)
(5)

where BT is the transpose of matrix B.
Listing 1.2 shows the SkelCL program for computing matrix multiplication

using the allpairs skeleton; the code follows directly from the skeleton formulation
(5). In the first line, the SkelCL library is initialized. Skeletons are implemented as
classes in SkelCL and customized by instantiating a new object, like in line 2. The
Allpairs class is implemented as a template class specified with the data type
of matrices involved in the computation (float). This way the implementation
can ensure the type correctness by checking the types of the arguments when
the skeleton is executed in line 10. The customizing function – specified as a
string (lines 3–7) – is passed to the constructor. SkelCL defines custom data types
(float vector t in line 3) for representing vectors in the code of the customizing

1 skelcl ::init();

2 Allpairs <float > mm(

3 "float func(float_vector_t ar , float_vector bc) {\

4 float c = 0.0f;\

5 for (int i = 0; i < length(ar); ++i) {\

6 c += getElementFromRow(ar ,i) * getElementFromCol(bc ,i);}\

7 return c; }");

8 Matrix <float > A(n, k); fill(A);

9 Matrix <float > B(k, m); fill(B);

10 Matrix <float > C = mm(A, B);

Listing 1.2. Matrix multiplication in SkelCL using the allpairs skeleton.

8

function. Helper functions are used for accessing elements from the row of matrix
A and the column of matrix B (line 6). The transpose of matrix B required by
the definition (5) is implicitly performed by accessing elements from the columns
of B using the helper function getElementFromCol. After initializing the two
input matrices (line 8 and 9), the calculation is performed in line 10.

4 Transformation Rules for Optimization

Our approach is based on formally defined algorithmic skeletons. This allows for
systematically applying semantics-preserving transformations to SkelCL programs
with the goal of their optimization. In this section, we briefly illustrate two types
of transformation rules: specialization rules and (de)composition rules.

4.1 Specialization Rule: Optimizing the Allpairs Skeleton

Specialization rules enable optimizations of skeleton implementations using addi-
tional, application-specific semantical information. We illustrate specialization for
our allpairs skeleton and the matrix multiplication example. If the customizing
function f of the allpairs skeleton can be expressed as a sequential composition
(denoted with ◦) of zip and reduce customized with a binary operator � and a
binary, associative operator ⊕.:

f = reduce (⊕) ◦ zip (�) (6)

then an optimized implementation of the allpairs skeleton for multiple GPUs can
be automatically derived as described in detail in [20].

By expressing the customizing function of the allpairs skeleton as a zip-reduce
composition, we provide additional semantical information about the memory
access pattern of the customizing function to the skeleton implementation, thus
allowing for improving the performance. The particular optimization using (6)
takes into account the OpenCL programming model that organizes work-items
(i. e., threads executing a kernel) in work-groups which share the same GPU
local memory. By loading data needed by multiple work-items of the same work-
group into the fast local memory, we can avoid repetitive accesses to the slow
global memory. The semantical information of the zip-reduce pattern allows
the implementation to load chunks of both involved vectors into the small local
memory and reduce them there, before processing the next chunks. That means
that the two skeletons zip and reduce are not executed one after the other, but
rather the optimized implementation interleaves these two steps. This results in
a significant performance gain, as described in Section 6.

For the Pairwise Manhattan Distance, we can express the customizing function
as a zip-reduce composition, using the binary operator a	b = |a−b| as customizing
function for zip, and addition as customizing function for the reduce skeleton:

ManDist(a, b) =

n∑
i=1

|ai − bi| = (reduce (+) ◦ zip ()) [a1 · · · an] [b1 · · · bn]

9

1 skelcl ::init();

2 Zip <float > mult(

3 "float func(float x, float y) { return x*y; }");

4 Reduce <float > sum_up(

5 "float func(float x, float y) { return x+y; }");

6 Allpairs <float > mm(sum_up , mult);

7 Matrix <float > A(n, d); fill(A);

8 Matrix <float > B(d, m); fill(B);

9 Matrix <float > C = mm(A, B);

Listing 1.3. Matrix multiplication in SkelCL using the specialized allpairs skeleton.

Similarly, as already demonstrated by (2), dot product (which is the cus-
tomizing function of allpairs for matrix multiplication) can be expressed as a
zip-reduce composition. The corresponding optimized SkelCL code is shown in
Listing 1.3. In lines 2 and 3, the zip skeleton is defined using multiplication as
customizing function and in lines 4 and 5, the reduce skeleton is customized
with addition. These two customized skeletons are passed to the allpairs skeleton
on its creation in line 6. This triggers our specialization rule and an optimized
implementation is generated. In line 9, the skeleton is executed taking two input
matrices and producing the output matrix.

Currently, SkelCL implements such customization of the allpairs skeleton by
a combination of the zip and reduce skeleton as a special case. Therefore, the
allpairs skeleton in Listing 1.3 accepts a zip and reduce skeleton as customizing
functions instead of a string as shown earlier in Listing 1.2. We plan to generalize
this in the future and allow arbitrary skeletons to be used as customizing functions
of other skeletons – of course when the types match.

4.2 Composition Rules: Optimizing Scan and Reduce

In this section we present examples of composition rules which allow the applica-
tion programmer to systematically apply transformations to SkelCL programs
with the goal of optimization.

Our examples involve the scan skeleton (a. k. a. prefix-sum) which yields
an output vector with each element obtained by applying a binary associative
operator ⊕ to the elements of the input vector up to the current element’s index:

scan (⊕) [v1, v2, . . . , vn] = [v1, v1 ⊕ v2, . . . , v1 ⊕ v2 ⊕ · · · ⊕ vn]

The scan skeleton has been well studied and used in many parallel applications [5].

– Scan-Reduce Composition: This rule allows for a composition of scan
followed by reduction to be expressed as a single reduction operating on pairs
of values. For arbitrary binary, associative operators ⊕ and ⊗, such that ⊗
distributes over ⊕, it holds:

red(⊕) ◦ scan(⊗) = π1 ◦ red (〈⊕,⊗〉) ◦ map pair (7)

10

where function pair, π1 and operator 〈⊕,⊗〉 are defined as follows:

pair a
def
= (a, a), (8)

π1 (a, b)
def
= a, (9)

(s1, r1) 〈⊕,⊗〉 (s2, r2)
def
= (s1⊕(r1⊗s2) , r1⊗r2) (10)

– Scan-Scan Composition: This rule allows to replace two repetitive scan
skeletons by a single one.
For associative operators ⊕ and ⊗, where ⊗ distributes over ⊕,

scan (⊕) ◦ scan (⊗) = (11)

mapπ1 ◦ scan (〈⊕,⊗〉) ◦ map pair

Besides composing skeletons together, it also sometimes pays off to decompose
them, for example to split a reduction into multiple steps (so-called decomposition
rule). The motivation, proof of correctness and a discussion of the performance
benefits of the composition and decomposition rules can be found in [11].

5 Implementation of SkelCL

SkelCL is implemented as a C++ library which generates valid OpenCL code
from SkelCL programs. The customizing functions provided by the application
developer is combined with skeleton-specific OpenCL code to generate an OpenCL
kernel function, which is eventually executed on a GPU. A customized skeleton
can be executed on both single- and multi-GPU systems. In case of a multi-GPU
system, the calculation specified by a skeleton is performed automatically on all
GPUs available in the system.

Skeletons operate on container data types (in particular vectors and matrices)
which alleviate the memory management of GPUs. The SkelCL implementation
namely ensures that data is copied automatically to and from GPUs, instead of
manually performing data transfers as required in OpenCL. Before performing
a computation on container types, the SkelCL system ensures that all input
containers’ data is available on all participating GPUs. This may result in implicit
(automatic) data transfers from the CPU to GPU memory, which in OpenCL
would require explicit programming. Similarly, before any data is accessed on
the CPU, the implementation of SkelCL ensures that this data on the CPU is
up-to-date by performing necessary data transfers implicitly and automatically.

For multi-GPU systems, the application developer can use the distributions
directives of SkelCL introduced in Section 2.3 to specify how data is distributed
across the GPUs in the system. If no distribution is set explicitly then every
skeleton implementation selects a suitable default distribution for its input and
output containers. Containers’ distributions can be changed at runtime: this
implies data exchanges between multiple GPUs and the CPU, which are performed
by the SkelCL implementation implicitly. Implementing such data transfers in
the standard OpenCL is a cumbersome task: data has to be downloaded to the

11

A

B

C

GPU 1

GPU 2

Fig. 2. Data distributions used for a system with two GPUs: matrices A and C are
block distributed, matrix B is copy distributed.

CPU before it is uploaded to the GPUs, including the corresponding length and
offset calculations; this results in a lot of low-level code which becomes completely
hidden when using SkelCL.

For example, two SkelCL distributions are used in our multi-GPU implemen-
tation of the allpairs skeleton, as shown in Figure 2: Matrix B is copy distributed,
i. e., it is copied entirely to all GPUs in the system. Matrix A and C are block
distributed, i. e., they are row-divided into as many equally-sized blocks as GPUs
are available; each block is copied to its corresponding GPU. Following these
distributions, each GPU computes one block of the result matrix C. In the
example with two GPUs shown in Figure 2, the first two rows of C are computed
by GPU 1 and the last two rows by GPU 2. The allpairs skeleton uses these
distributions by default; therefore, no changes to the already discussed SkelCL
codes for matrix multiplication are necessary for using multiple GPUs.

The object-oriented design of SkelCL allows the developers to extend it easily:
e.g., in order to add a new skeleton to SkelCL, a new class with the skeleton’s
implementation has to be provided, while all existing classes and concepts /data
containers and data distributions) can be freely reused.

6 Experimental Evaluation

We use matrix multiplication as an example to evaluate our SkelCL implementa-
tions regarding programming effort and performance. We compare the following
six implementations of the matrix multiplication:

1. the OpenCL implementation from [14] without optimizations,
2. the optimized OpenCL implementation from [14] using GPU local memory,
3. the optimized BLAS implementation by AMD [2] written in OpenCL,
4. the optimized BLAS implementation by NVIDIA [16] written in CUDA,
5. the SkelCL implementation using the generic allpairs skeleton (Listing 1.2),
6. the SkelCL implementation optimized using specialization (Listing 1.3).

12

6.1 Programming effort

As the simplest criterion for estimating the programming effort, we use the
program size in lines of code (LoC). Figure 3 shows the number of LoCs required
for each of the six implementations. We did not count those LoCs which are
not relevant for parallelization and are similar in all six implementations, like
initializing the input matrices with data and checking the result for correctness.
For every implementation, we distinguish between CPU code and GPU code.
For the OpenCL implementations, the GPU code is the kernel definition; the
CPU code includes the initialization of OpenCL, memory allocations, explicit
data transfer operations, and management of the execution of the kernel. For
the BLAS implementations, the CPU code contains the initialization of the
corresponding BLAS library, memory allocations, as well as a library call for
performing the matrix multiplication; no definition of GPU code is necessary, as
the GPU code is defined inside the library function calls. For the generic allpairs
skeleton (Listing 1.2), we count lines 1–2 and 8–10 as the CPU code, and the
definition of the customizing function in lines 3–7 as the GPU code. For the
allpairs skeleton customized with zip-reduce (Listing 1.3), lines 3 and 5 are the
GPU code, while all other lines constitute the CPU code.

As expected, both skeleton-based implementations are clearly the shortest
due to using high-level constructs, with 10 and 9 LoCs, correspondingly. The
next shortest implementation is the cuBLAS implementation with 65 LoCs –
7 times longer than the SkelCL implementations. The other implementations
require even 9 times more LoCs than the SkelCL implementation. Besides their
length, the other implementations require the application developer to perform
many low-level, error-prone tasks, like dealing with pointers or offset calculations.
Furthermore, the skeleton-based implementations are more general, as they
can be used for arbitrary allpairs computations, while the OpenCL and CUDA
implementations perform matrix multiplication only.

0

25

50

75

OpenCL Optimized OpenCL cuBLAS clBLAS Generic allpairs
skeleton

Allpairs skeleton
with zip−reduce

Li
ne

s
of

 C
od

e

GPU Code CPU Code

Fig. 3. Programming effort (Lines of Code) of all compared implementations.

13

OpenCL Optimized OpenCL cuBLAS clBLAS Generic allpairs skeleton Allpairs skeleton with zip−reduce

0.000

0.025

0.050

0.075

0.100

0.125

1024 x 1024

0.0

0.2

0.4

0.6

0.8

2048 x 2048

0.0

2.0

4.0

6.0

4096 x 4096

Matrix Size

0

10

20

30

40

50

8192 x 8192

0

100

200

300

400

16384 x 16384

R
un

tim
e

in
 S

ec
on

ds

Fig. 4. Runtime of different matrix multiplication implementations on a NVIDIA system
for different sizes for the matrices.

6.2 Performance experiments

We performed our performance experiments with the six different implementations
of matrix multiplication on a test system using a host PC with a quad-core CPU
(Intel Xeon E5520, 2.26 GHz) and 12 GB of memory, connected to a Tesla S1070
computing system equipped with 4 Tesla GPUs. Its dedicated 16 GB of memory
(4 GB per GPU) is accessed with up to 408 GB/s (102 GB/s per GPU). Each GPU
comprises 240 streaming processor cores running at 1.44 GHz. In all experiments,
we include the time of data transfers to/from the GPU, i. e. the measured runtime
consists of: 1) uploading the input matrices to the GPU; 2) performing the actual
matrix multiplication; 3) downloading the computed result matrix.

Using one GPU. Figure 4 shows the runtime in seconds of all six implementations
for different sizes of the matrices (note that for readability reasons, all charts
are scaled differently). Clearly, the unoptimized OpenCL- and SkelCL-based
implementations are the slowest, because both do not use the fast GPU local
memory, in contrast to all other implementations. The SkelCL implementation
optimized with specialization rule performs between 5.0 and 6.8 times faster
than the implementation using the generic allpairs skeleton, but is 33% slower on
16384× 16384 matrices than the optimized OpenCL implementation using local
memory. However, the latter implementation works only for square matrices and,
therefore, omits many conditional statements and boundary checks. Not surpris-
ingly, cuBLAS by NVIDIA is the fastest of all implementations, as it is manually
tuned for NVIDIA GPUs using CUDA. The clBLAS implementation by AMD
using OpenCL is apparently well optimized for AMD GPUs but performs poorly
on other hardware. Our optimized allpairs skeleton implementation outperforms
the clBLAS implementation for all matrix sizes tested.

Using multiple GPUs. Figure 5 shows the runtime behavior of both implementa-
tions using the allpairs skeleton on up to four GPUs of our multi-GPU system.
The other four implementations (OpenCL and CUDA) are not able to handle mul-
tiple GPUs and would have to be specially rewritten for such systems. We observe

14

Generic allpairs skeleton Allpairs skeleton with zip−reduce

0

2

4

6

1 2 3 4

4096 x 4096

0

10

20

30

40

50

1 2 3 4

Number of GPUs

8192 x 8192

0

100

200

300

400

1 2 3 4

16384 x 16384

R
un

tim
e

in
 S

ec
on

ds

Fig. 5. Runtime of the allpairs based implementations using multiple GPUs.

a good scalability of our skeleton-based implementations, achieving speedups
between 3.09 and 3.93 when using four GPUs.

7 Conclusion and Related Work

This paper presents the SkelCL high-level programming model for multi-GPU
systems and its implementation as a library. SkelCL is built on top of the OpenCL
standard which provides familiar programming environment for application
developers, portability across various many-core platforms of different vendors,
and proven best practices of OpenCL programming and optimization. Our
SkelCL approach significantly raises OpenCL’s low level of abstraction: it offers
parallel patterns to express computations, parallel container data types for
simplified memory management and a data (re)distribution mechanism to improve
scalability in systems with multiple GPUs. Our data dustributions can be viewed
as instances of covers [15, 19] which define a general framework for reasoning
about possible distributions of data. Semantic-preserving transformation rules
allows for systematically optimizing SkelCL programs. The SkelCL library is
available as open source software from http://skelcl.uni-muenster.de.

There are other approaches to simplify GPU programming. SkePU [8] and
Muesli [9] are fairly similar to SkelCL, but greatly differ in their focus and
implementation, as discussed in [21]. There exist wrappers for OpenCL or CUDA
as well as convenient libraries for GPU Computing, most popular of them are
Thrust [12] and Bolt [3]. Compiler-based approaches similar to the popular
OpenMP [18] include OpenACC [1] and OmpSs-OpenCL [7]. While reducing
boilerplate in GPU-targeted applications, these approaches do not simplify the
programming process by introducing high-level abstractions as done in SkelCL.

Acknowledgments

This work is partially supported by the OFERTIE (FP7) and MONICA projects.
We would like to thank the anonymous reviewers for their valuable comments, as
well as NVIDIA for their generous hardware donation used in our experiments.

15

References

1. OpenACC Application Program Interface, 2011. Version 1.0.
2. AMD. AMD APP SDK code samples, February 2013. Version 2.7.
3. AMD. Bolt – A C++ template library optimized for GPUs, 2013.
4. N. Arora, A. Shringarpure, and R. W. Vuduc. Direct N-body kernels for multicore

platforms. In 2012 41st International Conference on Parallel Processing, pages
379–387, Los Alamitos, CA, USA, 2009. IEEE Computer Society.

5. G. E Blelloch. Prefix sums and their applications. In Sythesis of parallel algorithms,
pages 35—60. Morgan Kaufmann Publishers Inc., 1990.

6. D.-J. Chang, A.H. Desoky, M. Ouyang, and E.C. Rouchka. Compute pairwise
manhattan distance and pearson correlation coefficient of data points with GPU. In
10th ACIS International Conference on Software Engineering, Artificial Intelligences,
Networking and Parallel/Distributed Computing, pages 501–506, 2009.

7. V. K. Elangovan, R.M. Badia, and E. A. Parra. OmpSs-OpenCL programming
model for heterogeneous systems. In Hironori Kasahara and Keiji Kimura, editors,
Languages and Compilers for Parallel Computing, volume 7760 of Lecture Notes in
Computer Science, pages 96–111. Springer, 2013.

8. J. Enmyren and C. Kessler. SkePU: A Multi-Backend Skeleton Programming
Library for Multi-GPU Systems. In Proceedings 4th Int. Workshop on High-Level
Parallel Programming and Applications (HLPP-2010), pages 5–14, 2010.

9. S. Ernsting and H. Kuchen. Algorithmic skeletons for multi-core, multi-GPU
systems and clusters. International Journal of High Performance Computing and
Networking, 7(2):129–138, 2012.

10. S. Gorlatch and M. Cole. Parallel skeletons. In David A. Padua, editor, Encyclopedia
of Parallel Computing, pages 1417–1422. Springer, 2011.

11. S. Gorlatch and C. Lengauer. (De)Composition Rules for Parallel Scan and Re-
duction. In In Proc. 3rd Int. Working Conf. on Massively Parallel Programming
Models (MPPM’97), pages 23–32. IEEE Computer Society Press, 1998.

12. J. Hoberock and N. Bell (NVIDIA). Thrust: A Parallel Template Library, 2013.
13. Khronos Group. The OpenCL Specification, November 2013. Version 2.0.
14. D. B. Kirk and W. W. Hwu. Programming Massively Parallel Processors - A

Hands-on Approach. Morgan Kaufman, 2010.
15. T. Nitsche. Skeleton implementations based on generic data distributions. In 2nd

Intern. Workshop on Constructive Methods for Parallel Programming, 2000.
16. NVIDIA. CUBLAS, 2013. http://developer.nvidia.com/cublas.
17. NVIDIA. NVIDIA CUDA SDK code samples, February 2013. Version 5.0.
18. OpenMP Architecture Review Board. OpenMP API, 2013. Version 4.0.
19. P. Pepper and M. Südholt. Deriving parallel numerical algorithms using data

distribution algebras: Wang’s algorithm. In 30th Annual Hawaii International
Conference on System Sciences (HICSS), pages 501–510, 1997.

20. M. Steuwer, M. Friese, S. Albers, and S. Gorlatch. Introducing and implementing
the allpairs skeleton for programming multi-GPU systems. International Journal
of Parallel Programming, 2013.

21. M. Steuwer and S. Gorlatch. SkelCL: Enhancing OpenCL for high-level programming
of multi-GPU systems. In Malyshkin Victor, editor, Parallel Computing Technologies
- 12th International Conference (PaCT 2013), volume 7979 of Lecture Notes in
Computer Science, pages 258–272. Springer, 2013.

