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ABSTRACT Frog virus 3 was isolated from a strawberry poison frog (Oophaga pumilio)
imported from Nicaragua via Germany to the Netherlands, and its complete genome se-
quence was determined. Frog virus 3 isolate Op/2015/Netherlands/UU3150324001 is
107,183 bp long and has a nucleotide similarity of 98.26% to the reference Frog virus 3
isolate.

Ranaviruses (family Iridoviridae, subfamily Alphairidovirinae) have caused declines of
poikilotherm populations worldwide (1–3). These viruses are commonly spread

through international trade (4–8), sometimes resulting in the introduction of virulent
strains into wild populations (9). In the Netherlands, there are two documented cases
of ranaviruses in imported specimens; the first involved frog virus 3 (FV3) in red-tailed
knobby newts (Tylototriton kweichowensis) from China (10), and the second involved
common midwife toad virus (CMTV) in poison dart frogs (Dendrobates auratus, Phyllobates
bicolor) from an undetermined location (11). Poison dart frogs imported from the Nether-
lands also experienced a frog virus 3-associated die-off upon arrival to Japan (12).

In 2015, two strawberry poison frogs (Oophaga pumilio), imported from Nicaragua
via Germany, died upon arrival to the Netherlands. No gross lesions were observed, but
histopathology revealed mild liver necrosis and intracytoplasmic basophilic inclusions
in hepatocytes and bone marrow hematopoietic cells.

Conventional PCR and sequencing of the major capsid protein from liver samples of
both animals revealed FV3, a clade of ranaviruses that, unlike CMTV, has not been
reported to occur in Dutch nature (3, 13, 14). Subsequently, a 10% organ suspension
from one animal was mixed with 1% antibiotics and inoculated on epithelioma papu-
losum cyprini cells. Once full cytopathic effect was observed, the virus was purified by
high-speed ultracentrifugation on a 36% sucrose cushion as described previously (14).
After resuspension in ice-cold phosphate-buffered saline (PBS), the DNA was extracted
with the QIAamp DNA blood minikit (Qiagen) according to the manufacturer’s protocol.
The DNA was sheared by sonication, and a library was prepared using the KAPA library
preparation kit. A MiSeq system running a V3 chemistry platform (Illumina) was used to
generate 2 � 300-nucleotide paired-end sequence reads. After quality control of the
sequence reads using Trim Galore (http://github.com/FelixKrueger/TrimGalore), a de novo
assembly using SPAdes (15) produced a contig of 107,183 bp with a total G�C content
of 54.95%. Annotations were performed manually with ORF finder at the NCBI website
to highlight putative protein products using the genome of the American FV3 isolate
(FV3-reference; GenBank accession no. AY548484) as a reference (16).

The genomic structure of the FV3 Oophaga pumilio isolate (FV3-Op) showed a
nucleotide similarity of 98.26% to the genome of FV3-reference and a 97.92% nucle-
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otide similarity to FV3-SSME (KJ175144) (17). All 98 putative open reading frames
present in other FV3-like virus counterparts were identified, with only a few features
distinct from FV3-reference, including the lack of truncation in the eukaryotic initiation
factor 2 alpha protein. It has been suggested that strains with the capacity to express
the full version of this immunomodulatory protein are more pathogenic than those
with a truncated version (18). Phylogenetic characterization using 45 ranavirus genes
positioned FV3-Op in the FV3 clade, in a separate cluster from soft-shelled turtle
iridovirus (EU627010.1) (19), Rana grylio iridovirus (JQ6545861.1) (20), and tiger frog
virus (AF389451) (21). The isolation of FV3 from imported amphibians from Nicaragua
highlights the constant risk of trade-associated introduction of foreign Ranavirus spp.

Accession number(s). This whole-genome shotgun project has been deposited in

DDBJ/ENA/GenBank under the accession no. MF360246. The version described in this
paper is the first version, MF360246.1.
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