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ABSTRACT. We study mutations of Conway-Coxeter friezes which are compatible with mu-
tations of cluster-tilting objects in the associated cluster category of Dynkin type A. More
precisely, we provide a formula, relying solely on the shape of the frieze, describing how each
individual entry in the frieze changes under cluster mutation. We observe how the frieze can
be divided into four distinct regions, relative to the entry at which we want to mutate, where
any two entries in the same region obey the same mutation rule. Moreover, we provide a com-
binatorial formula for the number of submodules of a string module, and with that a simple
way to compute the frieze associated to a fixed cluster-tilting object in a cluster category of
Dynkin type A in the sense of Caldero and Chapoton.

1. INTRODUCTION

Coxeter introduced friezes in [Cox71] in the early 1970’s, inspired by Gauss’s pentagramma
mirificum. A frieze is a grid of positive integers, with a finite number of infinite rows, where
the top and bottom rows are bi-infinite repetition of 0s and the second to top and the second
to bottom row are bi-infinite repetitions of 1s
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satisfying the frieze rule: for every set of adjacent numbers arranged in a diamond

b

a d

c

we have
ad− bc = 1.

Every frieze is uniquely determined by its quiddity sequence, that is the sequence (mii)i∈Z

of integers in the third row (the first non-trivial row) of the frieze. Moreover, it is invariant
under a glide reflection and thus periodic. The order of the frieze is one less than the number
of rows. If the order is n, then the frieze is necessarily n-periodic.

Coxeter conjectured that friezes are in bijection with triangulations of convex polygons –
a result that was proven shortly thereafter by Conway and Coxeter in [CC73a] and [CC73b]:
Friezes of order n are in bijection with triangulations of a convex n-gon. This provides a
first link to cluster combinatorics of Dynkin type A. Indeed, the theory of friezes has gained
fresh momentum in the last decade in relation to cluster theory, as observed by Caldero and
Chapoton [CC06].

Cluster algebras were introduced by Fomin and Zelevinsky in [FZ02]. They are commu-
tative rings with a certain combinatorial structure. The basic set-up of a cluster algebra is
the following: We have a distinguished set of generators, called cluster variables, which can
be grouped into overlapping sets of a fixed cardinality, called clusters. A process called mu-
tation allows us to jump from one cluster to another by replacing one cluster variable by a
unique other cluster variable. To construct a cluster algebra, we start with an initial cluster
and some combinatorial rule, for our purposes encoded in a quiver Q without loops or two-
cycles, which determines how to mutate clusters. By iterated mutation of our initial cluster
we then obtain every cluster variable of our cluster algebra after finitely many steps.

A particularly well-behaved example of cluster algebras are cluster algebras of Dynkin
type A. They are of finite type, that is, there are only finitely many clusters. In fact, clusters
in the cluster algebra of Dynkin type An−3 are in bijection with triangulations of a convex n-
gon (n ≥ 3). That is, we obtain a bijection between clusters in the cluster algebra of Dynkin
type An−3 and friezes of order n.

The goal of this paper is to complete the picture of cluster combinatorics in the context
of friezes. More precisely, we determine how mutation of a cluster affects the associated
frieze, thus effectively introducing the notion of a mutation of friezes that is compatible
with mutation in the associated cluster algebra. This provides a useful new tool to study
cluster combinatorics of Dynkin type A.

We approach this problem via (generalized) cluster categories. Cluster categories asso-
ciated to finite dimensional hereditary algebras were introduced by Buan, Marsh, Reineke,
Reiten and Todorov [BMR+06a] as certain orbit categories of the bounded derived category
of the hereditary algebra; a generalized version for algebras of global dimension 2 has been
introduced by Amiot [Ami09]. Cluster categories are certain triangulated categories which
mirror the combinatorial behaviour of the associated cluster algebras. The role of cluster
variables is taken on by the indecomposable objects, while clusters correspond to the so-
called cluster-tilting objects. There exists a notion of mutation of cluster-tilting objects, which
formally relies on the category’s triangulated structure. Briefly put, mutation replaces an in-
decomposable summand of a cluster-tilting object by a unique other indecomposable object
such that we again get a cluster-tilting object.

Caldero and Chapoton [CC06] have provided a formal link between cluster categories
and cluster algebras by introducing what is now most commonly known as the Caldero
Chapoton map or cluster character. Fixing a cluster-tilting object (which takes on the role of
the initial cluster), it associates to each indecomposable in the cluster category a unique
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cluster variable in the associated cluster algebra, sending the indecomposable summands
in the cluster-tilting object to the initial cluster. Postcomposing the Caldero Chapoton map
with the specialization of all initial cluster variables to one gives rise to the specialized Caldero
Chapoton map, whose values are positive integers.

Let now C be a cluster category of Dynkin type A, that is C = Db(kQ)/τ−1[1] where Q is
an orientation of a Dynkin diagram of type A, τ denotes the Auslander-Reiten translation
and [1] denotes the suspension in the bounded derived category Db(kQ). The specialized
Caldero Chapoton map allows us to jump directly from the cluster category with a fixed
cluster-tilting object T to a frieze F(T): For each vertex of the Auslander-Reiten quiver of C
we pick a representant of the associated isomorphism class of indecomposable objects and
label each vertex in the Auslander-Reiten quiver of C by the image of this representant under
the specialized Caldero Chapoton map. Completing accordingly with rows of 0s and 1s at
the top and bottom this yields a frieze, cf. [CC06, Proposition 5.2].

Fixing a cluster-tilting object T in C, we consider the associated cluster-tilted algebra
BT = End(T). It has been shown by Buan, Marsh and Reiten that there is an equivalence
of categories C

/
add(T[1]) ∼= mod(BT). Each indecomposable object in C thus either lies

in T[1] and can be viewed as the suspension of an indecomposable projective BT-module,
or it can be identified with a unique indecomposable BT-module. The specialized Caldero
Chapoton map sends each indecomposable summand of T[1] to 1 and each indecomposable
BT-module M to the sum, taken over dimension vectors of submodules of M, of the Euler-
Poincaré characteristic of the Grassmannians of submodules of M of a given dimension vec-
tor. Since in our setting all modules are string modules, all Grassmannians appearing in this
sum are points. Hence, the specialized Caldero Chapoton map sends an indecomposable
BT-module to the number of its submodules. The frieze F(T) associated to the cluster-tilting
object T thus has entries of 1 in the positions of the vertices associated to indecomposable
summands of T[1] and all the other entries (that do not lie in the mandatory rows of 0s and
1s at the top and bottom) are given by the number of submodules of the indecomposable
BT-module sitting in the same position in the Auslander-Reiten quiver of C.

Understanding the Caldero Chapoton map in Dynkin type A thus amounts to knowing
the number of submodules of BT-modules where BT is cluster-tilted algebra of Dynkin type
A. In Theorem 4.6, our first main result, we provide a combinatorial formula for the number
of submodules of any given indecomposable BT-module: Each BT-module is a string mod-
ule and hence has a description in terms of the lengths of the individual legs. If (k1, . . . , km)
are these lengths for an indecomposable M, then the number s(M) of submodules of M is
given by

s(M) = 1 +
m

∑
j=0

∑
|I|=m−j

∏
i∈I

ki

where the second sum runs over all admissible subsets I of {1, . . . , m} (for details see Sec-
tion 4). This formula relies on the shape (k1, . . . , km) of the module, which in turn can be
directly read off from its position in the Auslander-Reiten quiver of the cluster category, and
allows for a straight-forward combinatorial way to compute the number of submodules of
any string module, and in particular, obtain the frieze associated to a given cluster-tilting
object in C. It has been brought to our attention that parallel to our work, [CS16] established
a formula for the number of submodules in the context of snake graphs and continued frac-
tions.

Assume now that our cluster-tilting object T in C is of the form T =
⊕n

i=1 Ti, where the Ti
are mutually non-isomorphic indecomposable objects. Mutating T at Ti for some 1 ≤ i ≤ n
yields a new cluster tilting object T′ = T/Ti ⊕ T′i , to which we can associate a new frieze
F(T′). In terms of the frieze, we can think of this mutation as a mutation at an entry of value
1, namely the one sitting in the position of the indecomposable object Ti[1].
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We describe how, using graphic calculus, we can obtain each entry of the frieze F(T′)
independently and directly from the frieze F(T), thus effectively introducing the concept
of mutations of friezes at entries of value 1 that do not lie in the second or second-to-last
row of 1s. Our second main result in this paper, Theorem 6.12 provides an explicit formula
of how each entry in the frieze F(T) changes under mutation at the entry corresponding
to Ti. We observe that each frieze can be divided into four separate regions, relative to the
entry of value 1 at which we want to mutate. Each of these regions gets affected differently
by mutation. Theorem 6.12 provides an explicit formula, relying solely on the shape of
the frieze and the entry at which we mutate, that determines how each entry of the frieze
individually changes under mutation.
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2. DESCRIPTION OF THE MODULES

In this section we describe the objects in the cluster categories associated to the quivers
Q of type An, which will include quivers mutation equivalent to An. More precisely, we
describe the structure of the indecomposable modules depending on their position in the
Auslander-Reiten quivers of the cluster categories.

First we review the definition and some basic properties of the cluster category CQ associ-
ated to an acyclic quiver Q [BMR+06a], cf. also [CCS06] where a construction of the modules
and Auslander-Reiten quivers for cluster-tilted algebras of type A have been given. After
that we consider quivers Q′ which are mutation equivalent to the quivers of type An and
which may have nontrivial potential W. In that case we consider generalized cluster cate-
gories C(Q′,W), which are shown to be triangle equivalent to CQ [Ami09].

2.1. Acyclic quivers: cluster categories and AR quivers.
Let Q = (Q0, Q1) be a finite quiver, with vertices Q0 = {1, . . . , n} and arrows Q1. Re-

call that for any finite quiver Q with no oriented cycles, the cluster category CQ is defined
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as the orbit category Db(kQ)/τ−1[1] where Db(kQ) is the associated derived category of
bounded complexes, [1] is the shift functor in the triangulated category Db(kQ) and τ is the
Auslander-Reiten translation functor. It is possible to choose representatives of the inde-
composable objects in CQ to be the indecomposable kQ-modules and shifts of the indecom-
posable projective kQ-modules, i.e. ind CQ can be viewed as ind(kQ) ∪ {Pi[1]}n

i=1; here Pi is
the projective cover of the simple Si, and simple Si is the module/representation supported
at the vertex i.

The Auslander-Reiten (AR) quiver for mod(kQ) is defined as: vertices correspond to (iso-
classes of) indecomposable objects, and arrows between vertices correspond to irreducible
map between the associated objects (in general there might be several arrows, however for
the quivers mutation equivalent to An there will be at most one arrow); the mesh relations
correspond to AR sequences in mod(kQ). We now recall one of the basic theorems about
almost split sequences, which will be used in both the acyclic and mutation equivalent to
acyclic case.

Theorem 2.1. [AR77] Let Λ be an artin algebra.
(a) Let P be an indecomposable projective, not injective Λ-module and let Pt be the indecomposable
projective modules such that P is isomorphic to a direct summand of rad Pt. Then there exists an
almost split sequence (AR sequence):

0→ P→ τ−1(rad P)⊕ (⊕Pt)→ τ−1P→ 0.

(b) Consider the AR sequence, where B, C have no injective summands and I is injective: 0→ A→
B⊕ I → C → 0. Then 0 → τ−1A → τ−1B⊕ (⊕Pt) → τ−1C → 0 is an almost split sequence
where the Pt are the indecomposable projectives such that τ−1A is isomorphic to a direct summand of
rad Pt.

As a special case, when Q is acyclic quiver, and hence kQ is hereditary algebra, we have a
more precise description as follows. If Pi is projective, not injective, then there is an almost
split sequence (AR sequence):

0→ Pi → τ−1(⊕t∈a(i)Pt)⊕ (⊕t′∈a′(i)Pt′)→ τ−1Pi → 0,

where a(i) := {t ∈ Q0 | ∃(t← i) ∈ Q1} and a′(i) := {t′ ∈ Q0 | ∃(i← t′) ∈ Q1}.

The AR quiver for the cluster category CQ is very closely related to the AR quiver of the
module category mod(kQ) in the following sense: all AR sequences of kQ-modules are still
AR triangles in the cluster category CQ. The only new objects are {Pi[1]}n

i=1 and the new AR
triangles are the following. For each i ∈ Q0 let

Ii → (⊕t∈a(i)Pt[1])⊕ (⊕t′∈a′(i) It′)→ Pi[1]→ (∗)

Pi[1]→ (⊕t∈a(i)Pt)⊕ (⊕t′∈a′(i)Pt′ [1])→ Pi → . (∗∗)
The triangles (*) are the connecting triangles in the derived category Db(kQ) between
ind(kQ) and ind(kQ)[1], while the triangles (**) are the new triangles which appear in the
orbit category. (The modules Ii are injective envelopes of the simple modules Si.)

2.2. Quivers with potential which are mutation equivalent to An.
Cluster mutations of acyclic quivers, in general, do not produce another acyclic quiver,

but instead quivers with potential are obtained. We will now describe the AR quiver of the
cluster category of quivers with potential which are obtained by mutations of quivers of
type An.

Generalized cluster categories C(Q,W): Given a quiver Q with potential W, the gener-
alized cluster category C(Q,W) is defined as the quotient category perΓ/Db(Γ) where Γ is
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the associated Ginzburg algebra which is a differential graded algebra, perΓ is the category
of complexes of projective Γ-modules, and Db(Γ) is the category of differential graded Γ-
modules with finite cohomology. While this description of this category is somewhat com-
plicated, there is a beautiful theorem of Amiot, about the triangulated equivalence.

Theorem 2.2. [Ami09] Let Q be an acyclic quiver. Let (µQ, W) be the quiver with potential ob-
tained after mutation µ of Q. Then the generalized cluster category C(µQ,W) is triangle equivalent to
the cluster category CQ.

This theorem tells us that the cluster category obtained after mutation still has the same
AR quiver. However we need more precise description of the objects of the new cluster
category. In order to do that we now recall the definition of mutation.

Mutations: A mutation of a cluster-tilting object in the cluster category CQ corresponds to
the mutation of the quiver of the endomorphism algebra of the corresponding cluster-tilting
objects. We recall that an object T in the cluster category CQ is called cluster-tilting object if
Ext1
CQ
(T, T) = 0 and T = ⊕n

j=1Tj, with Tj indecomposable and pairwise non-isomorphic.
Notice that n = |Q0|.

Definition 2.3. Let T = ⊕n
j=1Tj be a cluster-tilting object in a cluster category CQ. A mutation

of T in direction i is a new cluster-tilting object µiT = T/Ti ⊕ T′i where T′i is defined as
the pseudokernel of the right add(T/Ti)-approximation of Ti or pseudocokernel of the left
add(T/Ti)-approximation of Ti:

→ T′i → B
fi−→ Ti → or → Ti

fi−→ B′ → T′i → .

Cluster mutation can also be viewed as a mutation of quivers: for each cluster-tilting
object T, let BT := EndCQ(T) and let QT be the quiver of BT. It follows from [BIRS11, Theo-
rem 5.1] that the quiver QµiT of BµiT = EndCQ(µiT) can be obtained from the quiver QT by
applying DWZ-quiver mutation as in [DWZ08].

2.3. AR quivers for C(Q,W).
We now describe the AR quiver of the generalized cluster category C(Q,W) which is ob-

tained after a sequence of mutations. We need to use the following theorem.

Theorem 2.4. [BMR07] Let C(Q,W) be a generalized cluster category. Let T be a cluster-tilting object
in C(Q,W) and let BT := EndC(Q,W)

(T).

(1) The functor HomC(Q,W)
(T,−) : C(Q,W) → mod(BT) induces an equivalence of categories

C(Q,W)/(add T[1]) ∼= mod(BT),
(2) The kernel of HomC(Q,W)

(T,−) is the subcategory add(T[1]) ⊂ C(Q,W).
(3) The modules {HomC(Q,W)

(T, Tj)}n
j=1 form a complete set of non-isomorphic indecomposable

projective BT-modules.

Using the above equivalence, the AR quiver of mod BT can be viewed as a full subquiver
of the AR quiver of C(Q,W), however we need the following precise functorial correspon-
dence between the cluster categories C(Q,W) and C(Q′,W ′) which are related by a (sequence of)
mutations. We write Pi for the indecomposable projectives of C(Q,W) and P′i for the ones of
C(Q′,W ′).

Proposition 2.5. Let C(Q,W) and C(Q′,W ′) be generalized cluster categories where (Q′, W ′) is ob-
tained after a sequence of DWZ-mutations. Let T be the cluster-tilting object obtained from ⊕n

j=1Pj

after the same sequence of cluster-tilting mutations. Then there is a triangulated functor ψ making
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the following commutative diagram:

C(Q,W)

HomC(Q,W)
(T,−)
// mod(BT)

C(Q′,W ′)
HomC

(Q′ ,W′)
(⊕n

j=1P′j ,−)

66

ψ

OO

Proof. We first prove the statement for a single DWZ-mutation µi. Let (Q′, W ′) = µi(Q, W)
and T = µi(⊕n

j=1Pj). We need a triangulated functor ψi so that

HomC(Q′ ,W′)(⊕P′j ,−) = HomC(Q,W)
(T,−) · ψi,

i.e. such that ψi(P′j ) = Pj for j 6= i and ψi(P′i ) = cone(Pi
f−→ ⊕Pt) where f is a minimal

add(⊕j 6=iPj)-approximation of Pi. Such a triangulated functor exists as a consequence of the
Keller–Yang theorem [KY11]. They consider the corresponding Ginzburg algebras Γ and Γ′

and prove existence of a triangulated functor Ψi : per Γ′ → per Γ such that Ψi(Γ′e′j) = Γej for

j 6= i and Ψi(Γ′e′i) = cone(Γei
F−→ ⊕Γet) where F is a minimal add(⊕j 6=iΓej)-approximation

of Γei. It is also shown that Ψi restricts to a functor Db(Γ′) → Db(Γ), inducing the desired
functor ψi between the cluster categories.

In order to get the general statement apply the above argument to the given sequence of
mutations. �

The AR quiver for the cluster category CAn and any generalized cluster category mutation
equivalent to An is of the following form:

��

a1,n

��

a2,n

��

a1,1

��
a1,n−1

??

a2,n−1

??

a3,n−1

??

a1,2

??

. . . . . .

��

a1,3

��

a2,3

��

a3,3 an−2,3

��

an−1,3

��

a1,n−2

��
a1,2

??

��

a2,2

??

��

a3,2

??

��

. . . an−1,2

��

??

an,2

??

��

a1,n−1

��

??

a1,1

??

a2,1

??

a3,1

?? ??

an,1

??

an+1,1

??

a1,n .

Remark 2.6. Some properties of the AR quiver for the cluster categories C(Q,W):

(1) All of the objects encompassed by {a1,1, a1,n, a2,n, an+1,1} are mutually non-
isomorphic and form a fundamental domain.

(2) Each maximal rectangle starting at the point a1,t is bounded by the corners
{a1,t, a1,n, at,1, at,n−t+1} and is contained entirely within the fundamental domain,
hence all the points are distinct.

(3) Each maximal rectangle starting at any point as,t can be viewed as starting at a1,t by
relabelling, and hence all the points within the rectangle are distinct.

(4) All the points, within any rectangle starting at any point, are distinct.
(5) Additional copies of the same points of the AR quiver are included in the above dia-

gram, in order to be able to see and describe supports of the functors HomC(Q,W)
(−,−)

and Ext1
C(Q,W)

(−,−).

2.4. Supports of Hom- and Ext- functors.
From this point on, C will denote a generalized cluster category C(Q,W) of type An.
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Even though it is known that all indecomposable modules over cluster-tilted algebras
of type An are string modules ([ABCJP10, BR87]) we need to describe the precise shape of
indecomposable modules depending on their relative position to the projectives in the AR
quiver of C. Since the indecomposable projective modules have no (non-trivial) extensions,
the possible configurations of the projectives can be determined using the supports of the
functors Ext1

C(P,−) which we now describe.

Proposition 2.7. Let C be a generalized cluster category of type An. Let X, Y be indecomposable
objects in C. Then:

(1) dimK HomC(X, Y) ∈ {0, 1}
(2) dimK Ext1

C(X, Y) ∈ {0, 1}.

Proof. (1) Since cluster-tilted algebras of type An are all of finite representation type, all the
morphisms are linear combinations of compositions of irreducible maps and dimensions of
the homomorphism spaces can be obtained from the AR quiver. We may let a1,t be the point
corresponding to the object X. Using the fact that

0 −→ HomC(X, A) −→ HomC(X, B) −→ HomC(X, C) −→ 0 (∗)

is exact for each indecomposable object X � C and each AR-triangle

−→ A −→ B −→ C −→ A[1] −→ (∗∗)

it is possible to compute the dimensions of HomC(X, Y) for all indecomposable Y. The only
non-zero homomorphisms, from the object at any point, are morphisms to the objects in
the maximal rectangle starting at that point. This follows from (*) and the fact that in the
AR triangles (**) the object B is indecomposable if A is on the edge of the AR quiver, and
otherwise B ∼= B1 ⊕ B2 with B1, B2 both indecomposable.

Since all the points in the rectangle are distinct by Remark 2.6 (3), they correspond to
distinct objects and the dimK HomC(X, Y) is a rectangle of 1’s. For example if the object X is
at the point a1,3 then the HomC(X,−) has dimensions:

0 0 1
��

0 0 0 1
��

0

0 0 1
��

??

1
��

0 0 1

??

��

1
��

0 1

??

��

1
��

??

1 0 1X

��

??

1
��

??

1

0 1

??

1

??

��

1

??

0 0 1
��

??

1
��

??

1
��

??

1

??

��

1

??

0 0 0 1

??

��

1

1X

??

��

1
��

??

1

??

0 0 0 0 1
��

??

1

??

��

1

??

0 0 0 0 0 1

0 1

??

0 0 0 0 0 0 .

dimK HomC(X,−)
The point corresponding to the object X is indicated with 1X and it stands for

dimK HomC(X, X) = 1. The other point labeled by 1X corresponds to the same object
X but it appears again since a covering of the AR quiver is drawn.

(2) In order to prove the statement that dimK Ext1
C(X, Y) ∈ {0, 1}, it is enough to use the

isomorphism Ext1
C(X, Y) ∼= D HomC(τ−1Y, X). �
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Corollary 2.8. Let C be a generalized cluster category of type An. Let X be an indecomposable object
in C. Then:

(1) The support of HomC(X,−) consist of the objects corresponding to the points in the maximal
rectangle starting at the point corresponding to X. Furthermore, the last point in the support
of HomC(X,−) corresponds to τ2X.

(2) The support of HomC(−, X) consist of the objects corresponding to the points in the maximal
rectangle ending at the point corresponding to X. Furthermore, the first point in the support
of HomC(−, X) corresponds to τ−2X.

(3) The support of Ext1
C(−, X) consist of the objects corresponding to the points in the maximal

rectangle starting at the point corresponding to τ−1X. Furthermore, the last point in the
support of Ext1

C(−, X) corresponds to τX.
(4) The support of Ext1

C(X,−) consist of the objects corresponding to the points in the maximal
rectangle ending at the point corresponding to τX. Furthermore, the first point in the support
of Ext1

C(X,−) corresponds to τ−1X.
(5) The support of Ext1

C(−, X) is the same as the support of Ext1
C(X,−) .

Proof. (1) and (2) follow from the above diagram of dim HomC(X,−) on the cover of AR
quiver. (3), (4) and (5) follow from the following diagram of the dimK Ext1

C(X, Y).

0 0 0 1
��

0 0 0 1
��

0

0 0 0 1
��

??

1
��

0 0 1

??

��

1
��

0 0 1

??

��

1
��

??

1 0X 1
��

??

1
��

??

1

0 0 1

??

1

??

��

1

??

0 0 1
��

??

1
��

??

0 1
��

??

1

??

��

1

??

0 0 0 1

??

��

1

0X 1

??

��

1
��

??

1

??

0 0 0 0 1
��

??

0 1

??

��

1

??

0 0 0 0 0 1

0 0 1

??

0 0 0 0 0 0

dimK Ext1
C(X,−)

The point corresponding to the object X is indicated with 0X and it stands for

dimK Ext1
C(X, X) = 0. The other point labeled by 0X corresponds to the same object X

but it appears again since a covering of the AR quiver is drawn. �

2.5. Configurations and structure of projectives.
Since the indecomposable projective modules have no extensions, the possible configu-

rations of the projectives can be determined using the supports of the functors Ext1
C(P,−),

i.e. avoiding maximal rectangles starting at τ−1P, which are the same as maximal rectangles
ending at τP by Corollary 2.8 (3),(4),(5).

In order to describe modules using the AR quiver and configurations of projectives, we
first recall some general facts for finite dimensional algebras.

Remark 2.9. Let Λ be a finite dimensional K-algebra. The multiplicity of the simple Si as com-
position factor of a module M is equal to the length of HomΛ(Pi, M) as an End(Pi)

op-module,
which in our case is equal to dimK HomΛ(Pi, M) since End(Pi)

op ∼= K for all indecomposable
projective modules Pi.

Definition 2.10. Let Pi, Pj be indecomposable projectives. A non-zero homomorphism ρ :
Pi → Pj is called projectively irreducible if it is not an isomorphism and for any factorization
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ρ = βα with α : Pi → Q and β : Q → Pj where Q is projective, one of the following holds:
either α is split monomorphism or β is split epimorphism.

Lemma 2.11. Let Λ be a finite dimensional algebra and ρ : Pi → Pj a projectively irreducible map.
Then Im ρ 6⊂ rad2 Pj.

Proof. If Im ρ were contained in rad2 Pj there would be another projective in between the
two, hence ρ would not be projectively irreducible. �

Lemma 2.12. Let Λ be a finite dimensional algebra and ρ : Pi → Pj projectively irreducible. Then
(1) There exists a non-split sequence 0→ Si → Z → Sj → 0.
(2) There exists an epimorphism Ψ : Pj → Z.

Proof. (1) Since ρ is not an isomorphism, there is ρ′ : Pi → rad Pj such that ρ = aρ′ where

a : rad Pj → Pj is the inclusion. Since Im ρ 6⊂ rad2 Pj, the composition Pi
ρ′−→ rad Pj

π−→
rad Pj/ rad2 Pj is non-zero with Im(πρ′) ∼= Si. Let ϕ : rad Pj → Si be the induced non-zero
map. Now use the following exact sequence and push-out diagram to define Z and the
morphism Ψ : Pj → Z:

0 // rad Pj
ϕ
��

a // Pj

Ψ��

// Sj // 0

0 // Si // Z // Sj // 0.

It follows from the diagram that Ψ is epimorphism. �

From now on we concentrate on the generalized cluster categories of type An and associ-
ated cluster-tilted algebras of type An.

Lemma 2.13. Let B be a cluster-tilted algebra of type An. Let M be an indecomposable B-module.
Then multiplicity of each simple composition factor of M is 0 or 1.

Proof. It follows from Remark 2.9 that the multiplicity of the simple Si in M is equal to
dimk HomB(Pi, M) and from Proposition 2.7 that it is equal to 1. �

We recall, that a path M0 → M1 → · · · → Ms in the AR quiver is called sectional if
τMi+1 6= Mi−1 for all i = 1, . . . , s− 1. A maximal sectional path is a sectional path which is
not a proper subpath of any other sectional path. With this definition consider the following
results.

Lemma 2.14. Let B be a cluster-tilted algebra of type An. Let P be an indecomposable projective
B-module. Then:

(1) All indecomposable projective B-modules which are in the support of HomB(−, P) are on the
maximal sectional paths to P.

(2) There are at most two projectively irreducible maps ρ : Pj → P.

Proof. (1) By Corollary 2.8 the support of HomB(−, P) is the maximal rectangle ending at P.
Also the support of Ext1

B(P,−) is the maximal rectangle ending at τP. Since Ext1
B(P, Pi) = 0

it follows that all the indecomposable projective B-modules which map to P must be on the
maximal sectional paths to P.

(2) If ρ : Pj → P is projectively irreducible, then Pj is on a sectional path ending at P and
it is the closest projective (on that path) to P. Since there are at most two different sectional
paths ending at P, the result follows. �

Lemma 2.15. Let f : Pi → P be a non-isomorphism with P indecomposable such that the induced
map Pi → rad P/ rad2 P is non-zero. Then f is projectively irreducible.
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Proof. Consider a factorization of f as f = βα through an indecomposable projective Q. We
need to show that either β is an isomorphism or α is an isomorphism. If β is not isomorphism
then it factors through rad P, hence there is γ such that β = aγ. Then f = βα = aγα and f =
aρ′ imply aγα = aρ′ (recall that a is the inclusion rad P → P). Since a is a monomorphism,
this implies γα = ρ′. By assumption πρ′ 6= 0 and hence πγα 6= 0. This, together with the fact
that rad P/ rad2 P is semisimple, imply that Im α 6⊂ rad Q. Therefore α is an isomorphism.
So f is projectively irreducible.

Q β

''
γ

��
Pi

πρ′

��

α
77

f
//

ρ′
''

P

rad P

π

��

a

77

rad P/ rad2 P

�

Proposition 2.16. Let B be a cluster-tilted algebra of type An. Let P be an indecomposable projective.
Then rad P is either indecomposable or a direct sum of two indecomposables.

Proof. Let rad P/ rad2 P = ⊕Si. Then the maps ρi : Pi → P are projectively irreducible by
Lemma 2.15 and there are at most two such maps by Lemma 2.14 (2). If there is only one
such ρi : Pi → P then rad P = Im ρi and hence indecomposable.

If there are two such maps ρi : Pi → P and ρj : Pj → P then the map Pi ⊕ Pj
ρ′i , ρ′j−−→ rad P is

an epimorphism and to see that rad P = Im ρ′i ∩ ρ′j we show that Im ρ′i ∩ Im ρ′j = 0.

Suppose there is a simple S ⊂ Im ρ′i ∩ Im ρ′j. Then there are maps P(S)
ξi−→ Pi and P(S)

ξ j−→ Pj

such that ρiξi 6= 0 and ρjξ j 6= 0 (where P(S) is the projective cover of S). Therefore P(S) is on
both sectional paths, which is impossible if they are distinct sectional paths to P. Therefore
Im ρ′i ∩ Im ρ′j = 0 and hence rad P = Im ρ′i ⊕ Im ρ′j. �

Corollary 2.17. Let ρj : Pj → P be a projectively irreducible map. Then Im ρj is a direct summand
of rad P.

Remark 2.18. Let P1
ρ1−→ P2

ρ2−→ . . . −→ Pj−1
ρj−1−−→ Pj be a sectional sequence of projectively

irreducible maps. Then ρt . . . ρ1 6= 0 and Im ρt . . . ρ1 ⊂ Im ρt for all t = 1, . . . , j − 1. In
particular S1 ⊂ Im ρt for all t = 1, . . . , j− 1.

Proposition 2.19. Let B be a cluster-tilted algebra of type An. Let P1
ρ1−→ P2

ρ2−→ . . . −→ Pt−1
ρt−1−−→ Pt

be a sectional sequence of projectively irreducible maps. Then:

(1) There exists a uniserial module Z(t) with composition factors S1, S2, . . . , St, in this order,
with soc Z(t) = S1.

(2) There is an epimorphism Ψt : Pt → Z(t).

Proof. This will be done by induction.
(t = 1) Z(1) = S1 and there is an epimorphism Ψ1 : P1 → S1.
By construction and by induction hypothesis, there is an exact sequence and the following
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maps:

0 // ker ρt // Pt

Ψt

��

ρt // Im ρt

∃ϕt
zz

// 0

Z(t)

By induction hypothesis Z(t) is uniserial with soc Z(t) = S1. Consider the induced exact
sequence:

0 −→ HomB(P1, ker ρt) −→ HomB(P1, Pt) −→ HomB(P1, Im ρt) −→ 0.

Since S1 ⊂ Im ρt by Remark 2.18 and Im ρt is indecomposable, it follows by Proposition
2.7 that dimK HomB(P1, Im ρt) = 1. Similarly we have dimK HomB(P1, Pt) = 1. Therefore
dimK HomB(P1, ker ρt) = 0. Hence ker ρt does not have S1 as composition factor and there-
fore HomB(ker ρt, Z(t)) = 0. Therefore Ψt factors through Im ρt, i.e. there exists ϕt such that
Ψt = ϕtρt. By induction Ψt is an epimorphism and since Ψt = ϕtρt, it follows that ϕt is an
epimorphism.

Since Im ρt is a direct summand of rad Pt+1, the composition ϕt p as in rad Pt+1
p−→ Im ρt

ϕt−→
Z(t), is an epimorphism. Consider the following exact sequence and define Z(t+1) and Ψt+1
using the push-out diagram:

0 // rad Pt+1

ϕt p
��

a // Pt+1

Ψt+1

��

// St+1 // 0

0 // Z(t) // Z(t+1) // St+1 // 0. (∗t)

Since ϕt p is an epimorphism it follows that Ψt+1 is epimorphism. Therefore Z(t+1) is
indecomposable and uniserial with composition factors S1, S2, . . . , St+1. �

Corollary 2.20. Let P be indecomposable projective and let

P1
ρ1−→ P2

ρ2−→ . . .
ρi−2−−→ Pi−1

ρi−1−−→ Pi
ρi−→ P

Q1
ξ1−→ Q2

ξ2−→ . . .
ξ j−2−−→ Qj−1

ξ j−1−−→ Qj
ξ j−→ P

be two sectional sequences of projectively irreducible maps. Then there is a quotient V of P such that
rad V ∼= U1 ⊕U2 where U1 and U2 are uniserial modules with composition factors S1, S2, . . . , Si
and R1, R2, . . . , Rj where St = Pt/ rad Pt for t = 1, . . . , i and Rt = Qt/ rad Qt for t = 1, . . . , j
(resp.).

Proof. Let Z(i) and W(j) be the uniserial modules and Im ρi
ϕi−→ Z(i) and Im ξi

ηj−→ W(j) epi-
morphisms as constructed in Proposition 2.19. Since rad P ∼= Im ρi ⊕ Im ξ j from Corollary
2.17, using the push-out diagram, the module V is defined:

0 // rad P

[ϕi−1,ηj−1]
t

��

a // P

Ψ

��

// P/ rad P // 0

0 //Z(i) ⊕W(j) // V // P/ rad P // 0.

�

Corollary 2.21. Let M be a module and f : P→ M a non-zero morphism. Let

P1
ρ1−→ P2

ρ2−→ . . .
ρi−2−−→ Pi−1

ρi−1−−→ Pi
ρi−→ P

Q1
ξ1−→ Q2

ξ2−→ . . .
ξ j−2−−→ Qj−1

ξ j−1−−→ Qj
ξ j−→ P



MUTATION OF FRIEZES 13

be two maximal sectional sequences of projectively irreducible maps such that f ρi . . . ρ1 6= 0 and
f ξ j . . . ξ1 6= 0. Then:

(1) Im f ∼= V where V is a quotient of P and rad V ∼= U1 ⊕U2 where U1 and U2 are uniserial
modules with composition factors S1, S2, . . . , Si with St = Pt/ rad Pt for t = 1, . . . , i and
R1, R2, . . . , Rj where Rt = Qt/ rad Qt for t = 1, . . . , j.

(2) soc Im f ∼= S1 ⊕ R1.
(3) If there is only one sectional sequence of projectively irreducible maps, then Im f is uniserial

and soc Im f ∼= S1.

Lemma 2.22. Let P1
ρ1−→ P2

ρ2−→ . . .
ρi−1−−→ Pi

ρi−→ P and Q1
ξ1−→ Q2

ξ2−→ . . .
ξ j−1−−→ Qj

ξ j−→ Q be
two sectional sequences of projectively irreducible maps. If there is a common projectively irreducible
map, then either HomB(P, Q) 6= 0 or HomB(Q, P) 6= 0.

Proof. If there is a common projectively irreducible map (up to constant) then the sequences
are on the same sectional path and the result follows. �

Lemma 2.23. Let M be indecomposable, let f : P → M and g : Q → M be summands of the
projective cover of M. Assume P 6∼= Q. If Im f ∩ Im g 6= 0 then Im f ∩ Im g is a simple module.

Proof. Consider maximal sectional sequences of projectively irreducible maps to P and Q
composed with f and g inside the support of HomB(−, M):

P1
ρ1−→ P2

ρ2−→ . . .
ρi−1−−→ Pi

ρi−→ P
f−→ M and P′1

ρ′1−→ P′2
ρ′2−→ . . .

ρ′i′−1−−→ P′i′
ρ′i′−→ P

f−→ M,

Q1
ξ1−→ Q2

ξ2−→ . . .
ξ j−1−−→ Qj

ξ j−→ Q
g−→ M and Q′1

ξ ′1−→ Q′2
ξ ′2−→ . . .

ξ ′j′−1−−→ Q′j′
ξ ′j′−→ Q

g−→ M.
Then soc Im f ∼= S1⊕ S′1 and soc Im g ∼= R1⊕ R′1. If Im f ∩ Im g 6= 0 then there are two cases:
Case (1): soc Im f = soc Im g in which case S1

∼= R1 and S′1 ∼= R′1. Since P 6∼= Q this would
require four distinct sectional paths within the rectangle of support of HomB(−, M) which
is impossible.
Case (2): S1

∼= R1 and S′1 6∼= R′1. Since P 6∼= Q and they are both part of projective cover of M
it follows that HomB(P, Q) = 0 or HomB(Q, P) = 0 and therefore the two sectional paths
from S1

∼= R1 must be different. Hence Im f ∩ Im g ∼= S1
∼= R1 which is simple. �

Construction 2.24. Procedure for describing modules. Let C be a generalized cluster cate-
gory of type An and let B be the corresponding cluster tilted algebra. Let M be an indecom-
posable B-module. Then the structure of M can be described in the following way using the
AR-quiver:

(1) Consider the rectangle in the AR-quiver ending at the point corresponding to M, i.e.
this is the support of HomC( , M) ⊃ HomB( , M).

(2) Consider all indecomposable projective B-modules which appear in this rectangle 1.
(3) Chose one of the two directions of the sectional paths.
(4) With the chosen direction, find the first maximal sectional path within the support of

HomC( , M) ⊃ HomB( , M) which contains any projective B-modules (the order on
the sectional paths is given by t if the path passes through τt M).

(5) Let P1,1
ρ1,1−→ P1,2

ρ1,2−→ . . . −→ P1,k1−1
ρ1,k1−1−−−→ P1,k1

ρ1,k1−−→ P2,1 be a maximal sequence of
projectively irreducible maps on this sectional path.

(6) Consider the second sectional path to P2,1 (if it exists).

Let P3,1
ρ′2,k2−−→ P2,k2

ρ′2,k2−1−−−→ . . . −→ P2,3
ρ′2,2−→ P2,2

ρ′2,1−→ P2,1 be a maximal sequence of
projectively irreducible maps on this sectional path.

1Note that all projectives in HomC (−, M) are also in HomB(−, M).
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(7) Consider the second sectional path out of P3,1 (if it exists).

Let P3,1
ρ3,1−→ P3,2

ρ3,2−→ . . . −→ P3,k3−1
ρ3,k3−1−−−→ P3,k3

ρ3,k3−−→ P4,1 be a maximal sequence of
projectively irreducible maps on this sectional path.

(8) Continue this way until there are no more projective B-modules in the support of
HomC( , M) ⊃ HomB( , M). This procedure must stop since there are only finitely
many projectives and each projective can appear only once by Proposition 2.7.

(9) At the end, one obtains the following maximal sequences of projectively irreducible
maps for even s ∈ {2, 4, . . . r}, in two directions along the AR-quiver:

Ps−1,1
ρs−1,1−−−→ Ps−1,2

ρs−1,2−−−→ . . . −→ Ps−1,ks−1

ρs−1,ks−1−−−−→ Ps,1 (∗)s and

Ps+1,1
ρ′s,ks−−→ Ps,ks

ρ′s,ks−1−−−→ . . . −→ Ps,3
ρ′s,2−→ Ps,2

ρ′s,1−→ Ps,1 (∗∗)s.
(10) It is possible for k1 = 0 and/or kr = 0.

Theorem 2.25. Let C be generalized cluster category of type An and let B be the corresponding
cluster tilted algebra. Let M be an indecomposable B-module. Then:

(1) M is a string module with the composition factors appearing exactly as the projective modules
appear in the projectively irreducible sequences in the Construction 2.24.(9).

(2) M/ rad M ∼= S2,1 ⊕ S4,1 ⊕ · · · ⊕ Sr,1.
(3) soc M ∼= S1,1 ⊕ S3,1 ⊕ · · · ⊕ Sr+1,1, where S1,1 and Sr+1,1 may or may not be there.

Proof. Follows from the construction which defines projective presentation of M as:

P0,1 ⊕ P3,1 ⊕ · · · ⊕ Pr+1,1
g−→ P2,1 ⊕ P4,1 ⊕ · · · ⊕ Pr,1 where:

P0,1
g1−→ P2,1 with g1 = (ρ1,k1 . . . ρ1,1)ρ1,0 is the composition of projectively irreducible maps

as in (∗)2 with additional map ρ1,0 on the same sectional path,

Pr+1,1
g′r−→ Pr,1 with g′r = (ρ′r,1 . . . ρ′r,kr

)ρ′r,kr+1 is the composition of projectively irreducible
maps as in (∗∗)r with additional map ρ′r,kr+1 on the same sectional path,

Pt,1
(g′t−1,gt)−−−−→ Pt−1,1 ⊕ Pt+1,1 with g′t−1 = (ρ′t−1,1 . . . ρ′t−1,kt−1

) is the composition of projectively
irreducible maps as in (∗∗)t−1, and gt = (ρt,kt . . . ρt,1) is the composition of projectively
irreducible maps as in (∗)t+1, for t ∈ {3, 5, . . . , r− 1}.
All other maps are zero.

�

Example 2.26. Let B = EndCA10
(T) be the cluster-tilted algebra from Example 3.1. Let us

illustrate the method of Construction 2.24 for describing the decomposition factors of some
modules M over this algebra: take for example M = 3

8 1 . (See Figure 7 for the position
of the modules in the AR quiver.) From Cor. 2.8 it follows that the projectives P1, P3 and
P8 are in the support of HomC(−, M), which is given as the maximal rectangle ending in
M. If we choose the sectional path ending at M and coming south-east from P8, we find
that P8 → P3 is a maximal sequence of projectively irreducible maps on this path. In step
(6) of the above construction we get P1 → P3. Since there are no more indecomposable
projectives in supp(HomC(−, M)), one sees that M is of the form 3

8 1 . If we had chosen the
other maximal sectional path from P4[1] to M, then there is no projective on this path. In
step (5) we consider the parallel maximal sectional paths through the τt M. Then the first

projective is P1 on the north-east path through τ3M =
1

5 2
10

. In step (6) nothing is added but
in (7) we see that P3 is on the north-east path out of P1. Finally, P8 lies on the other sectional
path to P3 and we have recovered the same M.

For another example, consider M = P7 =
7
2
3
8

. The support of Hom C(−, M) consists of the

modules on the line from P7 to P8 = 8. Since the projectives on this path are P8 → P3 →
P2 → P7, one immediately sees that P7 is uniserial.
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3. FROM CLUSTER CATEGORIES TO FRIEZES

3.1. The specialized Caldero Chapoton map.
Let C = C(Q,W) be a generalized cluster category and let T =

⊕n
i=1 Ti be a cluster-tilting

object of C with pairwise non-isomorphic indecomposable summands Ti. As before, let
BT = EndC(T) denote the cluster-tilted algebra associated to T. As we have seen in Section 2
every indecomposable object in C is either Ti[1] for some 1 ≤ i ≤ n or it can be viewed as an
indecomposable BT-module.

The specialized Caldero Chapoton map is the map we get from postcomposing the Caldero
Chapoton map associated to T with the specialization of the initial cluster variables to
one. The Caldero Chapoton map was introduced by Caldero and Chapoton [CC06] for the
acyclic case and in a much more general setting for 2-Calabi-Yau triangulated categories
with cluster-tilting objects by Palu [Pal08]. It was extended to Frobenius categories by Fu
and Keller in [FK10]. See also Section 3.5 below. The specialized Caldero Chapoton map is
defined on indecomposable objects of C by

ρT(M) =

{
1 if M = Ti[1]
∑e χ(Gre(M)) if M is a BT-module.

Here, Gre(M) is the Grassmannian of submodules of the BT-module M with dimension
vector e and χ is the Euler-Poincaré characteristic. If C is of type An and T is a cluster-tilting
object of C, then for every indecomposable BT-module M the Grassmannian Gre(M) is either
empty or a point, therefore the above formula simplifies to

ρT(M) = ∑
N⊆M

1 = s(M),

where the sum goes over submodules of M and we denote by s(M) the number of submod-
ules of M up to isomorphism (cf. [CC06, Example 3.2]).

3.2. Friezes via the specialized Caldero Chapoton map.
Let T =

⊕n
i=1 Ti be a cluster-tilting object in the cluster category CAn of type An with

pairwise non-isomorphic indecomposable objects Ti. The frieze associated to T is the frieze
we obtain in the following way: We take the Auslander-Reiten quiver of CAn and put in the
position of the indecomposable object M the positive integer ρT(M). Then we add rows of
0s and 1s at the top and bottom such that the first and last row are rows of 0s and the second
and second-to-last row are rows of 1s. This is indeed a frieze by [CC06, Proposition 5.2].
Note that while [CC06, Proposition 5.2] only shows the statement for cluster-tilting subcate-
gories whose quivers are an orientation of An, the proof can be adapted to include the other
quivers in the mutation class of an orientation of An. Alternatively, the statement follows
from the much more general result [HJ16, Theorem 5.4]. We will see in the next section how
to extend the frieze patterns to include the rows of 1s at top and bottom. We do so by using
an exact category and the variant of Palu’s cluster character defined in [FK10], this allows
us to extend ρT to the Frobenius category.

Example 3.1. Consider the cluster category CA10 . Its Auslander-Reiten quiver is the quotient
of the Auslander-Reiten quiver of Db(kA10) by the action of τ−1[1], a fundamental domain
for which is depicted in black below. We pick the cluster tilting object T =

⊕10
i=1 Ti whose

indecomposable summands are marked with circles:
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• • • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • • •

Consider the cluster tilted algebra BT = EndCA10
(T). We have BT = kQ

/
I, where Q is the

quiver

7
��

Q : 8 3oo

��

2oo // 6

__

10
��

1

??

��
9 // 5 //

__

4

__

and I is the ideal generated by the directed paths of length 2 which are part of the same
3-cycle. We refer the reader to [BMR06b] for a detailed description of cluster-tilted algebras
of Dynkin type A.

In light of Theorem 2.4 we can view mod(BT) as a subcategory of CA10 and label the
indecomposable objects in CA10 by modules and shifts of projective modules respectively:

P6[1] 6
7 P7[1]

7
2
3
8

P8[1] 8
3
1
5

10
P10[1] 10

9 P9[1]
9
5
4

P4[1]

7 6
2
3
8

7
2
3

P3[1]
3

8 1
5
10

3
1
5

9 10 5
4

9
5

1
2
6

4
7 1

2
P2[1]

2
3 6
8

2
3

7
2

1
5

10

3
8 1

5

3
1 9
5

P5[1] 5
4 10 5

9 1
5 2

6

4
1

3
8

2
3 6 2

1 7
5 2

10
1
5

3
8 1 9

5
3
1 4 5

10
1

5 2
6

9 1
5 2

1
8

4 3
1

3 2
6

1
5 2

10
1 7

5 2
9 1
5

3
8 1

4 3
1 P1[1] 5

9 1
5 2

6

3
8 1

4 3
1 P1[1]

1
5 2

10 6
1

5 2
9 1 7
5 2 1 3 4

8 1 3 2
6

1
5 2

10
1
5

3
8 1 9

5
3
1 4 5

10
1

5 2
6

9 1
5 2

7 1
2

4
1

3
8

2
3 6 2

1 7
5 2

10

3
1 9
5

P5[1] 5
4 10 5

9 1
5 2

6
1
2

4
7 1

2
P2[1]

2
3 6
8

2
3

7
2

1
5
10

3
1
5

9 10 5
4

9
5

1
2
6

4
1
2

7 6
2
3
8

7
2
3

P3[1]

P10[1] 10
9 P9[1]

9
5
4

P4[1]
4
1
2
6

P6[1] 6
7 P7[1]

7
2
3
8

P8[1] 8

Replacing each vertex labelled by a module by the number of its submodules, the shifts
of projectives by 1s and adding in the first two and last two rows of 0s and 1s gives rise to
the associated frieze:
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0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

1 3 1 5 1 2 5 1 3 1 4 1

2 2 4 4 1 9 4 2 2 3 3 4

7 1 7 3 3 4 7 7 1 5 2 11

3 3 5 2 11 3 12 3 2 3 7 8

2 8 2 3 7 8 5 5 5 1 10 5

5 5 1 10 5 13 2 8 2 3 7 8

12 3 2 3 7 8 5 3 3 5 2 11

7 1 5 2 11 3 7 1 7 3 3 4

4 2 2 3 3 4 4 2 2 4 4 1

1 3 1 4 1 5 1 3 1 5 1 2

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

Knowing the position of the 1s in the frieze, i.e. the position of the (shifts of the) inde-
composable projectives in the Auslander-Reiten quiver, is enough to determine the whole
frieze using the frieze rule. However, we can determine each entry independently: It is the
number of submodules of the indecomposable BT-module sitting in the same position in the
Auslander-Reiten quiver. In Section 2 we have seen how to determine the composition se-
ries of each module according to its position in the Auslander-Reiten quiver, and in Section
4 we will derive the number of isomorphism classes of submodules of any given indecom-
posable BT-module from its composition series. This will allow us to directly determine the
entry of the frieze solely based on its relative position to the 1s in the frieze.

3.3. Triangulations and frieze patterns.
Given a regular n + 3-gon we label its vertices clockwise 1, . . . , n + 3, and we consider

them modulo n+ 3. A diagonal with endpoints i and j is denoted by [ij]. By [CC73a, CC73b]
and [BCI74], matching numbers for diagonals in a triangulated polygon together with the
boundary segments correspond to the non-zero entries in a frieze: The boundary segments
correspond to the entries in the first and the last row of the frieze filled only with 1’s. An
entry mi−1,i+1, cf. Section 1, in the first non-trivial row corresponds to a diagonal of the form
[i − 1, i + 1], it is the number of triangles incident with vertex i. In the next row are the
mi−1,i+2, they are the matching numbers for the diagonals [i − 1, i + 2], i.e. the number of
matchings between triangles of the triangulation and vertices {i, i + 1}. In particular, apart
from the two rows of 1s, the diagonals [ij] of the triangulation are exactly the entries that
equal 1 in the frieze pattern.

3.4. Triangulations and cluster categories.
On the other hand, diagonals in an n+ 3-gon are in bijection with indecomposable objects

in the corresponding cluster category C ([CCS06]): we can define a stable translation quiver
on the diagonals [i, j] of the n + 3-gon with arrows [i, j] → [i, j − 1] and [i, j] → [i − 1, j]
(provided the endpoint is a diagonal) and translation τ([i, j]) = [i + 1, j + 1]. This quiver
is isomorphic to the AR quiver of C. In terms of the AR quiver in Section 2.3, the row of
objects aj,1, 1 ≤ j ≤ n + 1 together with a1,n, a2,n corresponds to the diagonals [i − 1, i + 1]
(i = 1, . . . , n + 3), reducing endpoints modulo n + 3. Take T a triangulation of an n + 3-gon
with diagonals di = [i1, i2] (for i = 1, . . . , n). To T , we associate the cluster-tilting object
T = ⊕Ti where Ti corresponds to the diagonal [i1 − 1, i2 − 1]. Recall that the specialized
Caldero Chapoton map ρT from Section 3.2 associates an entry 1 with every indecomposable



18 K. BAUR, E. FABER, S. GRATZ, K. SERHIYENKO, G. TODOROV

Ti[1]. In terms of the diagonals of the triangulation T , this amounts to an entry 1 for every
[ij] ∈ T as in Section 3.3.

3.5. Triangulations and a Frobenius category.
We extend ind C by adding an indecomposable for each boundary segment of the polygon

and denote the resulting category by C f . Then C f is the Frobenius category of maximal
CM-modules categorifying the cluster algebra structure of the coordinate ring of the (affine
cone of the) Grassmannian Gr(2,n) as studied in [DL16] and for general Grassmannians in
[JKS16, BKM16]. The stable category of C f is equivalent to C. We then extend the definition
of ρT to C f by setting

ρT(M) = 1 if M corresponds to a boundary segment.

This agrees with the extension of the cluster character to Frobenius category given by Fu
and Keller, cf. Theorem [FK10, Theorem 3.3].

4. NUMBER OF SUBMODULES

As in the previous section, let C = C(Q,W) be a generalized cluster category and T =⊕n
i=1 Ti be a cluster-tilting object of C with pairwise non-isomorphic indecomposable sum-

mands Ti, and BT = EndC(T) the cluster-tilted algebra associated to T. Then BT = kQ/I
and Q is mutation equivalent to type An [CCS06, Sch14]. All indecomposable modules of
kQ/I are string modules. Let M be an indecomposable module over BT, or equivalently, an
indecomposable representation of the quiver Q.

Let s(M) denote the number of submodules of M. For representations of quivers, we use
notation following [Sch14]. Let S be a simple in the support of M. Then S is a valley if S
belongs to soc(M) and S is a peak if S belongs to top(M) = M/ rad(M). We number the
simples appearing as peaks and valleys as S(i), i = 1, . . . , m. Define further modules Ni for
i = 1, . . . , m as follows:

Ni =


• max. uniserial submodules of M containing S(i) and extending S(i + 1)

if S(i) is a valley,
• max. uniserial submodules of M containing S(i + 1) and extending S(i)

if S(i) is a peak.

We call the Ni the legs of M (see Fig. 1). Then we set ki := l(Ni) for i = 1, . . . , m,
where l(Ni) denotes the composition length of the uniserial module Ni. Note that s(M)
is determined by the sequence k1, . . . , km. We say that M is of shape (k1, k2, . . . , km) and by
abuse of notation write s(k1, . . . , km) for the number of submodules of a module M of shape
(k1, . . . , km).
Note here that s(M) only depends on the shape of M: for any string module M, the number
of submodules is equal to the number of quotients, since submodules M′ are in bijection to
quotients M′′ by the short exact sequence 0 −→ M′ −→ M −→ M′′ −→ 0. Suppose that M is
of shape (k1, . . . , km) and starts with a peak. Denote by M∨ a module of the same shape but
starting with a valley. Then s(M) equals the number of quotients of M. The quotients of M
are clearly in bijection to the submodules of M∨, thus s(M) = s(M∨).

Note that the number of arguments of s(M) depends on the number of legs of M. Some-
times we need more information about M, namely the orientations and particular simples
in the support of the legs, then we write

M = (11 ← 12 ← · · · ← 1k1 ← 21 → 22 → · · · → 2k2 → 31 ← 32 ← · · · ),

if M starts with a peak, i.e. S(2) is a peak. The ij are contained in Q0. Note that here
S(1) = S11 , S(2) = S21 , etc. Written differently, see Fig. 2:
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FIGURE 1. A string module M of shape (k1, . . . , km) with legs Nl .

21

3111

12

1k1

22

2k2 32

23

FIGURE 2. Starting at S(1) = S11 . Here ij denotes the j-th simple in the i-th
leg of M.

For the number of submodules of M of shape (k1, . . . , km) we will first derive a recursive
formula in terms of certain subrepresentations of M in Lemma 4.3 and then an explicit for-
mula, only depending on the numbers ki in Thm. 4.6. The proof of the following lemma is
straightforward:

Lemma 4.1. If M is uniserial, that is, it is of the shape (k1) for some k1 ∈N then s(M) = k1 + 2 =
l(M) + 1. In particular, if M is simple, then s(M) = 2.

For modules M with m ≥ 2 one can express the number of submodules of M in terms
of submodules MS(2) and MS(2) in M. Therefore define the following: if S(1) is a valley, let
MS(2) be the maximal (proper) indecomposable submodule of M containing S(m + 1) and
MS(2) the maximal (proper) indecomposable submodule of MS(2) containing S(m + 1). If
S(1) is a peak, define MS(2), M̃S(2) dually as quotients: let MS(2) be the maximal (proper)
quotient of M containing S(m + 1) and M̃S(2) the maximal (proper) quotient of MS(2) con-
taining S(m + 1).

Example 4.2. Let M = (1 ← 2 → 3 → 4 → 5 ← 6). Here M is of shape (1, 3, 1), that is,
k1 = 1, k2 = 3, k3 = 1. The submodules of M (without indicated arrows) are:

0, (3456), (345), (456), (45) (56), (5),

(1), (1)⊕ (3456), (1)⊕ (345), (1)⊕ (456), (1)⊕ (45), (1)⊕ (56), (1)⊕ (5),

(12345), (123456).

These are 16 submodules. We have

MS(2) = (3→ 4→ 5← 6) and MS(2) = (4→ 5← 6).

Then the submodules of M can be partitioned into submodules of MS(2), (1)⊕ submodules
of MS(2) and submodules of MS(2) that contain the simple 3 glued to the first leg 1 ← 2
(these are the two modules (1 ← 2 → 3 → 4 → 5) and (1 ← 2 → 3 → 4 → 5 ← 6)). The
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cardinality of the first set is 2s(MS(2)). The others can be seen as submodules of MS(2) minus
the ones not containing 3, so there are s(MS(2))− s(MS(2)) many of them. The total number
of submodules of M is s(M) = 3s(MS(2))− s(MS(2)) = 3 · 7− 5 = 16.

Lemma 4.3. The number of submodules of M of shape (k1, . . . , km) is given by

s(M) = (k1 + 1)s(MS(2)) + s(MS(2))− s(MS(2)) = (k1 + 2)s(MS(2))− s(MS(2)),

where MS(2) and MS(2) are as defined above. In particular, if k2 > 1, then MS(2) is of shape (k2 −
1, k3, . . . , km), and MS(2) is of shape (k2 − 2, k3, . . . , km). If k2 = 1, then MS(2) = (S(3)− · · · −
S(m)) is of shape (k3, . . . , km) and MS(2) is of shape (k4 − 1, . . . , km).

Proof. Without loss of generality we may assume that S(2)
N1 N2

is a peak.
Now the number of submodules of M can be split into two parts: the first ones are direct
sums of submodules of MS(2) and submodules of N1, that is

0⊕ {submodules of MS(2)}, S(1)⊕ {submodules of MS(2)},
(11 ← 12)⊕ {submodules of MS(2)}, . . . , N1 ⊕ { submodules of MS(2)} ,

which makes a total of (l(N1) + 1) · s(MS(2)) = (k1 + 1)s(MS(2)) submodules. Note here
that we counted the zero-module in this part, as 0⊕ 0. The remaining submodules are of
the form S(2)

N1 N2
. These are the submodules of M that contain the first simple of N2 below

of S(2). One can easily see that if N ⊆ M contains some simple 2i in N2, it has to contain
the whole leg N2. Moreover if N is a submodule of M containing S(2), then N also has to
contain S(2)

N1
[see this with writing down the quiver representations]. Submodules of M are

then S(2)
N1

“glued to” submodules of MS(2) which also contain the simple just below S(2).
The number of those submodules is given by s(MS(2))− s(MS(2)). Thus in total we get

s(M) = (k1 + 1)s(MS(2)) +
(

s(MS(2))− s(MS(2))
)
= (k1 + 2)s(MS(2))− s(MS(2)).

�

Before giving an explicit formula we introduce some notation.

Definition 4.4. Let m = {1, . . . , m}. Let I be a subset in m. We may assume that the elements
in I are ordered, i.e., i1 < i2 < · · · . The interior of I = {i1, . . . , il} are the integers i2, . . . , il−1.
Then I ⊆ m is called m-admissible if “gaps” in I come in pairs i, (i + 1) in the interior of I.
This means in particular that two consecutive numbers ij, ij+1 in I, are either even–odd or
odd-even. Note that ∅ and all {i} ⊆ m are admissible.

Example 4.5. For m = 5 the admissible sets are 12345, 1234, 2345, 123, 125, 145, 345, 234, 12,
14, 34, 23, 25, 45, 1, 2, 3, 4, 5, ∅.

Theorem 4.6. Let M be of shape (k1, . . . , km). Then

s(M) =
m

∏
i=1

ki + ∑
I⊂m,|I|=m−1,
I admissible

(
∏
i∈I

ki

)
+ ∑

I⊂m,|I|=m−2,
I admissible

(
∏
i∈I

ki

)
+ · · ·+

m

∑
i=1

ki + 2.

In a more compact form:

(1) s(M) =
m

∑
j=0

∑
I⊆m,|I|=m−j,
I admissible

(
∏
i∈I

ki

)
+ 1.
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Proof. The proof is by induction on m. If m = 1, then M is uniserial and s(M) = k1 + 2 by
Lemma 4.1. The formula (1) reads for 1 = {1}, and all I ⊆ 1 are admissible:

k1 + ∏
i∈∅

ki + 1 = k1 + 2.

For m = 2, that is, M is a peak, one can use the recursion formula from lemma 4.3: here
MS(2) = N2 = (22 → 23 − · · · → 2k2−1 → S(3)) and MS(2) = (23 → · · · → 2k2−1 → S(3)).
Both MS(2) and MS(2) are uniserial. Then

s(M) = (k1 + 2)s(MS(2))− s(MS(2)) = (k1 + 2)(k2 + 1)− k2

= k1k2 + k1 + k2 + 2 ,

since s(MS(2)) = l(MS(2)) + 1 = k2 + 1 and s(MS(2)) = l(MS(2)) + 1 = (k2 − 1) + 1. Note
that if k2 = 1, then MS(2) is the zero-module and we have s(MS(2)) = 1 in this case.
For m = 2, that is, M of shape (k1, k2), the right hand side of (1) gives

k1k2 + k1 + k2 + 2,

since all I ⊆ 2 are admissible. So the formula holds for m = 2. Suppose now that the
formula holds for m− 1 legs and let M be of shape (k1, . . . , km), i.e., have m legs. By lemma
4.3

(2) s(M) = (k1 + 2)s(MS(2))− s(MS(2)).

We have to consider 2 cases: (i) k2 > 1 and (ii) k2 = 1, since the shape of MS(2) and MS(2) are
different in the second case.
For case (i) we group the right hand side of (2) as

(3) (k1 + 1)s(k2 − 1, k3, . . . , km)︸ ︷︷ ︸
(∗)

+ (s(k2 − 1, k3, . . . , km)− s(k2 − 2, k3, . . . , km))︸ ︷︷ ︸
(∗∗)

.

We may assume that the ki appearing in the products are ordered with respect to i, i.e.,
ki1 ki2 · · · kis with i1 < . . . < is. From the definition of m-admissible sets it follows that in
each I, il has to be followed by an odd il+1 and the same for odd il has to be followed by
an even il+1. For brevity, throughout the rest of this proof, we will simply write admissible,
whenever we mean m-admissible. We call an admissible set I ⊆ m 2-admissible (short: 2− a.),
if it does not contain 1 and starts with an odd i > 1 (that is, some ki, where i is odd) or is
empty. Thus admissible sets of m (or of (k1, . . . , km)) for (k2, . . . , km) are partitioned into 2-
admissible sets and non-2-admissible sets not containing 1. Then for any integer 0 ≤ l ≤ k2
we have using (1)

s(k2 − l, k3, . . . , km) =
m−1

∑
j=0

(k2 − l + 1) ∑
I⊆m 2−a.,
|I|=m−j−1

∏
i∈I

ki + ∑
I⊆m adm. but not 2-a.,
{1,2}6⊆I,|I|=m−j−1

∏
i∈I

ki

+ 1.

Thus (∗) in (3) is

(k1 + 1)s(k2 − 1, k3, . . . , km) = (k1 + 1)
m−1

∑
j=0

k2 ∑
I⊆m 2−a.,
|I|=m−j−1

∏
i∈I

ki + ∑
I⊆m adm. but not 2-a.,
{1,2}6⊆I,|I|=m−j−1

∏
i∈I

ki

+ 1.(4)

and (∗∗) of (3) becomes

s(k2 − 1, k3, . . . , km)− s(k2 − 2, k3, . . . , km) =
m−1

∑
j=0

∑
I⊆m 2−a.,
|I|=m−j−1

∏
i∈I

ki.(5)
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Adding (4) and (5) yields

m−1

∑
j=0

(k1k2 + k2 + 1)

 ∑
I⊆m 2−a.,
|I|=m−j−1

∏
i∈I

ki

+ (k1 + 1)

 ∑
I⊆m adm. but not 2-a.,
{1,2}6⊆I,|I|=m−j−1

∏
i∈I

ki


+ k1 + 1,(6)

which is precisely the expression on the right hand side of (1).
Case (ii), that is, k2 = 1, is similar: First note that if m = 3, then MS(2) is the zero-module
with s(MS(2)) = 1. The right hand side of (2) is then

(k1 + 2)s(k3)− s(MS(2)) = (k1 + 2)(k3 + 2)− 1 = k1k3 + 2k3 + 2k1 + 3 ,

which can be grouped (using k2 = 1) to

k1k2k3 + (k2k3 + k3) + (k1k2 + k1) + k2 + 2.

This is the expression of (1) for m = 3.
Now for m ≥ 4, the argument is similar to case (i): set A := (∑m−2

j=0 ∑ I⊆m 2−a.,
|I|=m−j−2

∏i∈I ki + 1)

and B := ∑m−2
i=0 ∑ I⊆m adm. but not 2-a.,

{1,2}6⊆I,|I|=m−j−2
∏i∈I ki. Formula (1) can be written as

(7) k1k2A + k1B + k2A + A + B.

Now write the right hand side of (2) as

(k1 + 1)s(k3, . . . , km)︸ ︷︷ ︸
(∗)

+ s(k3, . . . , km)− s(k4 − 1, . . . , km)︸ ︷︷ ︸
(∗∗)

.

Note that s(k3, . . . , km) = A + B. Compute (∗), which is equal to (k1 + 1)(A + B). Since A is
the sum over all 2-admissible sets and k2 = 1, this is also equal to

(k1 + 1)(k2A + B) = k1k2A + k2A + k1B + B.

Further we get that (∗∗) is equal to

(A + B− B) = A.

Adding (∗) and (∗∗) yields (7).
�

5. DESCRIPTION OF THE REGIONS IN THE FRIEZE

The quiver of a triangulation. We recall here how to get the quiver QT of a triangulation. If
T is a triangulation of an n + 3-gon, we label the diagonals by 1, 2, . . . , n and draw an arrow
i → j in case the diagonals share an endpoint and the diagonal i can be rotated clockwise
to diagonal j (without passing through another diagonal incident with the common vertex).
This is illustrated in Example 5.3 and Figure 6 below.

Let B be the cluster-tilted algebra associated to QT . For x a vertex of this quiver, we write
Px for the projective BT-module of x and Sx for its simple top.

We then have B = EndC T, where the cluster-tilting object

T =
⊕
x∈T

Px

in C. We can extend this to an object in the Frobenius category C f by adding the n + 3
projective-injective summands associated to the boundary segments [12], [23] , . . . , [n +
3, 1] of the polygon, with irreducible maps between the objects corresponding to diago-
nals/edges as follows: [i− 1, i + 1]→ [i, i + 1], [i, i + 1]→ [i, i + 2] ([JKS16, BKM16, DL16]).
We denote the projective-injective associated to [i, i + 1] by Qxi . Let

Tf = (⊕x∈T Px)⊕ (Qx1 ⊕ · · · ⊕Qxn+3)
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a

b e

c d

Qb
Qe

QdQc

FIGURE 3. Regions in quiver.

b

c

d

e

a

FIGURE
4. Triangulation
around a.

This is a cluster-tilting object of C f in the sense of [FK10, Section 3]. Given a B-module
M, by abuse of notation, we denote the corresponding objects in C and C f by M, that is
HomC(T, M) = M. In other words, an indecomposable object of C f is either an indecom-
posable B-module or Qxi for some i ∈ {1, . . . , n + 3} or of the form Px[1] for some x ∈ T

5.1. Diagonal defines quadrilateral.
Let a be a diagonal in the triangulation, a ∈ {1, 2, . . . , n}. This diagonal uniquely defines a

quadrilateral formed by diagonals or boundary segments. Label them b, c, d, e as in Figure 4.

5.2. Diagonal defines two rays.
Consider the entry 1 of the frieze corresponding to a. There are two rays passing through

it. We go along these rays forwards and backwards until we reach the first entry 1. As the
frieze has two rows of ones bounding it, we will always reach an entry 1 in each of these
four directions. Going forwards and upwards: the first occurrence of 1 corresponds to the
diagonal b. Down and forwards: diagonal d. Backwards down from the entry corresponding
to 1: diagonal c and backwards up: diagonal e. If we compare with the coordinate system
for friezes of Section 1, the two rays through the object corresponding to diagonal a = [kl]
are the entries mi,l (with i varying) and mk,j (with j varying).

Example 5.1. For illustration, we consider the triangulation T = {[25], [35], [15]} of a
hexagon. In the frieze pattern associated to T , we have entries 1 at a = [25], at the diag-
onals b = [15] and c = [35] as well as at the entries corresponding to edges d = [23] and
e = [12] (Section 3.3). In the figure, the vertex for a is in a circle, the vertices for b, c, d, e are
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in boxes.

e = [21]

��

[16] [65] [54] [43] d = [32]

[26]

��

b = [15] [64] c = [53]

��

[42]

??

[36] [25]

��

??

[14] [63] [52]

��

??

[41]

c = [35]

??

[24]

��

[13] [62]

??

b = [51]

[45] [34] d = [23] e = [12]

??

[61] [56]

In the AR quiver of C f , the entries for a, b and c are the shifted projectives Pa[1], Pb[1] and
Pc[1]. The entries for d, e are the projective-injectives Qx2 and Qx1 .

In the frieze or in the AR quiver, we give the four segments between the entry 1 corre-
sponding to a and the entries corresponding to b, c, d and e names (see Figure 5 for a larger
example containing these paths). Whereas a is always a diagonal, b, c, d, e may be boundary
segments. If b is a diagonal, the ray through Pa[1] goes through Pb[1], and if b is a boundary
segment, say b = [i, i + 1] (with a = [ij]) this ray goes through Qxi . By abuse of notation, it
will be more convenient to write this projective-injective as Pb[1] or as Pxi [1] (if we want to
emphasize that it is an object of the Frobenius category C f that does not live in C).

Let e and c denote the unique sectional paths in C f starting at Pa[1] and ending at Pb[1] and
Pd[1] respectively, but not containing Pb[1] or Pd[1]. Similarly, let b and d denote the sectional
paths in C f starting at Pe[1] and Pc[1] respectively and ending at Pa[1], not containing Pe[1],
Pc[1], see Figure 5.

Note that b and d are opposite sides of the quadrilateral determined by a. In particular,
the corresponding diagonals do not share endpoints. In other words, Pb[1] and Pd[1] do
not lie on a common ray in the AR quiver. So by the combinatorics of C f there exist two
distinct sectional paths starting at Pb[1], Pd[1]. These sectional paths both go through Sa. Let
ca, ea denote these paths starting at Pb[1] and at Pd[1], up to Sa, but not including Pb[1], Pd[1]
respectively. Observe that the composition of e with ca and the composition of c with ea

are not sectional, see Figure 5. Similarly, let da, ba denote the two distinct sectional paths
starting at Sa and ending at Pe[1], Pc[1] respectively but not including Pe[1], Pc[1]. Note that
the composition of ca with ba and the composition of ea with da are not sectional.

5.3. Diagonal defines subsets of indecomposables.
For x a diagonal in the triangulation T and Px the corresponding projective indecompos-

able, we write X for the set of indecomposable B-modules having a non-zero homomor-
phism from Px into them, X = {M ∈ ind B | Hom(Px, M) 6= 0}. Given a B-module M,
its support is the full subquiver supp(M) of QT generated by all vertices x of QT such that
M ∈ X . It is well known that the support of an indecomposable module is connected.

If x is a boundary segment, we set X to be the empty set (there is no projective indecom-
posable associated to x, so there are no indecomposables reached).

We use the notation above to describe the regions in the frieze. Thus, if x, y are diagonals
or boundary segments, we write X ∩Y for the indecomposable objects in C that have x and
y in their support.
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FIGURE 5. Regions in the AR quiver determined by Pa[1].

Remark 5.2. Let M be an indecomposable B-module inX ∩Y such that there exists a (unique)
arrow α : x → y in the quiver. It follows that the right action of the element α ∈ B on M is
nonzero, that is Mα 6= 0.

By the remark above we have the following equalities. Note that none of the modules
below are supported at a, because the same remark would imply that such modules are
supported on the entire 3-cycle in QT containing a. However, this is impossible as the com-
position of any two arrows in a 3-cycles is zero in B. We have

B ∩ E = {M ∈ ind B | M is supported on e→ b}

C ∩ D = {M ∈ ind B | M is supported on c→ d}
Moreover, since the support of an indecomposable B-module forms a connected sub-

quiver of Q, we also have the following equalities.

B ∩ C = {M ∈ ind B | M is supported on b→ a→ c}

D ∩ E = {M ∈ ind B | M is supported on d→ a→ e}

B ∩ D = {M ∈ ind B | M is supported on b→ a← d}

C ∩ E = {M ∈ ind B | M is supported on c← a→ e}
Finally, using similar reasoning it is easy to see that the sets described above are disjoint.

Next we describe modules lying on sectional paths defined in section 5.2. First, consider
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sectional paths starting or ending in Pa[1], then we claim that

i = {M ∈ ind B | i ∈ supp(M) ⊂ Qi} ∪ {Pa[1]}

for all i ∈ {b, c, d, e}, for Qi the subquiver of Q containing i, as in Figure 3.
We show that the claim holds for i = b, but similar arguments can be used to jus-

tify the remaining cases. Note, that it suffices to show that a module M ∈ b is sup-
ported on b but it is not supported on e or a. By construction the sectional path b starts
at Pe[1], so 0 = Hom(τ−1Pe[1], M) = Hom(Pe, M). On the other hand, b ends at Pa[1], so
0 = Hom(M, τPa[1]) = Hom(M, Ia), where Ia is the injective B-module at a. This shows
that M is not supported at e or a. Finally, we can see from Figure 5 that M has a nonzero
morphism into τPb[1] = Ib, provided that b is not a boundary segment. However, if b is a
boundary segment, then b ∩Ob(mod B) = ∅ and we have b = {Pa[1]}. Conversely, it also
follows from Figure 5 that every module M supported on b and some other vertices of Qb
lies on b. This shows the claim.

Now consider sectional paths starting or ending in Sa. Using similar arguments as above
we see that

ia = {M ∈ ind B | a ∈ supp(M) ⊂ Qa
i }

for i ∈ {c, e} and

ia = {M ∈ ind B | a ∈ supp(M) ⊂ Qa
i }

for i ∈ {b, d}, where Qa
i is the full subquiver of Q on vertices of Qi and the vertex a.

Finally, we define F to be the set of indecomposable objects of C f that do not belong to

A∪ B ∪ C ∪D ∪ E ∪ {Pa[1]}.

The region F is a succession of wings in the AR quiver of C f , with peaks at the Px[1] for
x ∈ {b, c, d, e}. That is, in the AR quiver of C f consider two neighboured copies of Pa[1] with
the four vertices Pb[1], Pc[1], Pd[1], Pe[1]. Then the indecomposables of F are the vertices
in the triangular regions below these four vertices, including them (as their peaks). By the
glide symmetry, we also have these regions at the top of the frieze. In Figure 5, the wings
are the shaded unlabelled regions at the boundary. It corresponds to the diagonals inside
and bounding the shaded regions in Figure 6. We will see in the next section that objects in
F do not change under mutation of Tf at Pa[1].

Example 5.3. We consider the triangulation T of a 13-gon, see left hand of Figure 6 and the
triangulation T ′ = µ1(T ) obtained by flipping diagonal 1.

The quivers of T and of T ′ are given below. Note that the quiver Q is the same as in
Example 3.1.

7
��

7
��

Q : 8 3oo

��

2oo // 6

__

Q′ : 8 3oo

��

2
��

// 6

__

10
��

1

??

��

10
��

1
��

__

9 // 5 //

__

4

__

9 // 5

__ ??

4

OO

Figure 7 shows the Auslander-Reiten quiver of the cluster category C f for Q.
In Figure 8 (Section 6), the frieze patterns of T and of T′ are given.
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FIGURE 6. Triangulations T and T ′ = µ1(T )
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FIGURE 7. AR quiver of the category C f arising from Q

6. MUTATING FRIEZES

The goal of this section is to describe the effect of the flip of a diagonal or equivalently the
mutation at an indecomposable projective on the associated frieze. We give a formula for
computing the effect of the mutation using the specialised Caldero Chapoton map. Let T
be a triangulation of a polygon with associated quiver Q. The quiver Q looks as in Figure 3,
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FIGURE 9. Quiver after flipping diagonal a

where the subquivers Qb, Qc, Qd, Qe may be empty. Let T = ⊕x∈TPx and B = EndC T be the
associated cluster-tilted algebra.

Take a ∈ T and let T ′ = µa(T ) be the triangulation obtained from flipping a, with quiver
Q′ = µa(Q) (Figure 9).

Let B′ be the algebra obtained through this, it is the cluster-tilted algebra for T′ = ⊕x∈T ′Px.
If M is an indecomposable B-module, we write M′ for µa(M) in the sense of [DWZ08]. If
M is an indecomposable B-module, the entry of M in the frieze F(T) is the entry at the
position of M in the frieze. In other words, the entry of M equals ρT(M), the specialized
Caldero Chapoton map evaluated at M. Also, recall that C f denotes the Frobenius category
obtained from the cluster category C by adding projective-injective objects, and we extended
the definition of ρT to C f in Section 3.5.
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Definition 6.1. Let T be a triangulation of a polygon, a ∈ T and M an indecomposable
object of C f . Then we define the frieze difference (w.r.t. mutation at a) δa : ind C f → Z by

δa(M) = ρT (M)− ρT ′(M′) ∈ Z

In Section 6.1 we first describe the effect mutation has on the regions in the frieze. This
gives us all the necessary tools to compute the frieze difference δa (Section 6.3).

6.1. Mutation of regions.
Here we describe how mutation affects the regions (Section 5.3) of the frieze F(T). Let

T , a, B and T ′, B′ be as above. When mutating at a, the change in support of the indecom-
posable modules can be described explicitly in terms of the local quiver around a. This is
what we will do here. We first describe the regions in the AR quiver of C f for B′.

If x is a diagonal or a boundary segment, we write

X ′ = {M ∈ ind B′ | Hom(Px, M) 6= 0}
for the indecomposable modules supported on x.

After mutating a, the regions in the AR quiver are still determined by the projective in-
decomposables corresponding to the framing diagonals (or edges) b, c, d, e. The relative po-
sitions of a, b, c, d and e have changed, however it follows from [DWZ08] that except for
vertex a the support of an indecomposable module at all other vertices remains the same.
Therefore, the regions are now described as follows:

B′ ∩ E ′ = {M ∈ ind B′ | M is supported on e→ a→ b}

C ′ ∩D′ = {M ∈ ind B′ | M is supported on c→ a→ d}

B′ ∩ C ′ = {M ∈ ind B′ | M is supported on b→ c}

D′ ∩ E ′ = {M ∈ ind B′ | M is supported on d→ e}

B′ ∩D′ = {M ∈ ind B′ | M is supported on b← a→ d}

C ′ ∩ E ′ = {M ∈ ind B′ | M is supported on c→ a← e}
Under the mutation at a, if a module M lies on one of the rays ba, da ca and ea then M′

is obtained from M by removing support at vertex a. The modules lying on the remaining
four rays gain support at vertex a after the mutation.

6.2. Submodules and short exact sequences.
Let B be a cluster-tilted algebra of type An. We begin by showing three formulas for the

number of submodules of a given M ∈ ind B in terms of the number of submodules of
certain quotients and submodules of M.

Lemma 6.2. Let M ∈ ind B such that M = (. . . z← x → y . . . ), and consider two indecomposable
submodules Mz, My of M supported on z, y respectively, such that there exists a short exact sequence

0→ Mz ⊕My → M→ Sx → 0
ending in a simple module Sx. Then

s(M) = s(Mz)s(My) + s(M̃z)s(M̃y)

where M̃z, M̃y are maximal quotients of Mz, My respectively, that are not supported on z, y.
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Proof. By the combinatorics of string modules and morphisms between them, it follows that
X is a quotient of a module Y if and only if X is closed under predecessors in Y. That is, if
Y is supported on an arrow u → v and X is supported on v then it must also be supported
on u → v. This implies that M̃z can be obtained from Mz by removing all paths starting at
z. Thus, constructed in this way M̃z is indeed predecessor closed and maximal in Mz. This
shows that M̃z and similarly M̃y are unique up to isomorphisms. Furthermore, any quotient
of Mz that is not supported at z must also be a quotient of M̃z as Mz is maximal and any
path closed under predecessors in Mz is also closed under predecessors in M̃z. This shows
that up to isomorphisms the number of quotients of M̃z equals the number of quotients of
Mz not supported at z. Similar statement also holds for the quotients of M̃y.

Recall that s(M) stands for the number of isoclasses of submodules of M, however in the
following computations we only consider submodules up to isomorphisms. Therefore, we
omit the term isoclasses to simplify the notation. Also, some of the modules defined above
can be zero in which case they admit only one submodule, the zero submodule.

s(M) = #
{ submodules of M

supported on x

}
+ #

{ submodules of M
not supported on x

}
The right hand summand can be simplified as follows.

#
{ submodules of M

not supported on x

}
= #{submodules of Mz ⊕My} = s(Mz)s(My)

Now consider the left hand summand.

#
{ submodules of M

supported on x

}
= #

{ submodules of M
supported on x, y, z

}
= #

{ submodules of Mz
supported on z

}
× #

{ submodules of My
supported on y

}
= #

{ quotients of Mz
not supported on z

}
× #

{ quotients of My
not supported on y

}
= #{quotients of M̃z} × #{quotients of M̃y}
= #{submodules of M̃z} × #{submodules of M̃y}
= s(M̃z)s(M̃y)

�

The following statement is the dual version of the lemma above, so we state it without
proof.

Lemma 6.3. Let M ∈ ind B such that M = (. . . z→ x ← y . . . ), and consider two indecomposable
quotients Mz, My of M supported on z, y respectively, such that there exists a short exact sequence

0→ Sx → M→ Mz ⊕My → 0
ending in a simple module Sx. Then

s(M) = s(Mz)s(My) + s(Mz)s(My)

where Mz, My are maximal submodules of Mz, My respectively, that are not supported on z, y.

The next lemma shows the final formula for s(M).

Lemma 6.4. Let M ∈ ind B such that M = (. . . x → y . . . ), and consider two indecomposable
modules Mx, My supported on x, y respectively such that there exists a short exact sequence

0→ My → M→ Mx → 0.
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Then

s(M) = s(My)s(Mx)− s(M̃x)s(My)

where M̃x is a maximal quotient of Mx not supported on x, and My is a maximal submodule of My
not supported on y.

Proof. In the following computation, we omit the term isoclasses when referring to the num-
ber of submodules (up to isomorphisms). Also, some of the modules defined above can be
zero in which case they admit only one submodule, the zero submodule. Given a module
M as in the statement we have

s(M) = #
{ submodules of M

supported on x

}
+ #

{ submodules of M
not supported on x

}
.

The left hand summand can be reinterpreted as follows.

#
{ submodules of M

supported on x

}
= #

{ submodules of M
supported on x, y

}
= #

{ submodules of Mx
supported on x

}
× #
{ submodules of My

supported on y

}
= #

{ quotients of Mx
not supported on x

}
×
[
#{submodules of My} − #

{ submodules of My
not supported on y

}]
= #{quotients of M̃x} ×

[
#{submodules of My} − #{submodules of My}

]
= #{submodules of M̃x} ×

[
s(My)− s(My)

]
= s(M̃x)(s(My)− s(My))

The right hand summand equals s(My)s(Mx), where Mx is the maximal submodule of Mx

not supported on x. Using similar reasoning as above, we have s(Mx) = s(Mx)− s(M̃x).
Therefore, combining the two computations above we obtain the desired result.

s(M) = s(M̃x)(s(My)− s(My)) + s(My)(s(Mx)− s(M̃x))

= s(My)s(Mx)− s(M̃x)s(My)

�

Remark 6.5. With the notation of Lemma 6.4 we emphasize two special cases when one of
the modules Mx, My is a simple module.

(a) If My = Sy then M = (. . . x → y), and we have s(M) = 2s(Mx)− s(M̃x), because
s(Sy) = 2 and s(Sy) = s(0) = 1. It will be useful to rewrite the above equation in the
following way

s(M)− s(Mx) = s(Mx)− s(M̃x) = s(Mx)

where Mx is the maximal submodule of Mx not supported at x.
(b) Similarly, if Mx = Sx then M = (x → y . . . ), and we have s(M) = 2s(My)− s(My).

Also, we can rewrite this equation as

s(M)− s(My) = s(My)− s(My) = s(M̃y)

where M̃y is the maximal quotient of My not supported at y.

We will also need the following result.



32 K. BAUR, E. FABER, S. GRATZ, K. SERHIYENKO, G. TODOROV

Lemma 6.6. Let Mx ∈ ind B such that x is a start of the corresponding string and we write Mx =
(x . . . ). Consider two modules Mxy = (y← x . . . ), Mxz = (z→ x . . . ) obtained by extending Mx
by simple modules Sy, Sz, respectively, such that there exist short exact sequences as follows.

0→ Sy → Mxy → Mx → 0 0→ Mx → Mxz → Sz → 0
Then

s(Mxy)− s(Mx) = 2s(Mx)− s(Mxz).

Proof. Applying Remark 6.5(a) to the first short exact sequence with M = Mxy , we see that

s(Mxy) = 2s(Mx)− s(M̃x)

where M̃x is the maximal quotient of Mx not supported at x. Now applying Remark 6.5(b)
to the second short exact sequence with M = Mxz and My = Mx, we obtain

s(Mxz)− s(Mx) = s(M̃x).

Solving this equation for s(M̃x) and substituting this resulting expression into the the first
equation we obtain the desired formula. �

6.3. Mutation of frieze.
We next present the main result of this section, the effect of flip on the generalized Caldero

Chapoton map, i.e. the description of the frieze difference δa. We begin by introducing the
necessary notation.

Depending on the position of an indecomposable object M we define several projection
maps sending M to objects on the eight rays from Section 5.2.

Let M ∈ ind B, and let i be one of the sectional paths defined in section 5.2. Suppose
M 6∈ i, then we denote by Mi a module on i if there exists a sectional path Mi → · · · → M
or M → · · · → Mi in C f , otherwise we let Mi = 0. If M ∈ i then we let Mi = M. In the case
when it is well-defined, we call Mi the projection of M onto the path i.

Remark 6.7. Given an indecomposable module M and its projection Mi, the module Mi can
be easily described in terms of the support of M and the location of the ray i. For example,
if M ∈ B ∩ C then M = (. . . b → a → c . . . ). Note that Mca is not supported at b, and
there exists an B-module homomorphism Mca → M that does not factor through any other
module lying on the ray ca. This implies that Mca = (a → c . . . ) is the maximal submodule
of M that is not supported at b. Similarly, Mba = (. . . b → a) is the maximal quotient of M
not supported at c.

On the other hand if we consider M ∈ B ∩ E then M = (. . . e → b . . . ). As above, the
projection Mb onto the ray b is the largest submodule of M not supported at e. However,
Mba is obtained from Mb by extending it by a simple module Sa, thus Mba = (a← b . . . ) and
there exists a short exact sequence

0→ Sa → Mba → Mb → 0.

Note that unlike in the previous computations Mba is neither a quotient nor a submodule of
M.

In this way given M we can construct the corresponding Mi, provided that the projection
is well defined.

It will be convenient to write these projections in a uniform way.

Definition 6.8 (Projections). If M is a vertex of one of the regions B ∩ C,D ∩ E ,B ∩ E , C ∩ D
there exists a unique sectional path γ+ (resp. γ−) starting (resp. ending) at M such that
γ+ (resp. γ−) intersects two other sectional paths: one passing through Pa[1] and the other
passing through Sa. The projection of M onto the closest of these two paths along γ+ we
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call π+
1 (M) and the projection onto the second path π+

2 (M). The projection of M onto the
closest path along γ− is denoted by π−1 (M) and onto the second path π−2 (M).

Figure 10 illustrates these projections in the case (x, y) ∈ {(b, c), (d, e)}.
The remaining two regions will be treated together with the surrounding paths.

Definition 6.9. The closure of C ∩ E is the Hom-hammock

C ∩ E = ind(HomC f (Pa[1],−) ∩HomC f (−, Sa))

in C f starting at Pa[1] and ending at Sa. Similarly, the closure of B ∩D is the Hom-hammock

B ∩D = ind(HomC f (Sa,−) ∩HomC f (−, Pa[1]))

in C f starting at Sa and ending at Pa[1]. For (x, y) ∈ {(c, e), (b, d)}, the boundary of X ∩ Y (or
of X ∩ Y) is X ∩ Y \ (X ∩ Y).

Note that C ∩ E is the union of C ∩ E with the surrounding segments of rays and the
shifted projectives {Pb[1], Pd[1]}. Analogously, B ∩D contains {Pc[1], Pe[1]}.

Definition 6.10 (Projections, continued). If M is a vertex of one of the two closures
C ∩ E ,B ∩D, we define four projections for M onto the four different “edges” of the bound-
ary of its region: We denote the projections onto the paths starting or ending next to Pa[1]
by π↑p, π↓p and the projections onto the paths starting or ending next to Sa by π↑s and π↓s
respectively. We choose the upwards arrow to refer to the paths ending/starting near Pb[1]
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or Pc[1] and the downwards arrow to refer to paths ending/starting near Pd[1] or Pe[1]. See
Figure 11.

Remark. The statement of Theorem 6.12 is independent of the choice of ↑ (paths near Pb[1]
or Pc[1]) and ↓ in Definition 6.10 as the formula is symmetric in these expressions.

Example 6.11. If M ∈ e, we have π↑p(M) = M, π↑s (M) = Pb[1], π↓p(M) = Pa[1] and π↓s (M) =
Mea .

For Sa we have π↑s (Sa) = π↓s (Sa) = Sa whereas the two modules π↑p(Sa) and π↓p(Sa) are
{Pb[1], Pd[1]} or {Pc[1], Pe[1]} depending on whether Sa is viewed as an element of C ∩ E or
of B ∩D.

For Pa[1], we have π↑p(Pa[1]) = π↓p(Pa[1]) = Pa[1] whereas the two modules π↑s (Pa[1]) and
π↓s (Pa[1]) are {Pb[1], Pd[1]} or {Pc[1], Pe[1]} These four shifted projectives evaluate to 1 under
s, and so in Theorem 6.12, this ambiguity does not play a role.

With this notation we are ready to state the theorem.

Theorem 6.12. Let M be an indecomposable object of C f . Then δa(M) is given by:
If M ∈ (B ∩ C) ∪ (D ∩ E) then

δa(M) = (s(π+
1 (M))− s(π+

2 (M))) (s(π−1 (M))− s(π−2 (M));

If M ∈ (B ∩ E) ∪ (C ∩ D) then

δa(M) = −(s(π+
2 (M))− 2s(π+

1 (M))) (s(π−2 (M))− 2s(π−1 (M));

If M ∈ C ∩ E ∪ B ∩D then

δa(M) = s(π↓s (M))s(π↓p(M)) + s(π↑s (M))s(π↑p(M))− 3 s(π↓p(M))s(π↑p(M));

If M ∈ F then
δa(M) = 0.

Proof. By definition δa(M) = ρT (M)− ρT ′(M′), which in turn equals s(M)− s(M′). Now
we consider various cases based on the location of an indecomposable object M in C f . Note
that M satisfies exactly one of the four conditions in the definition of δa(M) stated in the
theorem.

Suppose M ∈ B ∩ C, then by definition M = (. . . b → a → c . . . ). We also have a short
exact sequence

0→ Mca → M→ Mb → 0
in mod B where Mca , Mb are projections of M onto the rays ca, b respectively. Note that by
Remark 6.7 we know that Mca = (a → c . . . ) is a submodule of M and Mb = (. . . b) is a
quotient of M.

It follows from Section 6.1 that M′ is obtained from M by removing the support at vertex
a, so M′ = (. . . b→ c . . . ), and we have the following sequence in mod B′

0→ Mc → M′ → Mb → 0

where Mc = (c . . . ) is the projection of M onto the ray c. Also, note that Mc, Mb are B-
modules, however they can also be thought of as modules over B′ because they are sup-
ported on the subquivers of Q that are not affected by mutation at vertex a. By Lemma 6.4
we obtain formulas for s(M) and s(M′)

s(M) = s(Mb)s(Mca)− s(M̃b)s(Mca) s(M′) = s(Mb)s(Mc)− s(M̃b)s(Mc)

that correspond to the given short exact sequences. By definition Mca is a maximal submod-
ule of Mca that is not supported on a, therefore Mca = Mc. Combining the two formulas we
obtain
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s(M)− s(M′) = s(Mb)(s(Mca)− s(Mc))− s(M̃b)(s(Mc)− s(Mc))

= (s(Mb)− s(M̃b))(s(Mca)− s(Mc))

= (s(Mba)− s(Mb))(s(Mca)− s(Mc))

= (s(π+
1 (M))− s(π+

2 (M))) (s(π−1 (M))− s(π−2 (M))

where the second equality follows from Remark 6.5(b) letting M = Mca = (a → c . . . ) and
My = Mc. The third equality follows from Remark 6.5(a) letting M = Mba = (. . . b → a)
and Mx = Mb. This shows that the theorem holds in the case M ∈ B ∩ C. Similar argument
implies the result in the case M ∈ D ∩ E .

Suppose M ∈ B ∩ E , then we know that M = (. . . e → b . . . ). By projecting M onto b, e
we obtain the modules Mb, Me, that together with M form a short exact sequence

0→ Mb → M→ Me → 0

in mod B. Using the results from Section 6.1 we know that M′ is obtained from M by in-
serting support at vertex a, so M′ = (. . . e → a → b . . . ). Moreover, we obtain a short exact
sequence

0→ M′ba → M′ → Me → 0

in mod B′, where M′ba = (a→ b . . . ) is a module over B′ obtained by projecting M′ onto the
ray ba in mod B′. By Lemma 6.4 we have the following formulas for s(M) and s(M′) that
correspond to the given short exact sequences.

s(M) = s(Me)s(Mb)− s(M̃e)s(Mb) s(M′) = s(Me)s(M′ba)− s(M̃e)s(M′ba)

Observe that M′ba ∼= Mb, because it is the maximal submodule of M′ba that is not supported
on a. Note that here we think of Mb as a module over both B and B′. Therefore, we have

s(M′)− s(M) = s(Me)(s(M′ba)− s(Mb))− s(M̃e)(s(Mb)− s(Mb)

= (s(Me)− s(M̃e))(s(M′ba)− s(Mb))

= (s(M′ea
)− s(Me))(s(M′ba)− s(Mb))

= (s(Mea)− 2s(Me)) (s(Mba)− 2s(Mb))

= (s(π+
2 (M))− 2s(π+

1 (M))) (s(π−2 (M))− 2s(π−1 (M)))

where the second equality follows from Remark 6.5(b) with M = M′ba and My = Mb. The
third equality follows from Remark 6.5(a) with M = M′ea

= (. . . e→ a), the projection of M′

onto the ray ea in B′, and Mx = Me. Next we justify the fourth equality. The modules Mea =
(. . . e ← a), Mba = (a ← b → . . . ) are projections of M onto the rays ea, ba respectively.
By Lemma 6.6 first setting Mx = Me, Mxy = M′ea

, Mxz = Mea and then setting Mx = Mb,
Mxy = Mba , Mxz = M′ba , it follows that

s(M′ea
)− s(Me) = s(Mea)− 2s(Me) s(M′ba)− s(Mb) = s(Mba)− 2s(Mb)

which implies the fourth equality. This completes the proof of the theorem in the case M ∈
B ∩ E while the case M ∈ C ∩D can be shown in a similar way.

Suppose M ∈ C ∩ E . First, we assume that M ∈ C ∩ E then M = (. . . e ← a → c . . . ).
Thus there exists a short exact sequence

0→ Me ⊕Mc → M→ Sa → 0



36 K. BAUR, E. FABER, S. GRATZ, K. SERHIYENKO, G. TODOROV

in mod B where Me, Mc are projections of M onto the sectional paths e, c respectively. As
discussed in section 6.1 the module M′ is obtained from M by reversing the arrows incident
with a, so M′ = (. . . e→ a← c . . . ). Therefore, we have a short exact sequence

0→ Sa → M′ → Me ⊕Mc → 0

in mod B′. By Lemma 6.2 and Lemma 6.3 respectively, we obtain the following formulas for
s(M) and s(M′).

s(M) = s(Me)s(Mc) + s(M̃e)s(M̃c) s(M′) = s(Me)s(Mc) + s(Me)s(Mc)

By Remark 6.5(b)

s(M̃e) = s(Mea)− s(Me) s(M̃c) = s(Mca)− s(Mc)

and, similarly, by the same remark we have

s(Me) = 2s(Me)− s(Mea) s(Mc) = 2s(Mc)− s(Mca).

Therefore, combining the results above we obtain

s(M)− s(M′) =s(M̃e)s(M̃c)− s(Me)s(Mc)

=(s(Mea)− s(Me))(s(Mca)− s(Mc))− (2s(Me)− s(Mea))(2s(Mc)− s(Mca))

=s(Mea)s(Mc) + s(Mca)s(Me)− 3s(Me)s(Mc)

=s(π↓s (M))s(π↓p(M)) + s(π↑s (M))s(π↑p(M))− 3 s(π↓p(M))s(π↑p(M))

which yields the desired conclusion.
If M equals Pa[1] or Sa then M′ equals Sa or Pa[1] respectively, and it follows from Exam-

ple 6.11 that δa is well defined in this case. Evaluating s(M)− s(M′) at Pa[1], Sa respectively
we obtain −1, 1 and it is easy to see that this agrees with the formula for δa(M) provided in
the theorem.

Now assume that M ∈ e and M 6= Pa[1], then M = (. . . e) and M′ = (. . . e → a) is
obtained from Me by adding support at a. By Lemma 6.6 we have that

s(M)− s(M) = s(Mea)− 2s(M).

On the other hand it follows from Example 6.11 that

δa(M) = s(π↓s (M))s(π↓p(M)) + s(π↑s (M))s(π↑p(M))− 3 s(π↓p(M))s(π↑p(M))

= s(Mea) + s(M)− 3s(M)

= s(M)− s(M′)

which shows that the formula holds in this case.
Now assume that M ∈ ca and M 6= Sa, then M = (. . . c← a) and M′ = (. . . c) is obtained

from M by removing support at a. Note that M′ = Mc the projection of M onto the ray c.
According to the statement of the theorem we have

δa(M) = s(π↓s (M))s(π↓p(M)) + s(π↑s (M))s(π↑p(M))− 3 s(π↓p(M))s(π↑p(M))

= s(Sa)s(Mc) + s(M)s(Pb[1])− 3s(Mc)s(Pb[1])

= 2s(M′) + s(M)− 3s(M′)

= s(M)− s(M′)

which shows that the formula holds in this case. For M lying on c and ea we can apply
the same argument as above. Similar reasoning also shows that the theorem holds when
M ∈ B ∩D.

Finally, if M ∈ F we know that M equals M′, hence δa(M) = 0. This completes the proof
of the theorem. �
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Note, that given a frieze and an indecomposable M in one of the six regions X ∩ Y , it is
easy to locate the entries required to compute the frieze difference δa(M). We simply need
to find projections onto the appropriate rays in the frieze. In this way, we do not need to
know the precise shape of the modules appearing in the formulas of Theorem 6.12.

Example 6.13. Let C f be the category given in Example 5.3. We consider three possibilities
for M below.

If M =
3

8 1 9
5

then we know by Figure 8 that s(M) = 12 and s(M′) = 8. On the other hand,
we see from Figure 7 that M ∈ B ∩ C. Theorem 6.12 implies that

δa(M) = s(M)− s(M′) = (s(Mba)− s(Mb))(s(Mca)− s(Mc))

= (s( 3
8 1 )− s( 3

8 ))(s(
1 9
5 )− s( 9

5 ))

= (5− 3)(5− 3) = 4.

Similarly, if M =
2

3 6
8

, then M ∈ B ∩ E with s(M) = 7 and s(M′) = 9. The same theorem
implies that

δa(M) = s(M)− s(M′) = −(s(Mea)− 2s(Me)) (s(Mba)− 2s(Mb))

= −(s( 1
2
6
)− 2s( 2

6 ))(s(
3

8 1 )− 2s( 3
8 ))

= −(4− 6)(5− 6) = −2.

Finally, if M =
1 7

5 2
10

, then M ∈ C ∩ E . We also know that s(M) = s(M′) = 11. By the
third formula in Theorem 6.12, we have

δa(M) = s(M)− s(M′) = s(Mea)s(Mc) + s(Mca)s(Me)− 3s(Me)s(Mc)

= s( 7 1
2 )s( 5

10 ) + s(
1
5
10
)s( 7

2 )− 3s( 7
2 )s(

5
10 )

= 5 · 3 + 4 · 3− 3 · 3 · 3 = 0.
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