The frequency of human, manual adjustments in balancing an inverted pendulum is constrained by intrinsic physiological factors

Loram, I.D., Gawthrop, P.J. and Lakie, M. (2006) The frequency of human, manual adjustments in balancing an inverted pendulum is constrained by intrinsic physiological factors. Journal of Physiology, 577(1), pp. 417-432. (doi: 10.1113/jphysiol.2006.118786)

Full text not currently available from Enlighten.

Publisher's URL: http://dx.doi.org/10.1113/jphysiol.2006.118786

Abstract

While standing naturally and when manually or pedally balancing an equivalent inverted pendulum, the load sways slowly (characteristic unidirectional duration ∼1 s) and the controller, calf muscles or hand, makes more frequent adjustments (characteristic unidirectional duration 400 ms). Here we test the hypothesis that these durations reflect load properties rather than some intrinsic property of the human neuromuscular system. Using a specialized set-up mechanically analogous to real standing, subjects manually balanced inverted pendulums with different moments of inertia through a compliant spring representing the Achilles tendon. The spring bias was controlled by a sensitive joystick via a servo motor and accurate visual feedback was provided on an oscilloscope. As moment of inertia decreased, inverted pendulum sway size increased and it became difficult to sustain successful balance. The mean duration of unidirectional balance adjustments did not change. Moreover, the mean duration of unidirectional inverted pendulum sway reduced only slightly, remaining around 1 s. The simplest explanation is that balance was maintained by a process of manual adjustments intrinsically limited to a mean frequency of two to three unidirectional adjustments per second corresponding to intermittent control observed in manual tracking experiments. Consequently the inverted pendulum sway duration, mechanically related to the bias duration, reflects an intrinsic constraint of the neuromuscular control system. Given the similar durations of sway and muscle adjustments observed in real standing, we postulate that the characteristic duration of unidirectional standing sway reflects intrinsic intermittent control rather than the inertial properties of the body.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Gawthrop, Professor Peter
Authors: Loram, I.D., Gawthrop, P.J., and Lakie, M.
College/School:College of Science and Engineering > School of Engineering
Journal Name:Journal of Physiology
ISSN:0022-3751
ISSN (Online):1469-7793
Published Online:14 September 2006

University Staff: Request a correction | Enlighten Editors: Update this record