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Abstract3

Using a small-scale microfounded DSGE model with Markov switching in shock variances and4

policy parameters, we show that the data-preferred description of US monetary policy is a time-5

consistent targeting rule with a marked increase in conservatism after the 1970s. However, the6

Fed lost its conservatism temporarily in the aftermath of the 1987 stock market crash, and again7

following the 2000 dot-com crash and has not subsequently regained it. The high inflation of the8

1970s would have been avoided had the Fed been able to commit, even without the appointment9

of Paul Volcker or the reduction in shock volatilities.10
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1. Introduction1

It is common practice to adopt a simple Taylor (1999)-type instrument rule to describe2

monetary policy when estimating DSGE models. This practice, however, is inconsistent3

with the claim of practitioners, that no central bank actually adopts such instrument rules,4

but rather prefer to set clear objectives and follow ‘elaborate decision making-processes, in5

which huge amounts of data are elaborated and processed’ (Svensson, 2003, pp. 428) in6

attempting to achieve those objectives. By specifying policy objectives the central bank7

adopts — using Svensson’s terminology — a general targeting rule. This general targeting rule8

is then developed into a specific targeting rule by maximizing these objectives subject to9

the equations describing the decentralized equilibrium of the economy. The targeting rule10

that emerges is dependent on the degree of commitment the central bank possesses. What11

that degree of commitment is in practice, and whether or not we can develop data-coherent12

targeting rules, remains an open question, with the literature containing mixed results.13

This paper considers various descriptions of policy — both instrument and targeting rules14

— and takes seriously the notion that policy making and the shocks hitting the US economy15

have been subject to shifts over the years. Doing so gives a far clearer indication as to which16

policy description best fits the data. This in turn has significant policy implications both in17

terms of designing monetary policy institutions and contributing to the debate on the source18

of the ‘Great Moderation’.19

The estimation demonstrates that the US monetary policy is best described by a time20

consistent targeting rule, labelled as discretion throughout the paper. This policy strongly21

dominates conventional simple instrument rules, as well as alternative forms of targeting22

rule with higher degrees of precommitment. This implies that during the post-WWII period23

the US Fed has not been making any credible policy commitments, either by following the24

Ramsey plan or following a simple instrument rule. The data also reveal that there have been25

changes in the Fed’s degree of anti-inflation conservatism and in the volatilities of shocks26
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hitting the economy. Ignoring these changes reduces the models’ ability to fit the data and1

distorts the ranking of models.2

The results imply that the inferences about shock processes, habit persistence and infla-3

tion indexation change significantly across different policy specifications. Under targeting4

rules, relative to instrument rules, we find that there is a shift in emphasis away from prefer-5

ence shocks towards cost-push shocks in driving the US business cycle. Under discretion this6

greater emphasis on cost-push shocks is not implausible, but is dramatic under commitment.7

Differences in the estimates of structural parameters under targeting rules further reflect the8

need to generate a meaningful policy trade-off, resulting in the degree of habits and infla-9

tion indexation being higher under commitment. In contrast, discretion tends to downplay10

the extent of habits to prevent implausibly aggressive policy responses to the associated11

externality.12

The findings contribute to the literature in two respects. First, they add to the small but13

growing research on the empirical validity of targeting rules. While there are papers which es-14

timate models under commitment (Adolfson et al., 2011 and Ilbas, 2010), discretion (Dennis,15

2004) and an intermediate case of limited commitment, also known as quasi-commitment, as16

in Debortoli and Lakdawala (2016), very few compare the empirical relevance across these17

different targeting rules and with simple instrument rules.1 In contrast to these papers,18

we consider a wide range of policy descriptions, and allow for potential regime switches in19

the monetary policy specification. Doing so explains how different policies interact with20

inferences about shock processes and structural parameters of the model.21

Second, the analysis presented extends the ‘good luck’ and ‘good policy’ debate to the22

framework of targeting rules. There is a large literature on the ‘Great Moderation’ based23

on simple instrument rules, which finds that breaks in estimated policy rules (Lubik and24

1Adolfson et al. (2011) find that commitment is preferred to a simple instrument rule using Swedish
data. Givens (2012) and Le Roux and Kirsanova (2013) suggest that discretion is marginally preferred to
commitment in the US and UK respectively.
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Schorfheide, 2005, and Boivin and Giannoni, 2006), the implicit inflation target (Favero1

and Rovelli, 2003, Erceg and Levin, 2003 and Ireland, 2007) and/or the volatility of the2

underlying shock processes (Sims and Zha, 2006) help to explain the evolution of inflation3

dynamics across time. Given these findings, we allow for variation in the policy-maker’s4

degree of anti-inflation conservatism, and for switches in the variance of the shock processes,5

when estimating different forms of targeting rule. The best-fitting model implies that US6

monetary policy is best described as being conducted under discretion, with an increase in7

central bank conservatism following the Volcker disinflation period, which is found to have8

occurred in 1982. More importantly, it identifies additional periods of policy change: the9

Fed relaxed policy temporarily in the aftermath of the 1987 stock market crash, and also10

lost conservatism following the 2000 dot-com crash, which it has never regained.11

Finally, the counterfactual analysis using the best-fitting model suggests that the ‘Great12

Moderation’ in output and inflation volatility is due to both a reduction in shock variances13

and an increase in central bank anti-inflation conservatism. Decomposing the relative con-14

tribution of both effects implies that the far greater part of the ‘Great Moderation’ stems15

from the reduction in shock volatilities. More importantly, the counterfactuals show that16

inflation would never have breached 2% in the 1970s had the policy maker had access to a17

commitment technology. The potential gains from moving from discretion to commitment18

are substantial and dominate the gains from increasing central bank conservatism. Ensur-19

ing that the US Fed has access to commitment technologies and that they act to use such20

mechanisms is the ‘good policy’ that policymakers should focus on.21

The plan of the paper is as follows. Section 2 outlines our model and the policy maker’s22

preferences. The various descriptions of policy are discussed in Section 3. Section 4 considers23

data, priors and identification of the model, before presenting the estimation results in24

Section 5. Section 6 contrasts the results to those of Debortoli and Lakdawala (2016).25

Section 7 then undertakes various counterfactual simulation exercises which facilitate an26
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exploration of both the sources and welfare consequences of the ‘Great Moderation’, and also1

an assessment of the potential benefits of further improvements in the conduct of monetary2

policy. Section 8 concludes.3

2. The Model4

The economy is comprised of households, a monopolistically competitive production sec-5

tor, and the government. Full details of the underlying microfoundations of the model are6

given in the online Appendix A and only the linearized model is presented here.27

The household’s optimization gives rise to the labor supply decision8

σX̂t + ϕ(ŷt − ẑt) = ŵt − µ̂t, (1)9

and consumption Euler equation10

X̂t = EtX̂t+1 −
1

σ

(
R̂t − Etπ̂t+1 − Etẑt+1

)
− ξ̂t + Etξ̂t+1, (2)11

where X̂t is habits-adjusted consumption12

X̂t = (1− θ)−1(ŷt − θŷt−1), (3)13

and ŷt denotes output, ŵt is real wages, π̂t is inflation and R̂t is the nominal interest rate.14

Here σ is the inverse of the intertemporal elasticity of substitution, ϕ is the inverse of the15

Frisch elasticity and θ is the habit persistence parameter. The process µ̂t = τ τ̂ t/ (1− τ)16

represents fluctuations in the labor income tax rate which serves as a cost-push shock, ẑt is17

an innovation to non-stationary technology process which serves as a technology shock and18

ξ̂t is a preference shock.19

The firms’ optimization decisions, in presence of both price and inflation inertia, give rise20

to a hybrid New Keynesian Phillips curve21

π̂t = χfβEtπ̂t+1 + χbπ̂t−1 + κcŵt, (4)22

2An on-line Appendix contains information on the microfoundations of the model, solution algorithms,
estimation and identification tests.
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where the reduced form parameters are χf = α/Φ, χb = ζ/Φ, κc = (1−α)(1−ζ)(1−αβ)/Φ,1

with Φ = α(1+βζ)+(1−α)ζ, where 1−α is the Calvo (1983) probability of price change, β2

is the households’ discount factor and ζ is the proportion of firms setting prices who follow3

a backward-looking rule of thumb, rather than setting prices optimally.34

Hatted variables indicate that they have been linearized relative to their steady-states.5

The stationarity of the model’s steady state is achieved by scaling by a non-stationary6

technology process discussed in Appendix A. The technology, cost-push and preference shocks7

follow AR(1) processes:8

ẑt = ρz ẑt−1 + σzε
z
t , εzt ∼ N(0, 1), (5)9

µ̂t = ρµµ̂t−1 + σµε
µ
t , εµt ∼ N(0, 1), (6)10

ξ̂t = ρξ ξ̂t−1 + σξε
ξ
t , εξt ∼ N(0, 1). (7)11

The model is then closed with one of the instrument or targeting rules considered in12

Section 3. The Fed’s targeting rule can be inferred from their objectives.13

3. Policy14

The four basic forms of policy considered are a simple instrument rule and three types of15

targeting rule: discretion, timeless commitment and the intermediate case labelled ‘quasi-16

commitment’. Across these alternative policies, the estimation permits changes in inflation17

conservatism by allowing Markov switching in instrument rule parameters, as well as in the18

relative weight given to inflation in the policy objective underpinning targeting rules, as19

detailed in this section.20

3All parameters in this Phillips curve are assumed to be structural, see Gali and Gertler (1999).
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3.1. Instrument Rules1

The instrument rule is a generalized Taylor rule which, following An and Schorfheide2

(2007), is specified as3

R̂t = ρRR̂t−1 + (1− ρR)[ψ1π̂t + ψ2(∆ŷt + ẑt)] + εRt , (8)4

where the Fed adjusts interest rates in response to movements in inflation and deviations of5

output growth from trend.46

Within the framework of a generalized Taylor rule, potential changes in US monetary7

policy are accounted for by allowing for either changes in the Fed’s inflation target or rule8

parameters. In the former case, following Schorfheide (2005), the measure of excess inflation9

in the Taylor rule, π̂t, removes the inflation target from the data, where that target follows a10

two-state Markov-switching process. In the latter case, when the policy changes are described11

as shifts in rule parameters (ρR, ψ1, ψ2) between two regimes, the procedure developed by12

Farmer et al. (2011) is applied to solve the model.513

3.2. Targeting Rules14

In the empirical analysis it is assumed that the Fed’s objective function takes the micro-15

founded form, although the coefficients on the quadratic terms are freely estimated. Specif-16

ically, the empirical loss function can be written as17

L = E0

∞∑

t=0

βt

(
ω1

(
X̂t + ξ̂t

)2
+ ω2

(
ŷt −

σ

ϕ
ξ̂t

)2
+ ωππ̂

2
t + ω3 (π̂t − π̂t−1)

2

)
, (9)18

see Appendix B for its microfoundations. This allows us to flexibly capture Svensson’s19

(2003) notion of a general targeting rule by allowing the central bank to define the relative20

4Rules of this form have not only been found to be empirically useful, but, when suitably parameterized,
can often mimic optimal policy, see, for example, Schmitt-Grohe and Uribe (2007). Moreover, by allowing
for an additional policy shock in the interest rate rule relative to the cases of optimal policy, we are further
supporting the simple rule’s ability to fit the data. As we shall see, despite this, discretionary policy is
‘strongly’ preferred by the data.

5The details of the solution algorithm are provided in Appendix C.
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importance of welfare-relevant terms. Strictly speaking, it should not be interpreted as a1

welfare function unless the estimated coefficients coincide with the microfounded weights.2

Given that much of the literature on estimated instrument rules finds that there have3

been significant changes in the conduct of policy over time, targeting rules derived under4

an assumption of unchanging policy maker preferences may be too stylized to capture such5

changes. Therefore, the relative weight on inflation, ωπ, is allowed to be subject to regime6

switching between 1 and a value lower than 1 to capture policy regimes with lower conser-7

vatism. The estimation can therefore assess whether or not the Fed’s attitudes to inflation8

targeting have varied over time. For example, has monetary policy been more conservative9

since the Volcker disinflation? Moreover, accounting for independent regime switching in the10

variances of shocks, σz, σµ, and σζ helps to assess whether the lower interest rates observed11

during 2001-2007 were due to economic conditions, or the result of the Fed putting less12

emphasis on inflation targeting relative to its other objectives.13

When implementing targeting rules, the central bank selects interest rates to minimize14

loss function (9) subject to the structural equations describing private sector behavior, equa-15

tions (1)-(4), and the evolution of shocks. The targeting rules considered include the standard16

cases of discretion and timeless commitment, which are the two polar cases of how well the17

central bank can manage the expectations of the private sector. Under timeless commitment18

the policy maker can make credible promises about the setting of the policy instrument in19

future periods, while under discretion they re-optimize and are expected to re-optimize in20

each period. This implies that under timeless commitment there is a history-dependence in21

policy making arising from these past commitments, which is absent under discretion. The22

empirical implementation of timeless commitment assumes that the targeting rule has been23

in place for a prolonged period.24

The remaining form of targeting rule is quasi-commitment, as developed in Schaumburg25

and Tambalotti (2007) and Debortoli and Nunes (2010). The policymaker may deviate26
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from commitment-based plans with a fixed exogenous probability, known by all agents. The1

current policy maker forms a commitment plan to be followed until randomly ejected, with2

a given probability, from office. At which point a new policy maker will be appointed, and3

a new plan formulated until that policy maker is, in turn, removed. Therefore, the central4

bank can neither completely control the expectations of the private sector, nor perfectly5

coordinate the actions of all future policy makers. This implies that, in contrast to the cases6

of discretion and timeless commitment, in each period there is a policy surprise resulting7

from the fact that expectations are formed as a probability-weighted average of policy with8

and without reneging, while actual policy will either renege or not. Such policy surprises9

imply that outcomes under quasi-commitment are not a probability-weighted average of10

those under discretion and timeless commitment.11

The procedure described by Svensson and Williams (2007) is used to solve for the equi-12

librium dynamics under discretion and timeless commitment with Markov-switching in ob-13

jectives.6 In addition, this solution method is modified to incorporate the case of quasi-14

commitment, as Schaumburg and Tambalotti (2007) and Debortoli and Nunes (2010) do not15

allow for Markov switching in objectives. Appendix C presents the new algorithm.16

4. Data, Priors and Identification17

The empirical analysis uses US data on output growth, inflation, and nominal interest18

rates from 1961Q1 up to 2008Q3, just before nominal interest rates were reduced to their19

effective lower bound of 0.5% and the first round of quantitative easing was implemented.20

The data used in the estimation are plotted in Figure 3, alongside various counterfactual21

6The Svensson and Williams (2007) algorithm implies that although policy makers can anticipate any
changes in their objectives, they do not attempt to tie the hands of their future selves by altering today’s
policy plan as part of a strategic game, instead they set today’s policy cooperatively with their future selves.
We consider that this algorithm is in line with the conduct of US Fed policy as there may be some evolution in
the consensus surrounding the objectives of monetary policy. However, in other policy making environments,
where interest rate decisions are made by partisan politicians who may alternate in office, this would be less
defensible and the approach of Debortoli and Nunes (2010) would be applicable.
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simulation results which will be discussed below. The estimation strategy is standard and is1

described in Appendix D.2

The priors are presented in Table 1. These are set to be broadly consistent with the3

literature on the estimation of New Keynesian models, in particular for the structural model4

parameters we follow Smets and Wouters (2003). For the Markov-switching instrument rule5

parameters, in line with Bianchi (2013), the priors for the response to output growth and6

the smoothing term are set to be symmetric across regimes, while asymmetric priors are7

chosen for the response to inflation.7 For targeting rules, the relative weights (i.e. ω1, ω2,8

and ω3) on the objective function are assumed to be distributed following beta distributions9

and ωπ is allowed to switch between 1 and a value lower than 1, where the beta distribution10

is used for the latter with a mean of 0.5. The prior for the probability of reneging on past11

promises under quasi-commitment policy, υ, follows Debortoli and Lakdawala (2016) with a12

uniform prior on the interval [0,1]. The parameters, γQ, πA and rA represent the values of13

output growth, inflation and interest rates, respectively, when the economy is in its steady14

state. The prior means of γQ, πA and rA are set to be broadly consistent with their data15

averages during this pre-sample period from 1950Q1 to 1960Q4. Parameter πA is interpreted16

as an inflation target, and it is assumed to be constant for all models except the instrument17

rule model with Markov-switching inflation target, where the priors for πA are set in line18

with Schorfheide (2005). The average real interest rate, rA, determines the discount factor,19

β =
(
1 + rA/400

)−1
.20

[Table 1 around here]21

Finally, it is important to note that all model parameters are identifiable. To demonstrate22

this, the identification tests of Komunjer and Ng (2011a) and Koop et al. (2013) were applied23

to the models which feature both policy and volatility switches. In all cases model parameters24

7This way of setting priors for the switching parameters is also discussed by Davig and Doh (2014), as a
means of introducing a natural ordering of regime-dependent parameters in order to avoid the potential risk
of ‘label switching’, as noted in Hamilton, Waggoner, and Zha (2007).
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are identified, see details in Appendix E. This is in contrast to the identification of parameters1

in larger models, (see the application of these tests to the Smets and Wouters model in Iskrev2

(2010), Caglar et al. (2011) and Komunjer and Ng (2011b), respectively) which is one reason3

why we prefer to work with a simpler model.4

5. Results5

This section presents the results of the estimation. It begins by identifying which de-6

scription of policy best fits the data. It then discusses the implications of this for inferences7

about structural parameters of the economy, which shocks drive the business cycle in the8

US, and whether the Fed’s preferences have changed over time.9

5.1. Policy, Structural Parameters and Shocks10

The posterior means and the 90% confidence intervals are presented in Table 2 where11

each column corresponds to an alternative policy description, and these columns are ordered12

according to the log marginal likelihood values calculated using Geweke (1999) and Sims13

et al. (2008), respectively.14

[Table 2 around here]15

The first column of results in Table 2 is for the best-fitting model, which is discretionary16

policy. Following Kass and Raftery (1995) the evidence in favor of discretion relative to17

instrument rules with switches in rule parameters is identified as ‘strong’, and relative to18

timeless commitment as ‘decisive’. The probability of reneging on policy promises under the19

quasi-commitment policy is υ = 0.29, which implies that the commitment plan is expected20

to last for just 10 months. These estimates suggest that the discretionary form of targeting21

rule best fits the data, and there is no evidence of any commitment behavior on the part of22

the Fed.23
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The estimates obtained under the conventional instrument rule are broadly in line with1

other studies: an intertemporal elasticity of substitution, σ = 2.9, a measure of price sticki-2

ness, α = 0.77, implying that price contracts typically last for one year; a relatively modest3

degree of price indexation, ζ = 0.09, a sizeable estimate of the degree of habits, θ = 0.834

and an inverse Frisch labor supply elasticity of ϕ = 2.4. Moving to the case of discretion,5

these deep parameter estimates remain largely the same, except that there is a significant6

decline in the degree of habits in the model, which falls to θ = 0.39, and a modest increase7

in the degree of indexation in price setting to ζ = 0.16. The quasi-commitment policy de-8

livers similar values for these parameters. However, with a further increase in the degree of9

precommitment to the case of strict timeless commitment, the degree of indexation rises to10

ζ = 0.26, while the extent of habit persistence increases to a level closer to that observed11

under instrument rules, θ = 0.69.12

These differences in the estimated structural parameters across targeting rules reflect the13

need to ensure the policy maker faces a meaningful trade-off. In the benchmark New Keyne-14

sian model it is only cost-push shocks which present a trade-off between output and inflation15

stabilization for the policy maker. All other shocks would result in policy responses which16

perfectly stabilize inflation. Introducing a habits externality breaks this ‘divine coincidence’17

and implies other shocks will matter to the policy maker. Therefore, in order to explain18

the observed volatility in inflation, the estimation under timeless commitment retains the19

degree of habits relative to instrument rules. This increases the ability of shocks, other than20

the cost-push shock, to generate inflation volatility. In such an environment the degree of21

inflation indexation is also likely to affect these policy trade-offs.22

The case of discretion is more subtle. The inability to commit to a small but sustained23

response to shocks implies that in the presence of the habits externality the policy maker24

will react aggressively to such shocks, see Leith, Moldovan, and Rossi (2012). This would25

imply higher interest rate volatility than is observed in the data. Therefore, the estimation26
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downplays the extent of habits under discretion, relative to timeless commitment.1

In addition to variations in the degree of habits and inflation indexation across the es-2

timates obtained under targeting rules, the balance between different shocks also changes.3

Again, this reflects the need to generate meaningful policy trade-offs in order to explain the4

inflation volatility observed in the data. Therefore, we see a reduction in both the persis-5

tence and standard deviation of preference shocks under targeting rules relative to instrument6

rules. At the same time, the persistence and standard deviation of cost push shocks increase,7

dramatically so in the case of timeless commitment. However, it is important to note that8

under discretion the unconditional variance of this shock is not dissimilar to those found in9

other studies employing instrument rules as their description of policy.810

To summarize, relative to conventional instrument rules, our preferred targeting rule11

adjusts structural and shock parameter estimates to create a meaningful trade-off for policy12

when explaining macroeconomic volatility. This includes a shift from preference to cost push13

shocks in explaining the US business cycle.14

5.2. Inflation Conservatism15

The results suggest that the Fed’s stance on inflation targeting has varied over the sample16

period. Taking into account potential switches in shock volatilities, for each policy specifica-17

tion, the estimation identifies two distinct inflation targeting regimes with a different degree18

of conservatism. We label them ‘more’ and ‘less’ conservative regimes, depending on the19

size of the weight on inflation, ωπ, under targeting rules. Under all targeting rules, ωπ is20

more than halved in the less conservative regime from the default level of one in the more21

conservative regime.22

8It should be noted that the cost-push shock enters the Phillips curve with the reduced form coefficient
κc, which lies in the range 0.036-0.065 across our estimates. Calculating the unconditional variance of the
normalized cost-push process κcµ̂t for discretion implies that the variance of 0.002 and 0.017 in low and
high volatility regimes, respectively, is lower than that estimated by Smets and Wouters, 2003 for a single
volatility regime (0.0217). For the case of quasi-commitment the corresponding numbers are 0.0012 and
0.014. However, commitment requires substantial increases in the unconditional variance of the cost push
shock to 0.16 and 0.65 for the low and high volatility regime, respectively.
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As for instrument rules with either Markov-switching rule parameters or inflation targets,1

a ‘less’ conservative inflation regime can be also identified by observing a reduction in the size2

of the coefficient on excess inflation, ψ1, or an increase in inflation target, πA, respectively.3

In the former case, although policy satisfies Taylor principle across both regimes, ψ1 falls4

from 2.124 to 1.219, while for the latter case, πA rises from 3.34% to 4.33%.5

We now explore when these less conservative inflation regimes were estimated to have6

occurred. Figure 1 plots the smoothed probabilities of being in the less conservative targeting7

regime, as well as being in the high volatility regime. In the case of quasi-commitment, the8

plot also shows the probability that the policy maker has reneged on previous commitments.9

[Figure 1 around here]10

The best-fitting model, discretion, provides more information than the instrument rule-11

based models on the conduct of monetary policy over recent years, as the smoothed prob-12

abilities show. The estimation finds the relaxation of monetary policy in the 1970s that is13

well documented in the existing literature following Clarida et al. (1998). However, unlike14

the vast majority of the literature our estimates date the Volcker disinflation as occurring in15

1982 rather than 1979.9 Additionally, the smoothed probabilities from this model also sug-16

gest that policy was relaxed briefly following the stock market crash of October 1987. More17

interestingly, a prolonged reduction in the Fed’s weight on the inflation target is identified18

as occurring at the time of dot-com crash and persisting all the way through to the financial19

crisis. Such a pattern is not so apparent in the instrument rule-based models. Similarly,20

the less conservative policy episodes are largely confined to the mid to late 1970s under21

timeless commitment. Quasi-commitment utilizes two mechanisms to capture a relaxation22

in the Fed’s anti-inflation stance. Specifically, we may observe a reduction in the weight23

attached to inflation stabilization in the objective function (lost conservatism) or periods24

9More recent papers also find that the date of the Volcker disinflation is later than previously thought.
See, for example, Bianchi (2013), Schorfheide (2005).
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of reneging on past policy commitments. Relative to discretion, quasi-commitment relies1

on extensive periods of lost conservatism to such an extent that it is easier to define when2

conservatism was not lost under this policy description — briefly in the early 1980s and a few3

years prior to the bursting of the dot-com bubble — and even then, not fully. In addition, the4

quasi-commitment estimates imply that the Fed reneged on policy commitments relatively5

frequently in the 1970s, and was showing signs of having possibly done so in the lead up to6

the financial crisis too.7

5.3. The Importance of Switches in Policy and Volatilities8

Turning to explore how important accounting for both the switches in policy and shock9

volatilities are for our estimated results, Table 3 re-estimates our models without allowing for10

either form of switching.10 In this case, the simple instrument rule is preferred by the data,11

but only marginally. This is because targeting rules are heavily penalized by being prevented12

from accounting for the less conservative policy in the 1970s. The ranking amongst targeting13

rules also changes: quasi-commitment is preferred to discretion with timeless commitment14

struggling to fit the data. The apparent superiority of quasi-commitment relative to other15

forms of targeting rule is due to the presence of policy surprises. Without allowing for16

switches in shock volatilities these policy surprises, largely identified during the 1970s, serve17

as an additional shock to increase the ability of the model to fit the data. Once switches18

in shock volatilities are introduced in Table 2, quasi-commitment loses this advantage over19

instrument rules and discretion.20

[Table 3 around here]21

Introducing the possibility of policy switches, but not switches in the volatility of shocks,22

highlights several interesting features of the benchmark estimates that would be otherwise23

10Here we only present selected parameters. The complete set of parameter estimates is given in Appendix
G.
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missed, see Table 4.1

[Table 4 around here]2

First, the ranking of policies changes again: the policy switches can account for the less3

conservative regime in the 1970s enabling discretion and quasi-commitment to dominate4

instrument rules.5

Second, the differences between the less and more conservative regimes are greater than6

in the case in Table 2, where the switches in shock volatilities are present. Without volatility7

switching, as shown in Table 4, the instrument rule does not satisfy the Taylor principle in8

the less conservative regime. This mirrors the findings of Sims and Zha (2006) who warn of9

the biases that may be introduced by failing to account for heteroscedasticity in the error10

terms. For the instrument rule with switches in the inflation target, the differences in the11

targets are also widened. Similarly, for the targeting rules, the relative weight on inflation12

falls by more across all policy descriptions in the less conservative regime. These results13

support a generalization of the arguments in Sims and Zha (2006) that failure to account14

for shifts in shock volatility may overstate the apparent weakness in policy during certain15

periods.16

Third, not including switching in shock volatilities also leads to a loss of nuance in the17

identification of periods with less conservative regime under discretion. Without volatility18

switches all policy descriptions pick up the high inflation in the 1970s as being the result of19

a less conservative targeting regime, and that this episode ends with the Volcker disinflation20

somewhere between 1979 and 1982, see Figure G1 in Appendix G. However, when we combine21

volatility shifts with policy shifts there are additional periods where the Fed appears to have22

lost conservatism.11 These are often associated with well known periods of stock market23

volatility, specifically in 1987 and following the bursting of the dot-com bubble.24

11There are less extensive periods of reduced conservatism under quasi-commitment when we do not allow
for switches in shock volatilities. In essence, the less conservative regime under quasi-commitment allows
the estimation to accommodate higher shock volatilities without inducing an overly aggressive and therefore
data-incoherent policy response during reneging periods.



How Optimal is US Monetary Policy? 17

To summarize, with no switching in objectives the targeting rules find it more difficult to1

account for the inflation of 1970s than instrument rules. Adding switches in policy objectives2

results in discretion dominating all other forms of policy, see Table 4. Allowing for switches in3

shock volatilities, policy surprises generated by quasi-commitment policy become relatively4

less effective in explaining the data. As a result, quasi-commitment moves further down in5

the ranking of the data-preferred policies as shown in Table 2.6

6. Comparison with Debortoli and Lakdawala (2016)7

Our estimates imply that discretion dominates all other descriptions of policy. This is8

in contrast to the conclusions of Debortoli and Lakdawala (2016) who argue that the data9

reject both discretion and timeless commitment, preferring quasi-commitment. They reach10

this conclusion based on the fact that the estimated probability of reneging on past promises11

does not tend to either zero or one in estimation. This section seeks to explore the reasons12

underpinning the apparent disparity in conclusions.13

The first thing to note is that our estimates of the probability of reneging on past policy14

commitments are not dissimilar to theirs. However, the fact that the estimates do not tend15

to the limiting case of discretion does not imply that quasi-commitment dominates discretion16

in terms of its ability to explain the data. Instead, the Bayes factor implies that discretion is17

decisively preferred to quasi-commitment. The reason for this is that the quasi-commitment18

model is not actually an intermediate case lying between the cases of timeless commitment19

and discretion, as discussed before in Section 3.2. Instead, it introduces policy surprises20

— serving as a new kind of policy shock — which arise from the fact that economic agents21

form expectations based on the probability of experiencing a reneging regime in the next22

period. The realization or otherwise of the reneging regime is then always a shock relative23

to these expectations. When the probability of reneging is low, economic agents expect the24

policy maker to keep their promises so that reneging offers the policy maker the opportunity25
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to exploit those expectations generating a sizeable policy shock. Conversely, when there1

is a high probability of reneging, the policy maker makes more extreme policy promises2

to retain a desirable influence over expectations which, in turn, imply a large policy shock3

whenever the policy maker keeps that promise (see Schaumburg and Tambalotti, 2007). The4

estimated probability of reneging needs to balance these two scenarios to produce policy5

shocks that match the volatility in the data. As discussed in Section 5.3, once switches in6

shock volatilities are allowed, there is less need to rely on such policy shocks to fit the data.127

Finally, we can check that our results are not driven by adopting an objective function8

which takes the form of the microfounded objective function (9) rather than the simpler9

specification used in Debortoli and Lakdawala (2016). We consider two forms of ad hoc10

objective function based on11

L = E0

∞∑

t=0

βt
(
π̂2t + ωyŷ

2
t + ωR

(
∆R̂t

)2)
. (10)12

Loss function type I excludes the term in the interest rate smoothing, ωR = 0, and only13

retains terms in inflation and the output gap. Loss function type II allows the interest rate14

smoothing term ωR to be estimated.15

[Table 5 is around here]16

In Table 5 we compare four policies, all excluding Markov switching in policy objectives17

but including switching in shock volatilities, as in Debortoli and Lakdawala (2016). Discre-18

tion with objectives in a microfounded form dominates the three cases of quasi-commitment,19

with type I and II ad hoc objectives and the case with objectives in a microfounded form20

(9) used throughout the paper.21

Three clear messages emerge from this comparison. First, with objective function (9)22

discretion dominates quasi-commitment. Again, this confirms that when switches in shock23

12The quasi-commitment estimation also adds complexity to the model in the form of an additional
estimated parameter, the need to estimate the probability that we have observed a reneging regime in each
period and the scale of the state-space representation of the model relative to the discretionary case. This
complexity is penalized in the construction of the Bayes factors.
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volatilities are accounted for the policy-surprise shocks generated by quasi-commitment are1

less effective in fitting the data.2

Second, adding the interest rate smoothing term significantly raises the ability of quasi-3

commitment to fit the data. Quasi-commitment using the type II ad hoc objective achieves4

a better fit compared to the other two cases of quasi-commitment. However, the estimated5

weight on the smoothing term is implausibly large, ωR = 1.5 as the estimation seeks to limit6

the sharp movements in the policy instrument implied by the policy shocks described above.7

If we remove the interest rate smoothing term (type I ad hoc), then such policy results in8

the worst fit out of the four cases considered in Table 5.9

Third, quasi-commitment policies with ad hoc welfare objectives identify similar proba-10

bilities of reneging and periods of high volatility as the quasi-commitment policy presented11

in Table 2, see Figure G2 in Appendix G.12

7. Counterfactuals13

The best-fitting model is obtained under discretionary policy with Markov switching in14

the weight on inflation target in the policy maker’s objectives, as well as switches in the15

volatility of shocks hitting the economy. This allows us to undertake various counterfactual16

exercises. For example, exploring what the outcomes would have been if shock volatilities17

had not declined in the 1980s, or what would have happened had the Fed adopted a tougher18

anti-inflation stance in the 1970s. Moreover, this section explores how much further economic19

outcomes would have improved had the policy maker not only adopted tougher anti-inflation20

policies in the 1980s, but also been able to act under timeless commitment.21

7.1. Good Luck22

The series of counterfactuals begins by analyzing the role of good luck in stabilizing23

US output and inflation. To do so the pattern of switches in policy regimes is fixed as24
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estimated, but the counterfactual sets the volatility of shocks at their high or low values.1

The estimated shocks are therefore re-scaled by the relative standard deviations from the2

high and low volatility regimes. Panel A of Figure 2 plots the actual and counterfactual3

series for inflation, interest rates and output growth. We can see that the high volatility4

of shocks plays a significant role in raising inflation during the 1970s. In the absence of5

these high volatility shocks, inflation would never have risen above 5%. In addition, it is6

apparent that output growth fluctuations could have been dampened if policy makers had7

had the ‘good luck’ of experiencing the low shock volatility regime during the 1970s and8

early 1980s. Moreover, it is also notable that under the policy regimes estimated in the post-9

Volcker period, inflation and output fluctuations would not have changed too dramatically10

regardless of the magnitude of shocks. This may be an indication that tougher anti-inflation11

policies in the 1980s helped stabilize the US economy.12

[Figure 2 around here]13

7.2. Conservative Monetary Policy14

The second set of counterfactual analyses assesses the impact that increased conservatism15

would have had on US inflation and output, especially during the 1970s. To simulate the set16

of counterfactual variables we subject the economy to the sequence of estimated shocks, but17

set the weight on inflation in the policy maker’s objective function, ωπ, to either its default18

value of one in the more conservative regime, or to 0.436 in the less conservative regime,19

throughout the sample period. The first two pictures in Panel B of Figure 2 plot the actual20

and counterfactual series for inflation and interest rates. The third picture plots the output21

loss, which is the difference between model implied output with estimated objective function22

weights and the counterfactual output when the policy maker is more conservative.23

Panel B of Figure 2 shows that even if the Fed had adopted a tougher anti-inflation stance24

in the 1970s, it would not have been able to completely avoid higher inflation, but observed25
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inflation would have been significantly lowered at a cost of higher output losses. Similarly,1

the two periods of rising inflation that occurred following the stock market crash of 1987 and2

the bursting of the dot-com bubble could also have been mitigated if the Fed had maintained3

its stance on inflation targeting. The counterfactual paths for interest rates largely reflect4

the tightness or slackness of policy implied by the alternative scenarios. However, since5

the effective stance of monetary policy is reflected in the real interest rate, the path for6

nominal interest rates under the less conservative policy are above those implied by the7

more conservative policy, reflecting the latter’s success in controlling inflation.8

7.3. The Value of Commitment9

Finally, Panel C of Figure 2 assesses the implications of moving from discretion to timeless10

commitment. Both the shock volatility and policy switches follow their estimated realiza-11

tions, but we change whether or not the policy maker has access to a timeless commitment12

technology. The results are striking. If the Fed had been able to make credible policy com-13

mitments in the 1970s, even although it was subject to high volatility shocks and had a14

reduced weight on the inflation target in that period, inflation would have remained below15

2% throughout the sample period. Although it appears that there would have been non-16

trivial losses in output with a peak loss of around 1% by the mid 1970s, the welfare analysis17

in the next section suggests that these losses are more than compensated for by the reduction18

in inflation volatility.19

7.4. Welfare Analysis20

In addition to providing the counterfactual figures above, it is insightful to compute21

the unconditional variances of key variables and the value of unconditional welfare (using22

both the estimated policy objective (9) and the fully microfounded objectives where the23

weights are microfounded functions of the estimated structural parameters of the model)24
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under alternative counterfactuals.1

As a benchmark case we consider the worst case scenario where the economy is perma-2

nently in the high shock volatility regime and adopt a less conservative policy with ωπ =3

0.436 under discretion. We can then consider the extent to which ‘good policy’ or ‘good luck’4

alone would be able to stabilize inflation, output and interest rates and improve welfare.5

Table 6 presents variances of output, inflation and interest rate under different conser-6

vatism — volatility scenarios. The degree of conservatism ranges from that estimated under7

the less conservative through the more conservative regimes, both of which are using esti-8

mated policy objective weights, to the extreme level implied by the fully microfounded welfare9

function. Two welfare metrics are used to measure losses, one with estimated weights and10

the other with microfounded weights.11

[Table 6 around here]12

Panel A in Table 6 shows that under discretion either implementing the ‘more’ conserva-13

tive regime, or enjoying a reduction in shock volatility alone, would reduce by more than half14

the volatility in inflation and interest rates implied by the worst case scenario. However, it15

is the ‘good luck’ that would lead to significant output stabilization and, therefore, achieve16

bigger gains as measured by either the central bank’s estimated or the microfounded welfare17

metrics.18

If the policy maker further increases the level of conservatism to the levels implied by the19

microfounded objectives, there is a striking reduction in inflation volatility to negligible levels.20

However, it significantly worsens output volatility in the high volatility regime. Clearly, the21

Fed has not implemented monetary policy with a degree of inflation conservatism anywhere22

near that implied by microfounded objectives.23

Turning to Panel B of Table 6 we consider the same experiment, but now assume that24

policy is conducted under timeless commitment. In the absence of ‘good luck’, being able25

to act with timeless commitment allows the central bank to almost completely stabilize26
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inflation volatility, but at the cost of moderate increases in output fluctuations. It is also1

important to note that welfare is clearly improved regardless of the degree of central bank2

conservatism. This result suggests that the reduction in inflation volatility achieved by being3

able to act under timeless commitment is such that the issue of conservatism becomes of4

second-order importance. Therefore, the dimension of ‘good policy’ policymakers should5

be concerned with is not the weight given to inflation stabilization in the policy maker’s6

objective function, i.e. the conservatism of the central bank, but rather that they have the7

tools and credibility to effectively pursue a timeless commitment policy and to make time-8

inconsistent promises which they will keep. Finally, under timeless commitment we again9

see substantial decreases in output volatility when there is good luck.10

8. Conclusions11

A time consistent targeting rule — discretionary policy — provides the best fit to the data,12

outperforming conventional instrument rules and the other forms of optimal policy with13

different degrees of precommitment. Bayes factors reveal that there is ‘strong’ evidence in14

favor of this description of policy relative to simple instrument rules, and ‘decisive’ evidence15

relative to targeting rules formed under either timeless commitment or quasi-commitment.16

However, the ranking of policies in terms of fitting the data crucially depends on whether17

or not we account for potential changes in the Fed’s degree of inflation conservatism and18

in shock volatilities. A failure to take into account policy switches hinders the ability of19

targeting rules to account for the monetary policy response to the high inflation of the 1970s20

relative to instrument rules. The absence of variation in shock volatilities exaggerates the21

fit of quasi-commitment because it can rely on policy surprises as a source of volatility. We22

demonstrate how inferences about shock processes, habit persistence and inflation indexation23

change across different policy specifications.24

The preferred model implies that there was an increase in central bank conservatism25
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following the Volcker disinflation period, which is estimated to occur in 1982. This description1

of policy also finds that the Fed relaxed policy temporarily in the aftermath of the 1987 stock2

market crash, and also lost conservatism following the 2000 dot-com crash, which it has never3

regained.4

Based on estimates from the best-fit model, a range of counterfactual simulations are5

undertaken which throw light on various aspects of policy. First, there have been significant6

welfare gains to the conservatism in policy making that was adopted following the Volcker7

disinflation. However, these gains are small compared to those attained from the estimated8

reduction in shock volatilities. Relative to the average rate of inflation of 6.51% in the 1970s,9

a policy maker acting under discretion, but with the higher degree of conservatism observed10

later on in the sample, would have reduced average inflation to 4.71%. In contrast, inflation11

would have been expected to be 3.39% in the same period had the economy been lucky enough12

to have been in the low volatility regime. Second, had the US Fed been able to commit,13

rather than acting under discretion, then in the 1970s the average rate of inflation would14

have been below 2%, regardless of the level of conservatism. Taken together, this suggests15

that attempts to improve monetary policy outcomes should concentrate on ensuring that the16

Fed is able to make and communicate credible promises concerning future policy, and that17

this is of more importance than altering the preferences of the central banker.18

The model employed in the paper was deliberately small scale, capturing the essential19

features of the larger scale models often employed in empirical analyses while facilitating20

the development of intuition. Future research could usefully analyse different countries and21

extend the analysis to larger scale models, using more refined models of the Phillip curve.22
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Table 1: Distribution of Priors

Parameters Range Density Mean Std Dev

inv. of intertemp. elas. of subst. σ R Normal 2.50 0.25

Calvo parameter α [0, 1) Beta 0.75 0.02

inflation inertia ζ [0, 1) Beta 0.50 0.15

habit persistence θ [0, 1) Beta 0.50 0.15

inverse of Frisch elasticity ϕ R Normal 2.50 0.25

AR coeff., taste shock ρξ [0, 1) Beta 0.50 0.15

AR coeff., cost-push shock ρµ [0, 1) Beta 0.50 0.15

AR coeff., productivity shock ρz [0, 1) Beta 0.50 0.15

steady state interest rate rA R
+ Gamma 3.5 2

inflation target πA R
+ Gamma 3.5 2

steady state growth rate γQ R Nomal 0.52 1

probability of reneging υ [0, 1] Uniform 0.5 0.25

Markov Switching s.d. of shocks

preference shocks σξ(S=1=2) R
+ Inv. Gamma 0.50 5

cost-push shocks σµ(S=1=2) R
+ Inv. Gamma 0.50 5

technology shocks σz(S=1=2) R
+ Inv. Gamma 0.50 5

policy shocks σR(S=1=2) R
+ Inv. Gamma 0.50 5

Markov switching rule parameters

interest rate smoothing ρR(s=1=2) [0, 1) Beta 0.50 0.25

inflation (more conservative) ψ1(s=1) R
+ Gamma 1.50 0.50

inflation (less conservative) ψ1(s=2) R
+ Gamma 1.0 0.50

output ψ2(s=1=2) R
+ Gamma 0.50 0.25

Weights on Objectives

gap term, X̂t − ξ̂t ω1 [0, 1) Beta 0.50 0.15

gap term, ŷt −
σ
ϕ
ξ̂t ω2 [0, 1) Beta 0.50 0.15

change in inflation, π̂t − π̂t−1 ω3 [0, 1) Beta 0.50 0.15

inflation, π̂t ωπ(s=2) [0, 1) Beta 0.50 0.15

Markov switching in Inflation Target

inflation target (s = 1) πA(s=1) R
+ Gamma 6 2

inflation target (s = 2) πA(s=2) R
+ Gamma 3 2

Transition Probabilities

policy: remains more conservative p11 [0, 1) Beta 0.90 0.05

policy: remains less conservative p22 [0, 1) Beta 0.90 0.05

volatility: remains with low volatility q11 [0, 1) Beta 0.90 0.05

volatility: remains with high volatility q22 [0, 1) Beta 0.90 0.05

Notes: For policy switches s = 1 is more conservative regime and s = 2 is less conservative
regime. For volatility switches S = 1 is less volatile regime and S = 2 is more volatile regime.
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Table 2: Estimation Results

Parameters Discretion
Rule:

Parameters

Rule:

Target

Quasi-

Commitment

Timeless

Commitment

Model Parameters

σ 2.901
[2.526,3.244]

2.937
[2.564,3.309]

2.934
[2.556,3.301]

2.692
[2.356,3.038]

2.912
[2.480,3.338]

α 0.735
[0.708,0.763]

0.770
[0.742,0.799]

0.775
[0.746,0.804]

0.754
[0.732,0.776]

0.775
[0.748,0.803]

ζ 0.165
[0.069,0.254]

0.088
[0.031,0.142]

0.084
[0.030,0.138]

0.182
[0.096,0.270]

0.262
[0.114,0.419]

θ 0.387
[0.206,0.560]

0.827
[0.702,0.956]

0.790
[0.631,0.950]

0.372
[0.201,0.544]

0.694
[0.304,0.953]

ϕ 2.459
[2.060,2.844]

2.442
[2.030,2.855]

2.424
[2.004,2.838]

2.286
[1.889,2.672]

2.199
[1.782,2.638]

Shock Processes

ρξ 0.830
[0.791,0.870]

0.890
[0.853,0.927]

0.901
[0.866,0.938]

0.893
[0.869,0.919]

0.919
[0.898,0.941]

ρµ 0.939
[0.914,0.963]

0.504
[0.262,0.759]

0.502
[0.252,0.751]

0.923
[0.900,0.948]

0.992
[0.986,0.998]

ρz 0.195
[0.141,0.248]

0.329
[0.228,0.427]

0.359
[0.257,0.462]

0.186
[0.134,0.238]

0.162
[0.106,0.218]

σξ(S=1) 0.425
[0.297,0.546]

0.682
[0.527,0.837]

0.545
[0.390,0.690]

0.495
[0.334,0.649]

0.404
[0.249,0.555]

σξ(S=2) 0.873
[0.599,1.139]

1.467
[1.040,1.888]

1.346
[0.958,1.721]

0.909
[0.652,1.167]

1.224
[0.720,1.757]

σµ(S=1) 0.236
[0.182,0.292]

0.277
[0.169,0.381]

0.276
[0.169,0.383]

0.251
[0.188,0.315]

1.329
[0.737,1.905]

σµ(S=2) 0.684
[0.527,0.840]

0.546
[0.343,0.751]

0.545
[0.390,0.690]

0.864
[0.658,1.065]

2.806
[1.697,3.913]

σz(S=1) 0.512
[0.391,0.622]

0.601
[0.540,0.660]

0.603
[0.542,0.664]

0.433
[0.352,0.515]

0.452
[0.372,0.526]

σz(S=2) 1.064
[0.932,1.193]

1.184
[0.981,1.380]

1.156
[0.977,1.329]

1.034
[0.918,1.148]

0.989
[0.870,1.103]

σR(S=1) — 0.140
[0.124,0.156]

0.146
[0.129,0.162]

− —

σR(S=2) — 0.412
[0.332,0.489]

0.455
[0.379,0.529]

− —

Data Means

rA 0.802
[0.294,1.282]

0.541
[0.189,0.873]

0.509
[0.165,0.828]

0.803
[0.330,1.266]

0.722
[0.257,1.184]

πA(s=1) 1.305
[0.629,1.943]

3.558
[2.986,4.122]

3.336
[2.745,3.948]

1.962
[1.588,2.326]

2.755
[2.303,3.189]

πA(s=2) — — 4.329
[3.662,5.001]

− —

γQ 0.773
[0.669,0.897]

0.713
[0.592,0.832]

0.700
[0.566,0.829]

0.790
[0.697,0.885]

0.828
[0.721,0.931]

continued on the next page
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Table 2: Estimation Results — continued

Parameters Discretion
Rule:

Parameters

Rule:

Target

Quasi-

Commitment

Timeless

Commitment

Policy Parameters

υ — — — 0.290
[0.227,0.355]

—

ρR(s=1) — 0.825
[0.793,0.858]

0.821
[0.793,0.851]

− —

ρR(s=2) — 0.868
[0.779,0.946]

— − —

ψ1(s=1) — 2.124
[1.798,2.447]

2.014
[1.655,2.370]

− —

ψ1(s=2) — 1.219
[0.809,1.635]

— − —

ψ2(s=1) — 0.511
[0.327,0.692]

0.587
[0.381,0.784]

− —

ψ2(s=2) — 0.274
[0.102,0.438]

— − —

ω1 0.380
[0.232,0.534]

— — 0.624
[0.476,0.777]

0.503
[0.320,0.690]

ω2 0.635
[0.468,0.800]

— — 0.749
[0.618,0.884]

0.559
[0.280,0.843]

ω3 0.436
[0.200,0.667]

— — 0.369
[0.141,0.586]

0.454
[0.195,0.695]

ωπ(s=1) 1 — — 1 1
ωπ(s=2) 0.436

[0.279,0.589]
— — 0.301

[0.204,0.395]
0.373

[0.216,0.527]

Markov Transition Probabilities

p11 0.947
[0.903,0.989]

0.964
[0.942,0.988]

0.902
[0.840,0.964]

0.798
[0.715,0.882]

0.978
[0.959,0.997]

p22 0.918
[0.876,0.962]

0.846
[0.812,0.880]

0.812
[0.740,0.889]

0.914
[0.865,0.966]

0.798
[0.722,0.877]

q11 0.952
[0.919,0.986]

0.956
[0.928,0.985]

0.979
[0.960,0.998]

0.907
[0.852,0.962]

0.958
[0.931,0.986]

q22 0.955
[0.910,0.997]

0.843
[0.779,0.910]

0.946
[0.902,0.992]

0.941
[0.905,0.977]

0.933
[0.887,0.976]

Log Marginal Data Densities and Bayes Factors

Geweke −759.78
(1.00)

−764.16
(80.29)

−765.83
(425.76)

−770.29
(3.67e+4)

−793.62
(4.98e+14)

Sims et.al. −759.91
(1.00)

−764.21
(74.08)

−765.95
(422.76)

−770.34
(3.40e+4)

−793.95
(6.12e+14)

Notes: Here and in Tables 3-5 for each parameter the posterior distribution is described by
its mean and 90% confidence interval in square brackets. Bayes Factors for marginal data
densities are in parentheses.
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Table 3: Selected Parameter Estimates - No Switching

Parameters Simple Rule
Quasi-

Commitment
Discretion

Timeless

Commitment

Selected Model Parameters

ζ 0.103
[0.039,0.166]

0.170
[0.087,0.252]

0.156
[0.066,0.241]

0.594
[0.489,0.737]

θ 0.823
[0.685,0.964]

0.421
[0.210,0.627]

0.476
[0.267,0.680]

0.643
[0.444,0.782]

Policy Parameters

υ — 0.556
[0.329,0.816]

— —

ρR 0.791
[0.756,0.826]

— — —

ψ1 1.716
[1.455,1.972]

— — —

ψ2 0.492
[0.290,0.697]

— — —

ω1 — 0.703
[0.552,0.861]

0.458
[0.287,0.627]

0.627
[0.490,0.808]

ω2 — 0.828
[0.727,0.935]

0.758
[0.628,0.901]

0.446
[0.316,0.620]

ω3 — 0.390
[0.163,0.619]

0.451
[0.213,0.692]

0.489
[0.268,0.712]

Data Means

rA 0.706
[0.246,1.139]

0.759
[0.143,1.330]

0.966
[0.352,1.569]

1.088
[0.459,1.540]

πA 4.746
[3.800,5.677]

2.586
[1.899,3.095]

2.656
[1.008,4.221]

4.050
[3.642,4.674]

γQ 0.688
[0.547,0.826]

0.737
[0.613,0.861]

0.716
[0.593,0.835]

0.726
[0.594,0.797]

Log Marginal Data Densities and Bayes Factors

Geweke −841.01
(1.00)

−841.67
(1.94)

−842.49
(4.41)

−855.43
(1.84e+6)

Sims et.al −841.09
(1.00)

−841.54
(1.57)

−842.69
(4.96)

−858.26
(2.85e+7)



How Optimal is US Monetary Policy? 33

Table 4: Selected Parameter Estimates - Switches in Policy Only

Parameters Discretion
Quasi-

Commitment

Rule:

Parameters

Rule:

Target

Timeless

Commitment

Selected Model Parameters

ζ 0.155
[0.069,0.239]

0.182
[0.091,0.274]

0.102
[0.038,0.163]

0.123
[0.054,0.195]

0.229
[0.078,0.366]

θ 0.479
[0.286,0.835]

0.371
[0.192,0.543]

0.825
[0.698,0.954]

0.810
[0.658,0.961]

0.606
[0.388,0.843]

Policy Parameters

υ — 0.325
[0.239,0.411]

— — —

ρR(s=1) — — 0.746
[0.708,0.786]

0.797
[0.762,0.831]

—

ρR(s=2) — — 0.845
[0.794,0.900]

— —

ψ1(s=1) — — 2.075
[1.824,2.315]

1.805
[1.507,2.097]

—

ψ1(s=2) — — 0.909
[0.621,1.189]

— —

ψ2(s=1) — — 0.483
[0.309,0.645]

0.498
[0.285,0.714]

—

ψ2(s=2) — — 0.245
[0.098,0.393]

— —

ω1 0.259
[0.035,0.414]

0.633
[0.480,0.785]

— − 0.502
[0.331,0.666]

ω2 0.650
[0.460,0.847]

0.759
[0.631,0.893]

— − 0.523
[0.295,0.732]

ω3 0.442
[0.164,0.698]

0.349
[0.126,0.559]

— − 0.460
[0.205,0.710]

ωπ(s=1) 1 1 — − 1
ωπ(s=2) 0.347

[0.219,0.477]
0.348

[0.254,0.440]
— — 0.302

[0.194,0.414]

Data Means

rA 0.766
[0.303,1.213]

0.997
[0.377,1.591]

0.695
[0.276,1.105]

0.662
[0.239,1.054]

0.975
[0.358,1.561]

πA(s=1) 2.683
[1.275,4.022]

2.097
[1.770,2.431]

3.736
[3.183,4.299]

4.234
[3.470,4.995]

3.064
[2.733,3.411]

πA(s=2) — — — 6.058
[5.217,6.862]

—

γQ 0.683
[0.567,0.800]

0.722
[0.598,0.842]

0.677
[0.540,0.808]

0.681
[0.544,0.822]

0.741
[0.619,0.862]

Log Marginal Data Densities and Bayes Factors

Geweke −810.98
(1.00)

−814.83
(47.0)

−825.33
(1.72e+6)

−831.74
(1.04e+9)

−832.85
(3.14e+9)

Sims et.al. −811.24
(1.00)

−814.30
(21.21)

−825.44
(1.46e+6)

−831.81
(8.52e+8)

−832.98
(2.75e+9)
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Table 5: Estimation Results - MS Shocks only

Para-

meters

Discretion

micro-

founded

objective

Quasi-

commitment

Ad Hoc

objective

type II

Quasi-

commitment

micro-

founded

objective

Quasi-

commitment

Ad Hoc

objective

type I

Model Parameters

σ 2.866
[2.503,3.227]

2.588
[2.220,2.944]

2.375
[2.054,2.688]

2.186
[1.851,2.509]

α 0.751
[0.724,0.779]

0.808
[0.788,0.827]

0.787
[0.765,0.808]

0.811
[0.793,0.828]

ζ 0.173
[0.075,0.261]

0.173
[0.089,0.256]

0.194
[0.142,0.243]

0.153
[0.080,0.224]

θ 0.459
[0.220,0.715]

0.495
[0.409,0.580]

0.478
[0.383,0.570]

0.293
[0.233,0.349]

ϕ 2.274
[1.872,2.675]

2.020
[1.577,2.439]

1.793
[1.453,2.137]

2.031
[1.614,2.436]

Shock Processes

ρξ 0.843
[0.810,0.877]

0.822
[0.758,0.891]

0.898
[0.875,0.922]

0.875
[0.842,0.910]

ρµ 0.936
[0.911,0.961]

0.926
[0.891,0.963]

0.930
[0.903,0.957]

0.936
[0.907,0.968]

ρz 0.183
[0.132,0.239]

0.300
[0.215,0.386]

0.194
[0.142,0.243]

0.201
[0.142,0.258]

σξ(S=1) 0.443
[0.311,0.575]

0.510
[0.315,0.709]

0.510
[0.332,0.681]

0.480
[0.340,0.616]

σξ(S=2) 0.898
[0.622,1.171]

1.905
[1.187,2.657]

1.082
[0.747,1.404]

1.186
[0.846,1.509]

σµ(S=1) 0.234
[0.178,0.286]

0.829
[0.433,1.260]

0.317
[0.219,0.411]

0.583
[0.372,0.781]

σµ(S=2) 0.769
[0.579,0.951]

2.247
[1.557,2.910]

1.094
[0.773,1.431]

1.801
[1.345,2.239]

σz(S=1) 0.476
[0.380,0.569]

0.526
[0.441,0.610]

0.450
[0.358,0.542]

0.438
[0.347,0.526]

σz(S=2) 1.064
[0.361,1.189]

0.962
[0.794,1.111]

1.061
[0.937,1.184]

1.024
[0.893,1.148]

Data Means

rA 0.763
[0.277,1.213]

0.732
[0.249,1.218]

0.666
[0.245,1.082]

0.662
[0.241,1.071]

πA 1.706
[0.693,2.643]

2.276
[1.879,2.678]

2.150
[1.674,2.636]

2.481
[2.178,2.793]

γQ 0.789
[0.692,0.885]

0.761
[0.645,0.882]

0.783
[0.682,0.883]

0.786
[0.684,0.887]

continued on the next page
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Table 5: Estimation Results - MS Shocks only — continued

Para-

meters

Discretion

micro-

founded

objective

Quasi-
commitment

Ad Hoc

objective

type II

Quasi-
commitment

micro-

founded

objective

Quasi-
commitment

Ad Hoc

objective

type I

Policy Parameters

υ — 0.194
[0.127,0.261]

0.260
[0.187,0.333]

0.144
[0.110,0.177]

ρR — — − —
ψ1 — — − —
ψ2 — — − —
ω1 0.454

[0.275,0.642]
— 0.746

[0.609,0.882]
—

ω2 0.715
[0.569,0.867]

— 0.819
[0.714,0.927]

—

ω3 0.444
[0.198,0.676]

— 0.402
[0.167,0.633]

—

ωπ 1 1 1 1
ωy — 0.819

[0.711,0.933]
— 0.866

[0.781,0.952]

ωR — 1.533
[0.734,2.349]

— —

Markov Transition Probabilities

p11 0.916
[0.866,0.968]

0.948
[0.902,0.997]

0.900
[0.840,0.964]

0.879
[0.813,0.944]

p22 0.892
[0.849,0.934]

0.959
[0.931,0.986]

0.939
[0.904,0.973]

0.940
[0.903,0.978]

Log Marginal Data Densities and Bayes Factors

Geweke −776.22
(1.0)

−782.97
(854.06)

−792.73
(1.48e+7)

−837.80
(5.54e+26)

Sims et.al −776.23
(1.0)

−782.81
(718.38)

−792.74
(1.49e+07)

−837.64
(4.67e+26)

Note: The prior for ωR is Gamma (1,1) and for ωy it is Beta (0.5,0.15).
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Table 6: Unconditional Variances and Welfare under Alternative Policies and Volatilities

Regime:
(conservatism, volatility)

Output Inflation Interest Rate Welfare Cost
(est. weights)

Welfare Cost
(micro. weights)

A: Discretion

(less, high)∗ 0.147
[0.092,0.228]

2.044
[1.413,3.157]

1.452
[0.936,2.459]

3.726
[2.250,6.554]

1.05%
[0.69%,1.54%]

(more, high) 0.151
[0.100,0.234]

0.698
[0.467,1.00]

0.593
[0.449,0.844]

3.584
[2.126,6.397]

0.41%
[0.30%,0.60%]

(micro, high) 0.177
[0.127,0.259]

0.002
[0.001,0.003]

0.480
[0.403,0.566]

— 0.08%
[0.05%,0.15%]

(less, low) 0.060
[0.036,0.093]

0.798
[0.541,1.231]

0.509
[0.311,0.893]

0.811
[0.485,1.451]

0.17%
[0.11%,0.26%]

(high, low) 0.057
[0.035,0.089]

0.281
[0.179,0.407]

0.223
[0.166,0.322]

0.793
[0.470,1.435]

0.07%
[0.05%,0.115%]

(micro, low) 0.061
[0.042,0.094]

0.001
[0.000,0.001]

0.232
[0.193,0.276]

— 0.02%
[0.01%,0.03%]

B: Timeless Commitment

(less, high) 0.166
[0.112,0.250]

0.053
[0.037,0.081]

0.746
[0.624,0.893]

2.982
[1.588,5.720]

0.13%
[0.09%,0.20%]

(more, high) 0.168
[0.117,0.251]

0.018
[0.012,0.026]

0.697
[0.0.586,0.829]

3.009
[1.616,5.753]

0.10%
[0.07%,0.17%]

(micro, high) 0.179
[0.129,0.261]

0.000
[0.000,0.000]

0.463
[0.387,0.547]

— 0.08%
[0.05%,0.15%]

(less, low) 0.062
[0.040,0.095]

0.023
[0.015,0.033]

0.364
[0.296,0.446]

0.688
[0.377,1.319]

0.03%
[0.02%,0.04%]

(more, low) 0.061
[0.040,0.094]

0.008
[0.005,0.012]

0.341
[0.279,0.414]

0.694
[0.383,1.326]

0.02%
[0.02%,0.04%]

(micro, low) 0.062
[0.042,0.095]

0.000
[0.000,0.000]

0.225
[0.187,0.268]

— 0.02%
[0.01%,0.03%]

Notes: The welfare costs are computed using equation (9) where weights are either es-
timated or microfounded functions of estimated structural parameters. The microfounded
welfare costs are expressed as a percentage of steady-state consumption. For both timeless
commitment and discretionary policy we compute social welfare using regimes and regime
parameters identified for discretionary policy.
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Figure 1: Markov Switching Probabilities: Policy and Volatility Switches
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Figure 2: Counterfactuals
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This Appendix contains the detailed explanation of the model (Appendix A), derivation of

the microfounded objective function (Appendix B), description of the algorithms used to solve

the policy problem (Appendix C), details of the estimation strategy (Appendix D), discussion

and application of identification tests (Appendix E), details of the approach to model selection

(Appendix F) and some additional results (Appendix G).

A The Model

The model is a small scale New Keynesian model featuring households who supply labour to

imperfectly competitive firms which are subject to nominal inertia in the form of Calvo (1983)

contracts. In order to introduce the possibility of some intrinsic persistence in the model, house-

holds are assumed to be subject to a habits externality, while some firms may employ simple rules

of thumb when setting prices in a manner which introduces inflation inertia to the NKPC. Below

we describe the micro-foundations of the model in more detail.

A.1 Households

The economy is populated by a continuum of households, indexed by k and of measure 1. House-

holds derive utility from consumption of a composite good, Ck
t =

(∫ 1
0

(
Ck
it

) η−1
η di

) η

η−1

where η

is the elasticity of substitution between the goods in this basket and suffer disutility from hours

spent working, Nk
t . Habits are both superficial and external implying that they are formed at the

level of the aggregate consumption good, and that households fail to take account of the impact

of their consumption decisions on the utility of others. To facilitate data-consistent detrending

around a balanced growth path without restricting preferences to be logarithmic in form, we

also follow Lubik and Schorfheide (2005) and An and Schorfheide (2007) in assuming that the

consumption that enters the utility function is scaled by the economy wide technology trend,

implying that household’s consumption norms rise with technology as well as being affected by

more familiar habits externalities. Accordingly, households derive utility from the habit-adjusted

composite good,

E0

∞∑

t=0

βt

[(
Ck
t /At − θCt−1/At−1

)1−σ
ξ−σt

1− σ
−

(
Nk
t

)1+ϕ
ξ−σt

1 + ϕ

]

,
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where Ct−1 ≡
∫ 1
0 C

k
t−1dk is the cross-sectional average of consumption.

1 In other words house-

holds gain utility from consuming more than other households, and are disappointed if their con-

sumption doesn’t grow in line with technical progress, At, and are subject to a time-preference

or taste-shock, ξt. Et is the mathematical expectation conditional on information available at

time t, β is the discount factor (0 < β < 1) , and σ and ϕ are the inverses of the intertemporal

elasticities of habit-adjusted consumption and work (σ, ϕ > 0; σ �= 1).

The process for technology is non-stationary:

lnAt = lnγ + lnAt−1 + ln zt,

ln zt = ρz ln zt−1 + εz,t.

Households decide the composition of the consumption basket to minimize expenditures, and the

demand for individual good i is

Ck
it =

(
Pit
Pt

)−η
Ck
t =

(
Pit
Pt

)−η (
Xk

t + θCt−1

)
.

By aggregating across all households, we obtain the overall demand for good i as

Cit =

∫ 1

0
Ck
itdk =

(
Pit
Pt

)−η
Ct. (1)

The remainder of the household’s problem is standard. Specifically, households choose the

habit-adjusted consumption aggregate, Xk
t = Ck

t /At − θCt−1/At−1, hours worked, N
k
t , and the

portfolio allocation, Dk
t+1, to maximize expected lifetime utility

E0

∞∑

t=0

βt

[(
Xk

t

)1−σ
(ξt)

−σ

1− σ
−

(
Nk
t

)1+ϕ
(ξt)

−σ

1 + ϕ

]

,

subject to the budget constraint

∫ 1

0
PitC

k
itdi+EtQt,t+1D

k
t+1 =WtN

k
t (1− τ t) +Dk

t +Φt + Tt,

and the usual transversality condition. The household’s period-t income includes: wage income

from providing labor services to goods producing firms, WtN
k
t , which is subject to a time-varying

tax rate, τ t , dividends from the monopolistically competitive firms, Φt, and payments on the

1Note that this utility specification is slightly different from that in Lubik and Schorfheide (2005) who adopt
the following specification, (Ct − θγCt−1)/At)

1−σ (ξt)
−σ/(1−σ). Their specification introduces a technology shock

into the definition of habits adjusted consumption which then complicates the derivation of welfare. Therefore we
adopt a specification which implies habits in detrended variables, which means that the only place the technology
shock appears is in the consumption Euler equation.
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portfolio of assets, Dk
t . Financial markets are complete. Lump-sum transfers, Tt, are paid by the

government. The tax rate, τ t, will be used to finance lump-sum transfers, and can be designed

to ensure that the long-run equilibrium is efficient in the presence of the habits and monopolistic

competition externalities. However, we shall assume that the tax rate fluctuates around this

efficient level such that it is responsible for generating an autocorrelated cost-push shock.

In the maximization problem, households take as given the processes for Ct−1, Wt, Φt, and Tt,

as well as the initial asset position Dk
−1. The first order conditions for labor and habit-adjusted

consumption are (
Nk
t

)ϕ
(
Xk

t

)−σ =
Wt

PtAt
(1− τ t),

and

1 = βEt

[(
Xk

t+1ξt+1
Xk

t ξt

)−σ
At

At+1

Pt
Pt+1

]

Rt,

where

Qt,t+1 = β

(
Xk

t+sξt+1
Xk

t ξt

)−σ
At

At+1

Pt
Pt+1

.

is the one-period stochastic discount factor for nominal payoffs and R−1t = Et [Qt,t+1] denotes the

inverse of the risk-free gross nominal interest rate between periods t and t+ 1.

A.2 Firms

We further assume that intermediate goods producers are subject to the constraints of Calvo

(1983)-contracts such that, with fixed probability (1− α) in each period, a firm can reset its price

and with probability α the firm retains the price of the previous period, but where, following Yun

(1996) that price is indexed to the steady-state rate of inflation. When a firm can set the price, it

can either do so in order to maximize the present discounted value of profits, Et

∞∑

s=0

αsQt,t+sΦit+s,

or it can follow a simple rule of thumb as in (Galí and Gertler, 1999). The constraints facing the

forward looking profit maximizers are the demand for their own good (1) and the constraint that

all demand be satisfied at the chosen price. Profits are discounted by the s-step ahead stochastic

discount factor Qt,t+s and by the probability of not being able to set prices in future periods.

The firm’s optimization problem is

max
{Pit, Yit}

Et

∞∑

s=0

αsQt,t+s (Pitπ
s −MCt+s)Yit+s,
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subject to the demand system

Yit+s =

(
Pitπs

Pt+s

)−η
Yt+s,

and nominal rigidity.

The relative price set by firms able to reset prices optimally in a forward-looking manner,

satisfies the following relationship

P f
t

Pt
=

η

η − 1

Et

∞∑

s=0

(αβ)s
(
Xt+sξt+s

)−σ
mct+s

(
Pt+sπ

−s

Pt

)η
Yt+s
At+s

Et

∞∑

s=0

(αβ)s
(
Xt+sξt+s

)−σ (Pt+sπ−s

Pt

)η−1
Yt+s
At+s

, (2)

where mct =MCt/Pt is the real marginal cost and P
f
t denotes the price set by all firms who are

able to reset prices in period t and choose to do so in a profit maximizing way.

To introduce inflation inertia we allow some firms to follow simple rules of thumb when setting

prices. Specifically, when a firm is given the opportunity of posting a new price, we assume that

rather than posting the profit-maximizing price (2), a proportion of those firms, ζ, follow a simple

rule of thumb in resetting that price

P b
t = P ∗t−1πt−1, (3)

such that they update their price in line with last period’s rate of inflation rather than steady-state

inflation, where P ∗t−1 denotes an index of the reset prices given by

lnP ∗t−1 = (1− ζ) lnP f
t−1 + ζP b

t−1.

With α of firms keeping last period’s price (but indexed to steady-state inflation) and (1− α)

of firms setting a new price, the law of motion of this price index is,

(Pt)
1−η = α (Pt−1π)

1−η + (1− α) (P ∗t )
1−η .

We denote the fixed share of price-setters following the rule of thumb (3) by ζ, we derive

a price inflation Phillips curve, as detailed in Leith and Malley (2005). Combining the rule of

thumb of price setters with the optimal price setting described above leads to the price Phillips

curve

π̂t = χfβEtπ̂t+1 + χbπ̂t−1 + κcŵt,

where π̂t = ln(Pt) − ln(Pt−1) − ln(π) is the deviation of inflation from its steady state value,

ŵt = ln(Wt/Pt)− lnAt− ln((η− 1)/η) = m̂ct, are log-linearized real marginal costs (wages), and

the reduced-form parameters are defined as χf ≡ α/Φ, χb ≡ ζ/Φ, κc ≡ (1−α)(1− ζ)(1−αβ)/Φ,

with Φ ≡ α(1 + βζ) + (1− α)ζ.
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A.3 The Government

The government collects a distortionary tax on labor income which it rebates to households as a

lump-sum transfer. The steady-state value of this distortionary tax will be set at a level which

offsets the combined effect of the monopolistic competition distortion and the effects of the habits

externality, as in Levine, McAdam, and Pearlman (2008), see Appendix B.1. However, shocks

to the tax rate described by

ln(1− τ t) = ρµ ln(1− τ t−1) + (1− ρµ) ln(1− τ)− εµt

serve as autocorrelated cost-push shocks to the NKPC. There is no government spending per se.

The government budget constraint is given by

τ tWtNt = −Tt.

A.4 The Complete Model

The complete system of non-linear equations describing the equilibrium are given by

Nϕ
t

(
Xt

At

)σ

=
Wt

AtPt
(1− τ t) ≡ wt(1− τ t), (4)

(
Xt

At

)−σ
ξ−σt = βEt

[(
Xt+1

At+1

)−σ At

At+1
ξ−σt+1Rtπ

−1
t+1

]

, (5)

Nt =
Yt
At

∫ 1

0

(
Pt(i)

Pt

)−η
di, (6)

Xt = Ct − θCt−1, (7)

Yt = Ct, (8)

τ tWtNt = −Tt, (9)

P f
t

Pt
=

η

η − 1

Et

∞∑

s=0

(αβ)s
(
Xt+sξt+s
At+s

)−σ
mct+s

(
Pt+sπ

−s

Pt

)η
Yt+s
At+s

Et

∞∑

s=0

(αβ)s
(
Xt+sξt+s
At+s

)−σ (
Pt+sπ−s

Pt

)η−1
Yt+s
At+s

, (10)

mct =
Wt

AtPt
, (11)

P b
t = P ∗t−1πt−1, (12)
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lnP ∗t−1 = (1− ζ) lnP f
t−1 + ζP b

t−1, (13)

P 1−ηt = α (πPt−1)
1−η + (1− α) (P ∗t )

1−η , (14)

lnAt = lnγ + lnAt−1 + ln zt, (15)

ln zt = ρz ln zt−1 + εzt , (16)

ln(1− τ t) = ρµ ln(1− τ t−1) + (1− ρµ) ln(1− τ)− εµt , (17)

with an associated equation describing the evolution of price dispersion, ∆t =
∫ 1
0

(
Pt(i)
Pt

)−η
di,

which is not needed to tie down the equilibrium upon log-linearization. The model is then closed

with instrument or targeting policy rule as discussed in the main text.

In order to render this model stationary we scale certain variables by the non-stationary level

of technology, At such that kt = Kt/At where Kt = {Yt, Ct,Wt/Pt}. All other real variables are

naturally stationary. Applying this scaling, the steady-state equilibrium conditions reduce to:

NϕXσ = w(1− τ ),

1 = βRπ−1/γ = βr/γ,

y = N = c,

X = c(1− θ),
η

η − 1
=

1

w
.

This system yields

Nσ+ϕ (1− θ)σ = w(1− τ). (18)

which can be solved for N . Note that this expression depends on the real wage w, which can

be obtained from the steady-state pricing decision of our monopolistically competitive firms.

In Appendix B.1 we contrast this with the labor allocation that would be chosen by a social

planner in order to fix the steady-state tax rate required to offset the net distortion implied by

monopolistic competition and the consumption habits externality.

B Derivation of Objective Functional Form

B.1 The Social Planner’s Problem

The subsidy level that ensures an efficient long-run equilibrium is obtained by comparing the

steady-state solution of the social planner’s problem with the steady state obtained in the decen-

tralized equilibrium. The social planner ignores the nominal inertia and all other inefficiencies

6



and chooses real allocations that maximize the representative consumer’s utility subject to the

aggregate resource constraint, the aggregate production function, and the law of motion for habit-

adjusted consumption:

max
{X∗

t ,C
∗
t ,N

∗
t }
E0

∞∑

t=0

βtu (X∗
t , N

∗
t , ξt, At)

subject to

Y ∗t = C∗t , Y ∗t = AtN
∗
t ,

X∗
t = C∗t /At − θC∗t−1/At−1.

The optimal choice implies the following relationship between the marginal rate of substi-

tution between labor and habit-adjusted consumption and the intertemporal marginal rate of

substitution in habit-adjusted consumption

χ (N∗
t )

ϕ (X∗
t )

σ = (1− θβ)Et

(
X∗

t+1ξt+1
X∗

t ξt

)−σ
.

The steady state equivalent of this expression can be written as

χ (N∗)ϕ+σ (1− θ)σ = (1− θβ) .

If we contrast this with the allocation achieved in the steady-state of our decentralized equi-

librium (18) we can see that the two will be identical whenever the tax rate is set optimally to

be

τ∗ ≡ 1−
η

η − 1
(1− θβ).

Notice that in the absence of habits the optimal tax rate would be negative, such that it is

effectively a subsidy which offsets the monopolistic competition distortion. However, for the

estimated values of the habits parameter the optimal tax rate is positive as the policy maker

wishes to prevent households from overconsuming.

B.2 Quadratic Representation of Social Welfare

Individual utility in period t is

Γ0 = E0

∞∑

t=0

βt

(
X1−σ

t ξ−σt

1− σ
−
N1+ϕ
t ξ−σt

1 + ϕ

)

,

where Xt = ct − θct−1 is habit-adjusted aggregate consumption after adjusting consumption for

the level of productivity, ct = Ct/At.
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Linearization up to second order yields

Γ0 = E0

∞∑

t=0

βt
(
X
1−σ

{
1− θβ

1− θ

(
ĉt +

1

2
ĉ2t

)
−

1

2
σX̂2

t − σX̂tξ̂t

}

−N
1+ϕ

{
N̂t +

1

2
(1 + ϕ) N̂2

t − σN̂tξ̂t

})
+ tip(3),

where tip(3) includes terms independent of policy and terms of third order and higher, and for

every variable Zt with steady state value Z we denote Ẑt = log(Zt/Z).

The second order approximation to the production function yields the exact relationship

N̂t = ∆̂t + ŷt , where yt = Yt/At and ∆t =

1∫

0

(
Pt(i)
Pt

)−η
di. We substitute N̂t out and follow Eser

et al. (2009) in using

∞∑

t=0

βt∆̂t =
α

1− αβ
∆̂−1 +

1

2

∞∑

t=0

βt
αη

(1− βα)(1− α)

(
π̂2t +

ζα−1

(1− ζ)
[π̂t − π̂t−1]

2

)

to yield

Γ0 = E0

∞∑

t=0

βt
(
X
1−σ

{
1− θβ

1− θ

(
ĉt +

1

2
ĉ2t

)
−

1

2
σX̂2

t − σX̂tξ̂t

}

−N
1+ϕ

(
ŷt +

1
2

αη
(1−βα)(1−α)

(
π̂2t +

ζα−1

(1−ζ) [π̂t − π̂t−1]
2
)

+1
2 (1 + ϕ) ŷ2t − σŷtξ̂t

)



+ tip(3).

The second order approximation to the national income identity yields

ĉt +
1

2
ĉ2t = ŷt +

1

2
ŷ2t + tip (3) .

Finally, we use the fact that in the efficient steady-state X
1−σ

(1 − θβ) = (1 − θ)N
1+ϕ

and

collect terms to arrive at

Γ0 = −
1

2
N
1+ϕ

E0

∞∑

t=0

βt

{
σ (1− θ)

1− θβ

(
X̂t + ξ̂t

)2
+ ϕ

(
ŷt −

σ

ϕ
ξ̂t

)2

+
αη

(1− βα)(1− α)

(
π̂2t +

ζα−1

(1− ζ)
[π̂t − π̂t−1]

2

)}
+ tip (3) .

Normalizing the coefficient on inflation to one and changing sign, we arrive at the following

quadratic approximation to the loss function:

L0 = E0

∞∑

t=0

βt
{
(1− αβ)(1− α)σ (1− θ)

αη (1− θβ)

(
X̂t + ξ̂t

)2

+
(1− βα)(1− α)ϕ

αη

(
ŷt −

σ

ϕ
ξ̂t

)2
+ π̂2t +

ζα−1

(1− ζ)
[π̂t − π̂t−1]

2

}

+ tip (3) .
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C Policy

C.1 Instrument Rule Specification and Solution

The US monetary policy is described by the following instrument rule with Markov-switching

rule parameters (ρR, ψ1, ψ2) between two regimes:

Rt = ρR(st)Rt−1 + (1− ρR(st))[ψ1(st)π̂t + ψ2(st)(∆ŷt + ẑt)] + εRt . (19)

The algorithm proposed by Farmer et al. (2011) is applied to solve the model. The model can be

recast in the following system

A(st)




a1(st)
(n−l)×n

a2(st)
l×n




 xt
n×1

=

B(st)




b1(st)
(n−l)×n

b2(st)
l×n




xt−1

n×1
+

Ψ(st)



ψ1(st)
(n−l)×k

ψ2(st)
l×k




 zt
k×1

+

Π


0

(n−l)×l

I
l×l



 ηt
l×1
, (20)

where xt = [ẑt, µ̂t, ξ̂t, ŷt, π̂t, R̂t,Etŷt+1,Etπ̂t+1]
′ is a vector of state variables. Vector zt = [εzt , ε

µ
t , ε

ξ
t , ε

R
t ]

stacks the exogenous shocks and ηt is composed of rational expectation forecast errors. The latent

value st follows an two-state Markov chain, st ∈ {1, 2}, with transition matrix P = [pij ] defined

as

pij = Pr (st = i|st−1 = j) .

Theorem 1 in Farmer et al. (2011) shows that if {Xt, ηt}
∞
t=1 is an MSV solution of the system

(20), then

xt = V (st)F1(st)xt−1 + V (st)G1(st)zt,

ηt = − (F2(st)xt−1 +G2(st)zt) ,

where the matrix
[
A (st)V (st) Π

]
is invertible and

B (st) =
[
A (st)V (st) Π

] [
F1(st) F2(st)

]′
, (21)

Ψ(st) =
[
A (st)V (st) Π

] [
G1(st) G2(st)

]′
, (22)

2∑

i=1

pijF2(st = i)V (st−1 = j) = 0
l×(n−l)

. (23)

Without loss of generality, Farmer et al. (2011) assume that

A (st)V (st) =
[
In−l −X(st)

]′
, (24)
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for some l × (n− l) matrix X(st). Since

F2(st) =
[
0l×(n−l) Il

] [
A (st)V (st) Π

]−1
B(st) =

[
X(st) Il

]
B (st) ,

equation (23) becomes

2∑

i=1

pij
[
X(st = i) Il

]
B (st = i)A (st−1 = j)−1

[
In−l −X(st−1 = j)

]′
(25)

= 0
l×(n−l)

, j ∈ {1, 2}

Therefore, the problem of finding an MSV solution can be reduced to that of finding the roots

of the quadratic polynomial equation (25). Farmer et al. (2011) use Newton’s method to compute

roots as shown in Algorithm 1 in their paper. Once X(st) is found, V (st) can be subsequently

solved using equation (24). With V (st) obtained, equations (21) and (22) can be used to find

F1(st), F2(st), G1(st) and G2(st) to obtain an MSV solution of the system (20).

To apply this procedure we start with a large number of initial guesses of X(st) to explore all

possible MSV solutions. In addition, we check whether the solutions are mean-square stable and

select the stationary one for our estimation.

C.2 Targeting Rules and Solution

We only present the solution under Quasi-commitment, as discretion and commitment follow

Svensson andWilliams (2007). Moreover, both of them are limiting cases of the quasi-commitment

model.

The model (1)-(4) in the main text belongs to the class of linear models

[
I 0
0 Ht+1

][
Xt+1

Etxt+1

]
=

[
A11,t+1 A12,t+1
A21,t A22,t

][
Xt

xt

]
+

[
B1,t+1
B2,t

]
[ut]+

[
Ct+1

0

]
[ǫt+1] , (26)

where Xt = [ẑt, µ̂t, ξ̂t, ŷt−1, π̂t−1, R̂t−1]′ is an n1 × 1 vector of predetermined variables (the state)

in period t, xt = [ŷt, π̂t]
′ is an n2 × 1 vector of forward-looking variables in period t, ut = [R̂t] is

an np×1 vector of central-bank instruments (control variables) in period t, and ǫt = [εzt , ε
µ
t , ε

ξ
t ] is

an k × 1 vector of zero-mean i.i.d. shocks realized in period t with covariance matrix Σ. Matrix

A22,t is nonsingular. We denote zt = [X ′
t, x

′
t]
′.

The policy objective is a quadratic form:

E0

∞∑

t=0

βt
(
z′tWtzt + 2z′tUtut + u′tRtut

)
.
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Matrices A11,t, A12,t, B1,t, Ct, Ht, A21,t, A22,t, B2,t, Wt, Ut, and Rt (assumed to be of

appropriate dimension) are random and can each take n different values in period t, corresponding

to the n modes jt = 1, 2, ..., n in period t. We denote these values A11,t = A11,jt , A12,t = A12,jt ,

and so forth. The modes jt follow a Markov process with constant transition probabilities:

Pjk ≡ Pr{jt+1 = k|jt = j} (j, k = 1, ..., n).

Schaumburg and Tambalotti (2007) and Debortoli and Nunes (2010) demonstrate that the

optimization problem can be written as

min
{ut}

∞
t=0

E0

∞∑

t=0

(β (1− υ))t
(
z′tWtzt + 2z′tUtut + u′tRtut + βυX ′

t+1V
d
t+1Xt+1

)
,

subject to

Xt+1 = A11jt+1Xt +A12jt+1xt +B1jt+1ut, (27)

(1− υ)Hjt+1Etxt+1 + υHjt+1Φjt+1Xt+1 = A21jtXt +A22jtxt +B2jtut, (28)

where Φjt and S are components of the solution to the corresponding discretionary problem,

xt = ΦjtXt and the loss is Lt (yt) =
1
2X

′
tV

d
t+1Xt. Here υ is probability of reneging on the previously

chosen plan.

Substitute (27) into (28) to yield

(1− υ)Hjt+1Etxt+1 =
(
A21jt − υHjt+1Φjt+1A11jt+1

)
Xt

+
(
A22jt − υHjt+1Φjt+1A12jt+1

)
xt

+
(
B2jt − υHjt+1Φjt+1B1jt+1

)
ut.

It is straightforward to bring the optimization problem into the minmax form (see Marcet

and Marimon (2011) for the general method and Svensson (2010) for linear-quadratic problems)

max
{γt}

∞
t=0

min
{xt,ut}

∞
t=0

E0

∞∑

t=0

(β (1− υ))t L̃t

with

L̃t = z′tWjtzt + 2z′tUjtut + u′tRjtut + βυX ′
t+1V

d
jt+1Xt+1

−γ′t
((
A21jt − υHjt+1Φjt+1A11jt+1

)
Xt

+
(
A22jt − υHjt+1Φjt+1A12jt+1

)
xt +

(
B2jt − υHjt+1Φjt+1B1jt+1

)
ut
)

+
1

β
Ξ′t−1Hjtxt,
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and

Ξt = γt,

Xt+1 = A11jt+1Xt +A12jt+1xt +B1jt+1ut.

The Bellman equation is:

V (Xt,Ξt−1) = max
γt

min
(xt,ut)

(
L̃t + β (1− υ)V (Xt+1,Ξt)

)
.

Denote

L̂t = z′tWjtzt + 2z′tUjtut + u′tRjtut +
1

β
Ξ′t−1Hjtxt − γ′t (A21jtXt +A22jtxt +B2jtut)

+γ′tυHjt+1Φjt+1

(
A11jt+1Xt +A12jt+1xt +B1jt+1ut

)
,

and

ũt =




xt
γt
ut



 , X̃t =

[
Xt

Ξt−1

]
,

so that

L̃t = L̂t + βυX ′
t+1V

d
jt+1

Xt+1

and the Bellman equation is

V (Xt,Ξt−1) = max
γt

min
(xt,ut)

(
L̂t + βυX ′

t+1V
d
jt+1

Xt+1 + β (1− υ)V (Xt+1,Ξt)
)
. (29)

Then

L̂t =

[
X̃t

ũt

]′ [
Qjt Njt

N ′
jt

Rjt

][
X̃t

ũt

]
,

where

Qjt =

[
W11,jt 0

0 0

]
,

Njt =

[
W12,jt −

(
A21jt − υHjt+1Φjt+1A11jt+1

)′
U1,jt

1
β
Hjt 0 0

]

,

Rjt =




W22,jt

(
υHjt+1Φjt+1A12jt+1 −A22jt

)′
U2,jt

υHjt+1Φjt+1A12jt+1 −A22jt 0 υHjt+1Φjt+1B1jt+1 −B2jt
U ′2,jt

(
υHjt+1Φjt+1B1jt+1 −B2jt

)′
Rjt



 .

The terms in the RHS of Bellman equation (29) can be written as

βυX′
t+1V

d
jt+1

Xt+1 + β (1− υ) X̃ ′
t+1Vjt+1X̃t+1 = βX̃ ′

tṼjt+1X̃t+1,

12



where

Ṽjt+1 =
(
υS′V d

jt+1
S + (1− υ)Vjt+1

)
,

and S =
[
I 0

]
.

The Bellman equation (29), therefore, can be rewritten

X̃ ′
tVjtX̃t = maxmin

ũt

([
X̃t

ũt

]′ [
Qjt Njt

N ′
jt

Rjt

][
X̃t

ũt

]
+ βX̃ ′

tṼjt+1X̃t+1

)

.

Note that Vjt in the LHS is not the same as Ṽjt+1 in the RHS, and the constraints can be rewritten

as

X̃t+1 = Ãjt+1X̃t + B̃jt+1 ũt + C̃jt+1ǫt+1,

where

Ãjt =

[
A11jt 0
0 0

]
, B̃jt =

[
A12jt 0 B1jt
0 I 0

]
,

C̃jt =

[
C
0

]

FOC wrt ũt yields

0 =
(
N ′
jt + βB̃′jt+1 Ṽjt+1Ãjt+1

)
X̃t +

(
Rjt + βB̃′jt+1 Ṽjt+1B̃jt+1

)
ũt = KjtX̃t + Jjt ũt,

where

Jjt = Rjt + βB̃′jt+1 Ṽjt+1B̃jt+1 ,

Kjt = N ′
jt + βB̃′jt+1 Ṽjt+1Ãjt+1 ,

so that optimal policy is

ũt = −J
−1
jt
KjtX̃t = FjtX̃t.

The iterative algorithm can be written as follows. For each Markov state j and at each

iteration

1. Suppose V =

[
V11 V12
V ′12 V22

]
, V d = V11 and Φ are known. (This is an initial guess which

will be updated in the following steps.)

2. Construct

[
Qjt Njt

N ′
jt

Rjt

]
, taking into account future states jt+1.

3. Construct Ãjt+1 , B̃jt+1 (use probabilities).
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4. Construct

Ṽjt+1=υS
′V d

jt+1
S + (1− υ)Vjt+1 .

5. Find

Jj = Rj + βPjjB̃
′
j ṼjB̃j + β

∑

k 
=j

PjkB̃
′
kṼkB̃k,

Kj = N ′
j + βPjjB̃

′
j ṼjÃj + β

∑

k 
=j

PjkB̃
′
kṼkÃk,

Vjt = Qjt −K′
jJ
−1
j Kj + βPjjÃ

′
j ṼjÃj + β

∑

k 
=j

PjkÃ
′
kṼkÃk,

Fj = −J
−1
j Kj .

6. Update Φ = FxX and V = Vjt , V
d = V11 and repeat steps 2-6 until the fixed point is

obtained.

D Estimation Strategy

Our empirical analysis uses the US data on output growth (∆GDPt), inflation (INFt), and

nominal interest rates (INTt) from 1961Q1 up to 2008Q3, just before nominal interest rates were

reduced to their effective lower bound of 0.5%.2 The measurement equations are specified as:

∆GDPt = γQ +∆ŷt + ẑt,

INFt = πA + 4π̂t,

INTt = rA + πA + 4γQ + 4R̂t.

In estimation, the likelihood function is approximated using Kim (1994)’s filter due to the

presence of Markov-switching parameters, and is then combined with the prior distribution to

obtain the posterior distribution. Sims (2002) optimization routine CSMINWEL is used to find

the posterior modes. The inverse Hessian is then calculated at these posterior modes and used as

the covariance matrix of the proposal distribution. It is scaled to yield a target acceptance rate

2The specific data series used are the Effective Federal Funds Rate - FEDFUNDS, Gross Domestic Product in
United States-USARGDPQDSNAQ and the Gross Domestic Product: Implicit Price Deflator-GDPDEF. All data
are seasonally adjusted and at quarterly frequencies. Output growth is the log difference of real GDP, multiplied
by 100. Inflation is the log difference of the associated implicit price deflator, scaled by 400. All data are taken
from the FRED database.
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of 25%-40%. We adopt Schorfheide (2005)’s strategy that employs a random walk Metropolis-

Hastings algorithm to generate 500,000 draws with the first 200,000 draws being discarded before

saving every 20th draw from the remaining draws.3

Finally, the log marginal likelihood values for each model are computed using both the mod-

ified harmonic mean estimator of Geweke (1999) and Sims et al. (2008). The latter is designed

for models with time-varying parameters, where the posterior density may be non-Gaussian.

When estimating commitment we follow Givens (2012) to update the Lagrange multiplies.

Alternatively, Ilbas (2010) and Adolfson et al. (2011) use presample to initialize the Lagrange

multipliers. Both approaches give very similar results.

E Identification Tests

E.1 Komunjer and Ng (2011)

We use the Komunjer and Ng (2011) identification test to analyze the main models presented in

Table 2. Komunjer and Ng (2011) study the local identification of a DSGE model from its lin-

earized solution. Their test uses the restrictions implied by equivalent spectral densities to obtain

rank and order conditions for identification. Minimality and left-invertibility are necessary and

sufficient conditions for identification. In addition, Komunjer and Ng (2011) discuss the identi-

fication conditions for both singular and nonsingular systems. The singular case applies to our

targeting rule models where the number of shocks are equal to the number of observations, while

the nonsingular case applies to the instrument rule based models where we have an additional

unsystematic interest rate shock.

It is important to note that the Komunjer and Ng (2011) identification test only applies to

covariance stationary processes. Therefore, the parameters associated with Markov-switching

shock variances cannot be incorporated into the test.4 As for monetary policy changes, we can

solve our model assuming that monetary policy stays in one regime, even though the private

agents in the economy are aware that there is a probability of monetary policy switching to a

different regime. In addition, the test can only applied to the parameters that enter into the

model solution. Therefore, we cannot test the identification of parameters that only contribute to

data means such as πA and γQ, while the identification of the real interest rate, rA, can be tested

as it links to the discount factor, β. This also implies that we will not be able to apply Komunjer

and Ng (2011) to asses the identification of the instrument rule which allows for switches in the

3Geweke (1992) convergence diagnostics indicate that convergence is achieved. These are available upon request.
4To consider the case of switches in shock volatility we employ Koop et al (2013) as discussed in Section E.2.
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inflation target (i.e. Rule-Target in Table 2).

For the results under discretion and commitment presented in Table 2, we have the parameter

vector θ ≡ (σ, α, ϕ, ζ, θ, ω1, ω2, ω3, ωπ(s=2), ρ
z, ρµ, ρξ, σz(S=1), σµ(S=1), σξ(S=1), r

A, p11, p22) of

dimension nθ = 18. To apply the test, we solve for the model and find a minimal representation

of the solution as follows

X1t+1 = A(θ)X1t +B(θ)εt+1,

Yt+1 = C(θ)X1t +D(θ)εt+1.

In this new system, X1t+1 ≡
(
ẑt, µ̂t, ξ̂t, ŷt, π̂t

)′
and nX = 5. Yt+1 ≡ (∆GDPt, INFt, INTt)

and εt ≡ (εzt , ε
µ
t , ε

ξ
t ) are the observables and shocks. As nY = nε = 3, the model is square.

Proposition 2-S in Komunjer and Ng (2011) can be employed to assess identification. As for

quasi-commitment, the parameter vector θ ≡ (υ, σ, α, ϕ, ζ, θ, ω1, ω2, ω3, ωπ(s=2), ρ
z, ρµ,

ρξ, σz(S=1), σµ(S=1), σξ(S=1), r
A, p11, p22) has dimension of nθ = 19. However, its minimal

representation is consistent with Discretion and Commitment.

Using the same notation as in Komunjer and Ng (2011), we check the rank of ∆s(θ0) which

is the matrix of partial derivatives of δs (θ, T, U) evaluated at (θ0, InX , Inε) .

∆s(θ0) ≡

(
∂δs (θ, InX , Inε)

∂θ

∂δs (θ, InX , Inε)

∂vecT

∂δs (θ, InX , Inε)

∂vecU

)

θ=θ0

≡ (∆s
Λ(θ0) ∆

s
T (θ0) ∆

s
U (θ0)) .

The rank of ∆s(θ0) required for identification is

rank(∆s(θ0)) = rank (∆s
Λ(θ0) ∆

s
T (θ0) ∆

s
U (θ0))

= nθ + n2X + n2ε.

As for the rule-based model, we add an additional unsystematic interest rate shock, and thus

εt ≡ (εzt , ε
µ
t , ε

ξ
t , ε

R
t ). Therefore, Proposition 2-NS in Komunjer and Ng (2011) is used to study

identification when nY < nε. The parameter vector θ ≡ (σ, α, ϕ, ζ, θ, ρRs=1, ψ1,s=1, ψ2,s=1,

ρRs=2, ψ1,s=2, ψ2,s=2, ρ
z, ρµ, ρξ, σz(S=1), σµ(S=1), σξ(S=1), σR(S=1), r

A, p11, p22) has a dimension

of nθ = 21. In addition, as we allow for a lagged interest rate in the generalized Taylor rule,

X1t+1 ≡
(
ẑt, µ̂t, ξ̂t, ŷt, π̂t, R̂t

)′
and nX = 6.

Again, adopting the notation of Komunjer and Ng (2011), for the nonsingular system, we check
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the rank of ∆s(θ0) which is the matrix of partial derivatives of δ
s (θ, T ) evaluated at (θ0, InX ) .

∆NS(θ0) ≡

(
∂δNS (θ, InX )

∂θ

∂δNS (θ, InX )

∂vecT

)

θ=θ0

≡
(
∆NS
Λ (θ0) ∆

NS
T (θ0)

)
.

The rank of ∆s(θ0) required for identification is

rank(∆NS(θ0)) = rank
(
∆NS
Λ (θ0) ∆

NS
T (θ0)

)

= nθ + n2X .

As in Komunjer and Ng (2011). we also consider 11 levels of tolerance along with the Matlab

default to analyze the ranks of ∆s(θ0) and ∆NS(θ0) for both the singular and nonsingular sys-

tems. We use the change in rank as tolerance tightens to identify problematic parameters. The

Komunjer and Ng (2011) test does not indicate that any parameters are unidentified. In Table

E1 the required rank for identification of each model is presented, along with the Tol at which

the model passes the rank requirement.

Table E1: Komunjer and Ng’s (2011) identification test

Tol ∆s
Λ ∆s

T ∆s
U ∆s Pass

Discretion

Required 18 25 9 52
Regime 1 More Conservative e− 10 18 25 9 52 YES

Regime 2 Less Conservative e− 9 18 25 9 52 YES

Commitment

Required 18 25 9 52
Regime 1 More Conservative e− 5 18 25 9 52 YES

Regime 2 Less Conservative e− 5 18 25 9 52 YES

Quasi-Commitment

Required 19 25 9 53
Regime 1 More Conservative e− 6 19 25 9 53 YES

Regime 2 More Conservative, reneging e− 10 19 25 9 53 YES

Regime 3 Less Conservative e− 6 19 25 9 53 YES

Regime 4 Less Conservative, reneging e− 10 19 25 9 53 YES

Rule - Parameters

Required 21 36 — 57
Regime 1 More Conservative e− 7 21 36 — 57 YES

Regime 2 Less Conservative e− 7 21 36 — 57 YES
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E.2 Koop, Pesaran, Smith (2013)

Given that Komunjer and Ng (2011) only applies to covariance stationary processes, we also

analyze the identification of the remaining parameters in our model using the Koop et al. (2013)

Bayesian learning-rate indicator. However, it is worth noting that this indicator does not propose

a ‘Yes/No’ answer to the question of whether a given parameter is identified as in Komunjer

and Ng (2011). It indicates the degree of identification. The advantage of this approach is that

it can be easily applied to models with Markov-switching parameters, since it requires only a

few additional steps beyond a conventional Bayesian estimation. This test is based on Bayesian

asymptotic theory. The theory states that the role of the prior of a parameter vanishes with

increasing sample size. As a result, the posterior of a parameter asymptotically converges to its

true value. Implementing this indicator involves simulating artificial datasets of increasing size

from a DSGE model, and then estimating this model using these datasets. A parameter is said to

be identified if its posterior precision increases with the sample size. However, if a parameter is

weakly or not identifiable, its posterior precision will be updated at a rate lower than the sample

size.

It is important to note that a prerequisite in using Koop et al. (2013) Bayesian learning

rate indicator is that a subset of parameters are known to be identifiable. A vector of model

parameters θ = [θu,θi]
′ is split into θi, known to be identified and θu under question. Therefore,

the results obtained from Komunjer and Ng (2011) are complementary in applying this indicator,

such that we use Koop et al. (2013) to assess those parameters that are unable to be included in

our application Komunjer and Ng (2011). For example, under discretion, θi ≡ (σ, α, ϕ, ζ, θ, ω1,

ω2, ω3, ωπ(s=2), ρ
z, ρµ, ρξ, σz(S=1), σµ(S=1), σξ(S=1), r

A, p11, p22) and θu ≡ (q11, q22, σz(S=2),

σµ(S=2), σξ(S=2), π
A, γQ), where θu includes parameters associated with Markov-switching shock

variances.

In addition, Koop et al. (2013) assume Gaussian priors for model parameters in order to

obtain an analytical solution for the posterior precision when the sample period reaches infinity.

However, for most DSGE models in the literature, the priors are non-gaussian. Although the

assumption of Gaussian priors can be relaxed, the exact expression of the posterior precision

will differ from those illustrated in Koop et al. (2013). Caglar et al. (2011) demonstrate how to

apply this indicator to a medium-sized DSGE model with more complicated priors. They suggest

treating the Hessian at the posterior mode as the measure of posterior precision. We do not

present the technical details of this test as these can be found in Koop et al. (2013).

To implement the Bayesian learning rate indicator, we first need to produce samples of artificial
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data from our models. Models that incorporate Markov-switching parameters complicate the data

generating processes (DGPs). To simulate data from a Markov-switching model, we need to set

not only the model parameters but also the probabilities of each regime. We set the parameters

equal to the posteriors presented in Table 2. In addition, we generate the probabilities of different

sample sizes of T = 100, 1000, 10000, 20000. Unlike the fixed parameter model used to generate

artificial data discussed in Koop et al. (2013) and Caglar et al. (2011), we cannot generate a single

artificial dataset of T = 20000 and then take subsets of it to produce smaller subsamples. This is

because for our Markov-switching models the probabilities in each sample size should correspond

to the estimated transition probabilities (i.e.p11, p22, q11, q22 ). Therefore, the generated artificial

datasets for smaller T are not subsamples of larger T. This may contribute to the variation in

the results across samples. However, we try to make the use of this indicator as comparable as

possible across models. To do so, we use the same seed for the random number generator for all

DGPs from our models presented in Table 2.

Table E2: Posterior precision divided by sample size

Parameters n = 100 n = 1000 n = 10000 n = 20000

Discretion - Parameters associated with the MS shock volatility

σξ(S=2) 2.646 0.924 2.773 1.323

σµ(S=2) 3.399 1.051 2.950 1.726

σz(S=2) 4.331 1.209 2.907 1.677

q11 16.171 3.220 7.444 5.666

q22 12.066 16.622 11.746 11.687

πA 0.037 0.010 0.012 0.028

γQ 4.455 4.103 5.011 3.568

Rule-Target - Parameters associated with the MS inflation targets & shock volatility

σξ(S=2) 0.876 0.659 0.783 0.879

σµ(S=2) 0.277 0.038 0.010 0.008

σz(S=2) 0.325 0.965 0.772 0.859

σR(S=2) 0.164 0.035 0.004 0.003

πAs=1 0.154 0.180 0.248 0.188

πAs=2 0.206 0.259 0.215 0.143

γQ 2.638 3.641 2.816 3.104

p11 5.691 1.552 0.012 1.999

p22 5.513 2.486 0.283 0.127

q11 9.559 9.515 13.602 10.390

q22 2.590 2.090 1.216 1.755

In Table E2 we only present the parameters whose identification cannot be verified by using

Komunjer and Ng (2011) under discretion and the instrument rule with Markov-switching inflation
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targets.5 As discussed in Koop et al. (2013), the posterior precision of identified parameters

need not to rise monotonically with T. The posterior precision may, in fact, fall before rising

depending on the prior type. In addition, Koop et al. (2013) show that the posterior precision

of an unidentified parameter will shrink to zero very quickly as T increases. To make our results

robust, we increase T = 10000,the largest sample size used in Koop et al. (2013) to T = 20000.

It can be seen that no element of the normalized posterior precision of θu collapses to zero

when T = 20000. However, for the instrument rule with Markov-switching inflation targets, the

posterior precision of standard deviations of the cost-push shock and interest rate rule shock

(i.e.σµ(S=2) and σR(S=2)) decline quickly with the enlargement of T.

F Model Selection

Bayes factors are used to rank descriptions of policy in the main text. Alternatively, model

posterior probabilities can be calculated to evaluate relative model fit. Table F1 presents posterior

probabilities for models in Table 2. An equal model prior probability is placed on the five

competing models. The model posterior probability is then given by

p(Mk|Y ) =
p(Y1:T , |Mk)

Σn
k=1p(Y1:T , |Mk)

, n = 5, (30)

where p (Y1:T , |Mk) is the marginal data density for each model. It can be seen that even though

equal model priors are placed on the five competing models, the data chooses to tilt the posterior

probability towards discretion.

Table F1: model posterior probabilities

Discretion Rule - Parameters Rule - Target
Quasi-

Commitment
Commitment

0.99 0.01 0.00 0.00 0.00

The posterior probabilities are often used as weights for model averaging to forecast future

observations. Forecasting applications of Bayesian model averaging in the economics literature

include Min and Zellner (1993), Wright (2008) and Del Negro et al. (2016).

While it is generally preferable to average across all models with nonzero posterior proba-

bilities, we use the posterior probabilities for model selection to choose one model that has the

highest posterior probability to conduct policy analysis. As discussed in Del Negro (2011), a

5The rule-based model with fixed parameters are identifiable as indicated by Komunjer and Ng (2011). We can
provide the results of the Koop et.al. (2013) test for the other models in Table 2 upon request. In all cases all
parameters are identified.
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Table G1: Full Table 3 No Switching

Parameters Simple Rule
Quasi-

Commitment
Discretion Commitment

Model Parameters

σ 2.802
[2.407,3.188]

2.254
[1.904,2.604]

2.722
[2.338,3.101]

2.832
[2.477,3.062]

α 0.779
[0.751,0.807]

0.798
[0.776,0.822]

0.760
[0.734,0.786]

0.768
[0.734,0.789]

ζ 0.103
[0.039,0.166]

0.170
[0.087,0.252]

0.156
[0.066,0.241]

0.594
[0.489,0.737]

θ 0.823
[0.685,0.964]

0.421
[0.210,0.627]

0.476
[0.267,0.680]

0.643
[0.444,0.782]

ϕ 2.417
[2.005,2.833]

1.835
[1.443,2.219]

2.387
[2.146,2.627]

2.312
[2.046,2.749]

Shock Processes

ρξ 0.899
[0.859 0.941]

0.894
[0.862 0.927]

0.845
[0.806 0.885]

0.862
[0.793 0.903]

ρµ 0.500
[0.246 0.747]

0.951
[0.926 0.976]

0.947
[0.922 0.974]

0.968
[0.948 0.989]

ρz 0.320
[0.219 0.418]

0.217
[0.168 0.265]

0.223
[0.172 0.275]

0.199
[0.132 0.241]

σξ 0.987
[0.715 1.247]

1.104
[0.647 1.550]

0.763
[0.486 1.039]

0.983
[0.706 1.165]

σµ 0.567
[0.341 0.788]

0.448
[0.255 0.629]

0.489
[0.356 0.613]

3.628
[2.816 4.916]

σz 0.797
[0.731 0.863]

0.845
[0.771 0.915]

0.827
[0.756 0.896]

0.770
[0.701 0.815]

σR 0.251
[0.227 0.273]

— — —

continued on the next page

model selection approach is likely to provide a good approximation if the posterior probability of

one model is very close to one, the probabilities associated with all other specifications are very

small.

G Additional Results

This section contains additional results not reported in the main paper.
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Table G1: Full Table 3 Estimation Results - No Switching — continued

Parameters Simple Rule
Quasi-

Commitment
Discretion Commitment

Data Means

rA 0.706
[0.246,1.139]

0.759
[0.143,1.330]

0.966
[0.352,1.569]

1.088
[0.459,1.540]

πA 4.746
[3.800,5.677]

2.586
[1.899,3.095]

2.656
[1.008,4.221]

4.050
[3.642,4.674]

γQ 0.688
[0.547,0.826]

0.737
[0.613,0.861]

0.716
[0.593,0.835]

0.726
[0.594,0.797]

Policy Parameters

ρR 0.791
[0.756,0.826]

— — —

ψ1 1.716
[1.455,1.972]

— — —

ψ2 0.492
[0.290,0.697]

— — —

ω1 — 0.703
[0.552,0.861]

0.458
[0.287,0.627]

0.627
[0.490,0.808]

ω2 — 0.828
[0.727,0.935]

0.758
[0.628,0.901]

0.446
[0.316,0.620]

ω3 — 0.390
[0.163,0.619]

0.451
[0.213,0.692]

0.489
[0.268,0.712]

υ — 0.556
[0.329,0.816]

— —

Log Marginal Data Densities and Bayes Factors

Geweke (1999) −841.01
(1.00)

−841.67
(1.94)

−842.49
(4.41)

−855.43
(1.84e+6)

Sims et al. (2008) −841.09
(1.00)

−841.54
(1.57)

−842.69
(4.96)

−858.26
(2.85e+7)
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Table G2: Full Table 4 Switches in Policy Only

Parameters Discretion
Quasi-

Commitment
Rule - Parameters Rule - Target Commitment

Model Parameters

σ 2.896
[2.500,3.288]

2.550
[2.190,2.896]

2.621
[2.382,2.861]

2.791
[2.403,3.187]

2.921
[2.560,3.277]

α 0.731
[0.706,0.758]

0.755
[0.733,0.777]

0.775
[0.747,0.803]

0.779
[0.750,0.807]

0.770
[0.744,0.796]

ζ 0.155
[0.069,0.239]

0.182
[0.091,0.274]

0.102
[0.038,0.163]

0.123
[0.054,0.195]

0.229
[0.078,0.366]

θ 0.479
[0.286,0.835]

0.371
[0.192,0.543]

0.825
[0.698,0.954]

0.810
[0.658,0.961]

0.606
[0.388,0.843]

ϕ 2.331
[1.916,2.757]

2.249
[1.861,2.632]

2.425
[2.025,2.848]

2.410
[2.003,2.846]

2.271
[1.872,2.679]

Shock Processes

ρξ 0.805
[0.766,0.844]

0.899
[0.868,0.929]

0.887
[0.850,0.927]

0.898
[0.858,0.941]

0.904
[0.877,0.933]

ρµ 0.957
[0.937,0.978]

0.942
[0.916,0.967]

0.501
[0.250,0.748]

0.499
[0.250,0.751]

0.986
[0.978,0.995]

ρz 0.213
[0.164,0.261]

0.218
[0.167,0.269]

0.307
[0.208,0.403]

0.317
[0.218,0.417]

0.210
[0.154,0.268]

σξ 0.515
[0.289,0.719]

0.851
[0.551,1.145]

0.981
[0.755,1.199]

0.848
[0.609,1.090]

0.797
[0.511,1.069]

σµ 0.444
[0.327,0.554]

0.628
[0.440,0.812]

0.275
[0.169,0.382]

0.569
[0.340,0.795]

2.325
[1.697,2.947]

σz 0.829
[0.755,0.896]

0.831
[0.760,0.902]

0.797
[0.169,0.382]

0.795
[0.727,0.861]

0.779
[0.711,0.846]

σR — — 0.235
[0.213,0.256]

0.252
[0.229,0.275]

—

Data Means

rA 0.766
[0.303,1.213]

0.997
[0.377,1.591]

0.695
[0.276,1.105]

0.662
[0.239,1.054]

0.975
[0.358,1.561]

πA(s=1) 2.683
[1.275,4.022]

2.097
[1.770,2.431]

3.736
[3.183,4.299]

4.234
[3.470,4.995]

3.064
[2.733,3.411]

πA(s=2) — — — 6.058
[5.217,6.862]

—

γQ 0.683
[0.567,0.800]

0.722
[0.598,0.842]

0.677
[0.540,0.808]

0.681
[0.544,0.822]

0.741
[0.619,0.862]

continued on the next page
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Table G2: Full Table 4 Switches in Policy Only — continued

Parameters Discretion
Quasi-

Commitment
Rule - Parameters Rule - Target Commitment

Policy Parameters

ρR(s=1) — — 0.746
[0.708,0.786]

0.797
[0.762,0.831]

—

ρR(s=2) — — 0.845
[0.794,0.900]

— —

ψ1(s=1) — — 2.075
[1.824,2.315]

1.805
[1.507,2.097]

—

ψ1(s=2) — — 0.909
[0.621,1.189]

— —

ψ2(s=1) — — 0.483
[0.309,0.645]

0.498
[0.285,0.714]

—

ψ2(s=2) — — 0.245
[0.098,0.393]

— —

ω1 0.259
[0.035,0.414]

0.633
[0.480,0.785]

— − 0.502
[0.331,0.666]

ω2 0.650
[0.460,0.847]

0.759
[0.631,0.893]

— − 0.523
[0.295,0.732]

ω3 0.442
[0.164,0.698]

0.349
[0.126,0.559]

— − 0.460
[0.205,0.710]

ωπ(s=1) 1 1 — − 1
ωπ(s=2) 0.347

[0.219,0.477]
0.348

[0.254,0.440]
— — 0.302

[0.194,0.414]

p11 0.978
[0.962,0.994]

0.860
[0.777,0.946]

0.962
[0.939,0.989]

0.956
[0.930,0.984]

0.979
[0.962,0.996]

p22 0.940
[0.900,0.981]

0.879
[0.819,0.941]

0.802
[0.734,0.870]

0.796
[0.722,0.876]

0.816
[0.735,0.901]

υ — 0.325
[0.239,0.411]

— — —

Log Marginal Data Densities and Bayes Factors

Geweke (1999) −810.98
(1.00)

−814.83
(47.0)

−825.33
(1.72e+6)

−831.74
(1.04e+9)

−832.85
(3.14e+9)

Sims et al. (2008) −811.24
(1.00)

−814.30
(21.21)

−825.44
(1.46e+6)

−831.81
(8.52e+8)

−832.98
(2.75e+9)

24



Figure G1: Markov Switching Probabilities: Policy Switches Only
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Figure G2: Quasi-commitment with different objectives
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