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Abstract 34 

 35 

Understanding the different factors that may influence parasite virulence is of fundamental 36 

interest to ecologists and evolutionary biologists. It has recently been demonstrated that 37 

parasite virulence may occur partly through manipulation of host competitive ability. 38 

Differences in competitive ability associated with the social status (dominant or subordinate) 39 

of a host may determine the extent of this competition-mediated parasite virulence. We 40 

proposed that differences between subordinate and dominant birds in the physiological costs 41 

of infection may change depending on the level of competition in social groups.  We observed 42 

flocks of domestic canaries to determine dominant or subordinate birds, and modified 43 

competition by providing restricted (high competition) or ad libitum food (low competition). 44 

Entire flocks were then infected with either the avian malaria parasite, Plasmodium relictum 45 

or a control. Contrary to our predictions we found that food availability had no effect on the 46 

outcome of infection for dominant or subordinate birds, though we found evidence that our 47 

food availability manipulations did alter competition and behaviour within our experimental 48 

cages. We found that dominant birds appeared to suffer greater infection mediated morbidity 49 

in both dietary treatments, with a higher and more sustained reduction in haematocrit, and 50 

higher parasitaemia, than subordinates.  Our results show that dominance status in birds can 51 

certainly alter parasite virulence, though the links between food availability, competition, 52 

nutrition and virulence are likely to be complex and multifaceted. 53 
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1. Introduction 54 

The ability to resist and recover from pathogenic infection is one of the major fitness-55 

determining traits shared by all animals. However, often parasites will differ in their 56 

virulence, the degree of morbidity and mortality they inflict upon hosts. Understanding the 57 

factors that drive these differences in virulence is of fundamental interest. For a given host, 58 

extrinsic factors such as parasite genotype and environment may modulate parasite virulence. 59 

For example, it has been shown that parasite virulence may be altered when host environment 60 

differs in factors such as temperature (Blanford et al., 2003), host density (Steinhaus, 1958), 61 

and food availability (Bedhomme et al., 2004). Similarly, intrinsic factors such as host 62 

genotype (Lefevre et al., 2007), sex (de Roode et al., 2007) or age (Gardner and Remmington, 63 

1977) may affect parasite virulence. A further difference between hosts that may potentially 64 

shape the outcome of parasitic infection is the social status of the host, especially in vertebrate 65 

species with social hierarchies (Larcombe et al. in press). There is growing interest into how 66 

some animals, including birds, develop stable and profound differences between individuals 67 

in their behavioural profiles (Sih and Bell, 2008). How such differences in behaviour or social 68 

status translate into differences in parasite virulence following infection remains unclear. 69 

Dominance is associated with a number of benefits in wild birds, for example access to the 70 

best feeding opportunities (Parisot et al., 2004), predator free foraging sites (Schneider, 1984), 71 

roosting positions (Weatherhead and Hoysak, 1984), or mating success (Post, 1992). Despite 72 

these benefits there is increasing understanding of the costs of dominance. Social stress, the 73 

physiological stress associated with attaining or maintaining a dominant social position, has 74 

received attention as a cost of dominance (Creel et al., 1996). Several studies have 75 

demonstrated chronic elevated levels of potentially damaging hormones in dominant birds, 76 

compared with subordinates (e.g. Goymann et al., 2004; Goymann and Wingfield, 2004). In 77 
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addition, some evidence suggests that dominant individuals may have reduced immune 78 

function compared to subordinates (Li et al., 2007), although in other cases the reverse is true 79 

(Ungerfeld and Correa, 2007). In a recent experiment, we showed that parasite-mediated 80 

morbidity and mortality in canaries was dependent on the social status of the host, when 81 

receiving a reduced diet (Larcombe et al. in press). Throughout that study, all birds received a 82 

reduced quantity of seeds in a single feeder, a way to experimentally increase competition 83 

between individuals in their groups. This food manipulation may have altered the patterns of 84 

parasite virulence we observed in subordinate and dominant birds. Firstly, the energetic costs 85 

of obtaining and protecting food resources are likely to be higher for dominants than 86 

subordinates, especially since there is some evidence that dominant birds may have higher 87 

metabolic rates (Hogstad, 1987). These costs of food gathering and food site protection will 88 

be increased when less food is available. Competition-mediated differences in parasite 89 

virulence may therefore be more severe for dominants than subordinates, when food is scarce, 90 

compared to food rich environments. For socially tolerant subordinates, the influence of food 91 

availability on competition and parasite virulence, is likely to be less severe. Secondly, when 92 

flocks of birds are provided only one feeder there may be unnaturally high levels of 93 

competition compared to a more natural environment where secondary feeding sites may be 94 

available, reducing the requirement for all birds to feed simultaneously.  In this study, we 95 

tested whether mortality or morbidity of canaries infected with Plasmodium relictum differed 96 

between dominants and subordinates, receiving either a reduced or ad libitum diet. 97 

Importantly, in ad lib groups, several feeders were available in each cage meaning that 98 

dominant birds could not monopolise and protect the food resource, and more birds could 99 

feed simultaneously without encountering aggression from other birds. 100 

The goal of this study was to assess the interactive effects between social status, 101 

infection and food availability on parasite virulence using domestic canaries as hosts and 102 
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Plasmodium relictum (lineage SGS1), an avian malarial parasite. By keeping canaries in 103 

flocks of 5 birds, and scoring for consistent feeding behaviours, we divided birds into 2 104 

categories: dominant (D) and subordinate (S) within each flock. Half of the flocks received an 105 

ad lib diet, and the other half received a limited though adequate diet. Whole flocks were then 106 

either infected with Plasmodium, or given a control inoculation. Following infection, we 107 

measured morbidity (change in mass and haematocrit) and mortality of hosts, in addition to 108 

parasitaemia. We predicted that infected dominant birds would have higher 109 

morbidity/mortality than infected subordinates in reduced food groups and infected dominant 110 

birds receiving an ad lib diet would have lower morbidity/mortality, than infected dominants 111 

receiving a reduced diet. 112 

 113 
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2. Materials and methods 114 

We used 60 adult male canaries during the experiment, and prior to commencement 115 

each bird was molecularly sexed following a standard PCR technique (Fridolffson and 116 

Ellegren, 1999). We only used male canaries in the experiment as we did not wish to 117 

confound the experiment with differences between sexes, or by interactions in- and between 118 

pairs of birds. After confirming the sex of each bird, we divided the birds between 6 aviaries 119 

(2.5 * 1.5 * 2.2 m), 5 birds per aviary. Each bird was weighed, and had its tarsus length 120 

measured prior to re-housing in a new flock.  121 

2.1 Husbandry and Diet Manipulation 122 

Before commencing the diet manipulation, all cages were provided with ad libitum 123 

food (a commercial seed mix, lettuce, apple and hard-boiled egg) for 7 days. Since we were 124 

interested in determining costs of dominance and infection under different environmental 125 

conditions, we divided the flocks between two different feeding regimes. Following the 7 126 

days of acclimation, the birds were provided with either ad libitum food or reduced food. Ad 127 

lib diet consisted of 3 large round feeding dishes, each full of seeds. The feeders were 128 

deliberately interspersed throughout the cage with large gaps between to reduce contact 129 

between birds while feeding, and to allow several birds to feed at once. Reduced diet 130 

consisted of just one dish per cage, with 12g of seeds per bird per day. We had previously 131 

found that 12g of seeds is the maximum amount a single bird would eat per day (Larcombe et 132 

al. in press). This amount of seed was thus sufficient to nourish each bird, though allowed 133 

competition between birds (pers. obs). During the course of the experiment, the cages were 134 

monitored daily, and if a bird died the amount of seed was reduced accordingly in reduced 135 

food flocks. 136 
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2.2 Behavioural observation 137 

We performed behavioural observations to assess the social status and dominance 138 

related behaviours of each the birds in each flock. The procedure was similar to that outlined 139 

in Larcombe et al. (in press), but with some modifications.  The first phase of observations 140 

was carried out 3 days before the start of the experimental diets, when all birds received an 141 

identical diet. The second phase of observations took place 11 days after being placed in their 142 

flocks. We performed behavioural observations for 3 consecutive days in both phases. Each 143 

morning at 09.00 we removed the remaining seed from the day before, and left cages for 30 144 

minutes without seeds. Following the 30-minute food deprivation, we placed a seed feeder in 145 

each cage that allowed only a single bird to feed at a time. We also placed a video camera in 146 

each cage and filmed the interactions between birds at the feeder for 20 minutes, starting 147 

when the feeder was first entered. Birds were marked with non-toxic coloured pen on the back 148 

of the head or wings for identification on the video tapes.  149 

In order to score the bird’s behaviour, when the video was re-watched the 20 minute 150 

time period was divided into 10 two minute blocks. Birds were scored for the frequency of 151 

certain behaviours in each block: Primary Access (PA) to the feeder, where a bird 152 

successfully fed directly from the hole in the feeder. Secondary Access (SA), when a bird was 153 

motivated to feed, and appeared at the feeder, either attempting to feed, or pecking at 154 

discarded seeds, but did not achieve Primary Access.  Antagonistic encounters (ANT), where 155 

a bird aggressively postured towards another, typically by lowering its head and fanning and 156 

trembling its wings, or by pecking out at the other bird, sometimes escalating into a physical 157 

fight, or when a bird received these physical cues from another individual. We previously 158 

found that these behaviours are repeatable across days for canaries (Larcombe et al., in press). 159 

We summed the counts of PA, SA and ANT in pre-experiment trials, and again for the 160 
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observations taken during the experimental phase in order to analyse the change in behaviour 161 

following the experimental procedures. 162 

In this experiment we were interested in associating costs of infection and competition 163 

with differences in social behaviour. Rather than categorizing birds based on an assumption of 164 

linear hierarchies in each cage, here we scored birds as dominant or subordinate depending on 165 

the ratio of primary to secondary access to the feeder. Both these scores indicate a motivation 166 

to feed and so comparing the occasions spent as the primary bird, to a secondary bird (waiting 167 

near the feeder), offers a good approximation of the relative dominance status.   We calculated 168 

this dominance ratio based on data from the second phase of observations as (PA day 9 + PA 169 

day 10 + PA day 11 +1) / (SA day 9 + SA day 10 + SA day 11 +1). Where the ratio was ≥1 a 170 

bird was categorized as dominant, where it was <1 the bird was classified as subordinate.  We 171 

did not use the data from the first phase of observations, since at that time the seed diet was 172 

augmented with other food items (see above), and overall the birds were less motivated to 173 

feed. However, it is important to note that even allowing for this, the dominance ratio pre 174 

experiment (phase 1) was significantly positively correlated with the dominance ratio during 175 

the experiment (phase 2) (spearman’s ρ = 0.787, p < 0.0001).  176 

2.3 Experimental Infection 177 

We used the avian malaria parasite Plasmodium relictum (lineage SGS1) originally obtained 178 

from a natural population of house sparrows, and cross-transferred to naive canaries. Infected 179 

blood was cryopreserved and stored at -80°C (see details in Bichet et al., 2012). For the 180 

purpose of the present experiment, cryopreserved blood was thawed (Bichet et al., 2012) and 181 

transferred intraperitoneally to 5 domestic canaries. Eleven days post-infection (dpi), 182 

parasitaemia was evaluated from thin blood smears (absolute methanol fixation, 10% Giemsa 183 

staining, observation of 10,000 erythrocytes). Blood was collected from donors to prepare a 184 
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stock suspension diluted in PBS containing the desired number of parasites per inoculum 185 

(5x105asexual parasites) that served to infect birds. 186 

On the day of infection, we captured all birds within a flock. Each bird was weighed, 187 

and a small volume of blood was taken in a capillary tube for subsequent haematocrit 188 

assessment. Finally, the bird was either injected with Plasmodium-infected canary blood, or 189 

with control non-infected canary blood. Infected and non-infected flocks were distributed 190 

randomly throughout the aviary. 191 

 192 

2.4 Post-infection monitoring 193 

Following the experimental infection (day 0), birds were left in their flocks, and were 194 

monitored at regular intervals. We re-caught all birds on days 5, 9, 12, 15 and 19 post-195 

infection. On each of these sampling days, we took a small blood sample for haematocrit 196 

measurement and qPCR, and weighed each bird. The measurement of haematocrit can be 197 

directly representative of damage caused by malarial parasites in canaries (Spencer et al., 198 

2005, Cellier-Holzem et al., 2010). 199 

2.5 Assessing parasite intensity 200 

Parasite intensity was assessed using the quantitative PCR assay (Cellier-Holzem et al. 201 

2010). For each individual we conducted two qPCR reactions in the same run: one targeting 202 

the nuclear 18s rDNA gene of Plasmodium (Primers 18sPlasm7 (5’-AGC CTG AGA AAT 203 

AGC TAC CAC ATC TA-3’), 18sPlasm8 (5’-TGT TAT TTC TTG TCA CTA CCT CTC 204 

TTC TTT-3’), and fluorescent probe Plasm Hyb2 (5’-6FAM-CAG CAG GCG CGT AAA 205 

TTA CCC AAT TC-BHQ1-3’)) and the other targeting the 18s rDNA gene of bird (Primers 206 
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18sAv7 (5’-GAA ACT CGC AAT GGC TCA TTA AAT C-3’), 18sAv8 (5’-TAT TAG CTC 207 

TAG AAT TAC CAC AGT TAT CCA-3’) and fluorescent probe 18sAv Hyb (5’-VIC-TAT 208 

GGT TCC TTT GGT CGC TC-BHQ1-3’)).  209 

Parasite intensities were calculated as relative quantification values (RQ) as 2-(Ct 18s 210 

Plasmodium – Ct 18s Bird) using the software SDS 2.2 (Applied Biosystem). Ct represents the number 211 

of PCR cycles at which fluorescence is first detected as statistically significant above the 212 

baseline and RQ can be interpreted as the fold-amount of target gene (Plasmodium 18s 213 

rDNA) with respect to the amount of the reference gene (host 18s rDNA). All qPCR reactions 214 

were carried out in an ABI Prism 7900 cycler (Applied Biosystem). 215 

2.6 Statistical analyses 216 

For body mass, haematocrit, and parasitaemia we constructed an identical GLMM 217 

using SAS (9.1.3). This approach allows for missing values caused by mortality and/or 218 

sampling problems. RQ values of parasitaemia were log-transformed before analysis, and 219 

thereafter body mass, haematocrit and parasitaemia were modelled with a normal distribution. 220 

The models were fully factorial and included fixed factors dominance status 221 

(dominant/subordinate), infection (infected/non-infected) and diet (reduced/ad lib), in 222 

addition to time and time2 as continuous fixed effects to examine mean changes over time. We 223 

also included all possible two and three way interactions between these terms. The interaction 224 

among diet, dominance and infection were designed to test our predictions that differences in 225 

virulence between dominant and subordinate birds would depend on food availability. For 226 

parasitaemia infection and its interactions were removed from the model, since only infected 227 

birds have parasites. Additionally we had three random factors in each model. Bird identity 228 

nested within cage (bird(cage)) was added, as this allows the model to control for non-229 

independence of birds housed in the same cage over the course of the experiment, and 230 
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permitted the variance between birds to be estimated. We added cage as a random factor to 231 

estimate the variance between cages. We also used time as a random factor with bird(cage) as 232 

a subject, using an autoregressive type 1 covariance matrix to estimate within-individual 233 

variation, controlling for correlations between observations taken closer together in time.  234 

Baseline measures prior to the experiment were included for models of haematocrit and body 235 

mass. For our models explaining parasitaemia we did not have a baseline, since parasitaemia 236 

is always zero pre-infection. We also analyzed mortality using a simpler model. We tested the 237 

probability of mortality using a binary distribution, with infection, dominance, prevalence, 238 

and their interactions as fixed factors, and including cage as a random factor to control for the 239 

non-independence of birds grouped together. This model did not assess time, since very few 240 

birds died during the experiment. To analyze the change in behaviour for the birds, we used 241 

the summed frequency of each behaviour during pre-experiment and mid-experiment trials. A 242 

model was constructed that included diet, infection and time (pre- or mid-experiment) as fixed 243 

factors, and cage and bird(cage) as random factors to account for non-independence of data 244 

from the same birds housed in the same cages as before. Dominance was not included in these 245 

models as this behavioural data was used to classify subordinate and dominant birds to begin 246 

with. These counts were analyzed with a Poisson distribution. Non-significant terms were 247 

dropped from the models starting with higher-order interactions, until only significant terms 248 

remained. Throughout the results relevant statistics are reported from the final model, though 249 

statistics for non-significant terms of interest are reported from the point they were dropped 250 

from models. Degrees of freedom were corrected using the satterthwaite method.  251 

2.7 Ethical note 252 

This experiment was carried out in 2009 under the permit # 21-CAE-085 approved by 253 

departmental veterinary services. 254 
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3. Results 255 

There were no significant differences in mass (means: dominants =23.49 +/- 0.54, 256 

subordinates = 25.05 +/- 0.89, F=2.19, p =0.15) or haematocrit (means: dominants =0.427 +/- 257 

0.009, subordinates = 0.444 +/- 0.015, F=0.93, p =0.34) prior to the experiment. 258 

Food availability had no effect on change in haematocrit (Table 1). There was a significant 259 

impact of infection on haematocrit: plotting changes in haematocrit (Figure 1) shows that 260 

haematocrit reduced sooner, and the reduction was more sustained, in infected than in non-261 

infected birds. The reduction in haematocrit in non-infected birds probably reflects anaemia 262 

caused by our experimental procedures i.e. repeated capturing, handling and regular blood 263 

sampling. Overall, dominant birds also had a greater reduction in haematocrit than 264 

subordinates during the experiment, and this reduction was sustained for longer. Dominant 265 

birds reached peak anaemia on day 15 compared to day 12 in subordinates, and by day 18 266 

dominant birds had not recovered in terms of haematocrit (Table 1, Figure 2) 267 

We found a marginally non-significant interaction between dominance and time2 on 268 

parasitaemia (Table 2), and again, diet had no effect. As for haematocrit, our data show that 269 

dominant birds had a greater peak in parasitaemia than subordinate birds, though the birds 270 

appeared to recover (Figure 3). 271 

We found a significant interaction between dominance status, infection and time on post-272 

treatment body mass (Table 3). This difference appears to be driven by differences in non-273 

infected birds, where non infected dominant birds suffered a great loss of body mass 274 

throughout the experiment than non-infected subordinates (Figure 4). Surprisingly, we found 275 

no evidence that our food availability manipulation had a significant effect on body mass.  276 
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We found no evidence that mortality was affected by either dominant status (p>0.9), infection 277 

(p=0.14) or diet (p=0.12).  278 

In order to assess the success of our food-availability treatments on competition, we tested for 279 

changes in two measures of behaviour. Total frequency of feeding behaviour was analyzed to 280 

test for differences in motivation to feed. This included both primary and secondary feeding, 281 

to assess the overall motivation to feed for every bird.  Total frequency of antagonistic 282 

encounters (each time a bird was aggressive towards another bird, or encountered aggression 283 

from another bird) was analyzed to test for differences in competition. We found a significant 284 

effect of food-availability on the change in feeding (time*diet F1, 112 = 5.1, p=0.026). There 285 

was no effect of either infection or its interactions (p > 0.2 in all cases). All birds were more 286 

motivated to feed during the experiment than in pre-experimental trials, but birds fed an ad lib 287 

diet were less motivated to feed during the experiment than birds receiving a reduced diet 288 

(Figure 5).  We also found a significant interaction between infection and food-availability on 289 

antagonistic encounters (time*infection*diet F1, 108 = 5.1, p=0.02). The results were broadly 290 

similar to those for feeding behaviour: all birds were involved in more antagonistic 291 

encounters during the experiment than before, but during the experiment birds receiving the 292 

reduced diet were involved in more antagonistic encounters than those receiving an ad lib diet 293 

(Figure 6). These results strongly indicate that our dietary treatments were successful in 294 

modifying competition in the cages. The effect of infection is less clear, and appears to be 295 

driven by the low frequency of antagonistic encounters  in pre-manipulation non-infected 296 

birds receiving the ad lib diet. 297 

 298 

 299 
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4. Discussion 300 

Our aim in this experiment was to assess whether differences between subordinate and 301 

dominant canaries in the virulence of avian malaria infection were dependent on host food 302 

availability. We found that dominant birds had higher apparent costs of infection; however, 303 

we found no evidence that this was altered by the food treatment the birds received. This is a 304 

surprising result which we discuss in terms of host behaviour and physiology.  305 

Firstly, we found an effect of dominance on the change in both haematocrit and 306 

parasitaemia.  Dominant birds had a significantly greater decrease in haematocrit than 307 

subordinate birds. There was also a trend for dominant birds to have a sharper (and more 308 

variable) increase in parasitaemia than subordinate birds. These results are broadly similar to 309 

a previous experiment (Larcombe et al., in press), and our initial prediction that dominant 310 

birds would show greater post-infection morbidity and mortality than subordinates in 311 

reduced-food groups. However, we expected that this difference between social groups would 312 

be ameliorated in ad libitum groups, where the costs of protecting or monopolising a scarce 313 

food resource would not exist. In fact, there was no effect of food availability on either 314 

haematocrit or parasitaemia.  315 

In this study, the loss of haematocrit we observed in dominant birds was apparent in 316 

both infected and non-infected birds. Haematocrit readings can be used as an effective 317 

measure of the destruction of red blood cells by malaria parasites in canaries (Cellier-Holzem 318 

et al., 2010; Spencer et al., 2005), though is subject to modification by many other factors in 319 

birds (reviewed in Fair et al., 2007). Fasting and nutritional deficiencies can sometimes result 320 

in decrease in haematocrit in birds (e.g. Merino and Potti, 1998; Piersma et al., 2000), 321 

however, if this were responsible for the patterns we observed, we would expect that 322 

increased food availability would prevent reduction in haematocrit, or reduction in 323 



 1

5 

haematocrit would be associated with a concomitant decrease in body mass. We found that 324 

non-infected dominant birds suffered a greater reduction in body mass than non-infected 325 

dominants (though no difference between infected dominants and subordinates). Why then do 326 

dominant birds fare worse than we expected, even when non-infected and provided with ad 327 

lib food? We are confident that our food-availability treatments had the desired effect on 328 

competition: we found that diet significantly impacted both the propensity to feed, and the 329 

number of aggressive encounters (indicative of overall competition) between birds. Birds 330 

receiving the restricted diet were involved in significantly more antagonistic encounters, and 331 

were more motivated to feed during the experiment, that those receiving an ad lib diet. 332 

Perhaps, rather than competition, fundamental differences in physiology between dominants 333 

and subordinates determine the outcome of infection. It has been noted elsewhere that 334 

subordinate birds in captivity cannot escape their dominant competitors, leading to 335 

unnaturally increased stress levels (Katrschal et al., 1998). Our feeding treatments were 336 

designed to ameliorate the competition associated with having a shared food resource: in ad 337 

lib cages there were three feeders full of seeds, arranged such that they could not be 338 

monopolised.  Despite this, it is possible that dominant birds were still motivated to exclude 339 

other birds from the feeding territory, as they might in the wild, even though they were unable 340 

to achieve this. Chronic elevation of hormones associated with this unnatural conflict 341 

(Goymann and Wingfield, 2004) may explain why dominant birds generally decreased 342 

haematocrit compared to subordinates, or why non-infected dominants suffered greater loss in 343 

body mass than non-infected subordinates. Nonetheless, our results for haematocrit and 344 

parasitaemia show that the ability of hosts to monopolise food resources may be associated 345 

with higher parasite virulence. 346 

In this experiment, our predictions were based on the simple premise that increased 347 

food availability would ameliorate the energetic costs of infection and competition. However, 348 
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interactions between diet and malaria virulence may be more complicated than initially 349 

expected. Indeed, the assumption that generally better nutritional state in hosts will benefit 350 

resistance to parasites is far from clear cut. In humans, for example, evidence that Protein 351 

Energy Malnutrition (PEM) can actually result in decreased malaria virulence is widespread, 352 

though disputed (reviewed in Shankar, 2000). Additionally, there are some pathogens for 353 

which an over-reacting immune system is responsible for greater post-infection damage than 354 

direct parasite exploitation (Sorci and Faivre, 2009; Long and Graham, 2011), and these 355 

circumstances may favour malnourished individuals, with weaker immune responses.  Despite 356 

this, we found no evidence that our reduced diet actually helped reduce malaria virulence. 357 

A further consideration is that in this experiment we only modified one dimension of 358 

food availability: the quantity of seed available. Perhaps, the quality of food available, rather 359 

than simply the quantity, is more important in determining the outcome of parasitism.  Key 360 

nutrients in the diet such as antioxidant vitamins, minerals and carotenoids can alter immune 361 

function, and several studies have shown that dietary availability of these nutrients can have 362 

immunomodulatory effects (Bendich, 2001; McGraw and Ardia, 2003; Cha et al., 2010). 363 

Indeed, a recent study showed that canaries fed a diet supplemented with egg, lettuce and 364 

apples had markedly different responses to Plasmodium relictum infection than birds fed a 365 

control diet (Cornet et al., in press). However, although parasites achieved larger population 366 

sizes and produced more sexual stages in control host than in supplemented hosts, for a given 367 

parasitaemia supplemented birds had lower haematocrit than control birds. This shows that 368 

the links between food availability, competition, nutrition and immunity are likely to be 369 

complex and multifaceted.  370 

In this study we set out to investigate whether the virulence of malaria infection in canaries 371 

was modified by social status and/or food availability. As expected, we showed that dominant 372 
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birds appeared to suffer greater infection-mediated morbidity in reduced food flocks, 373 

however, contrary to our expectations this difference was not ameliorated by diet. Indeed, we 374 

found little evidence that greater food availability had any effect on traits specifically related 375 

to parasite virulence, despite finding that competition was increased by reducing the seed 376 

available. Our results show that dominance status in birds can certainly alter parasite 377 

virulence, though differences between individual hosts are likely to be multifaceted. Further 378 

experiments are required to disentangle the different effects of environment, host behaviour 379 

and physiology on the costs of parasitic infection.   380 
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Figure Legends 464 

Figure 1:  Haematocrit change during experiment for infected and non-infected birds. The 465 

graph shows reduction in haematocrit value from pre-experiment haematocrit for each 466 

sampling point during the experiment (higher values represent more anaemic birds).  467 

Figure 2:  Haematocrit change during the experiment in dominant and subordinate birds. Data 468 

plotted shows reduction in haematocrit value from pre-experiment haematocrit for each 469 

sampling point during the experiment (higher values represent more anaemic birds).  470 

Figure 3:  Change in parasite intensity for infected birds. The legend describes the dominance 471 

status of individuals  472 

Figure 4:  Reduction in body mass for birds during the experiment. The legend describes the 473 

dominance status and infection status of individuals  474 

Figure 5: Frequency of feeding behaviours in birds receiving an ad libitum or reduced diet, 475 

prior to- or during the experiment 476 

Figure 6: Frequency of antagonistic encounters in birds receiving an ad libitum or reduced 477 

diet, prior to- or during the experiment 478 
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