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Spatio-temporal patterns of the spread of infectious diseases are commonly

driven by environmental and ecological factors. This is particularly true for

vector-borne diseases because vector populations can be strongly affected by

host distribution as well as by climatic and landscape variables. Here, we

aim to identify environmental drivers for bluetongue virus (BTV), the causa-

tive agent of a major vector-borne disease of ruminants that has emerged

multiple times in Europe in recent decades. In order to determine the impor-

tance of climatic, landscape and host-related factors affecting BTV diffusion

across Europe, we fitted different phylogeographic models to a dataset of

113 time-stamped and geo-referenced BTV genomes, representing multiple

strains and serotypes. Diffusion models using continuous space revealed

that terrestrial habitat below 300 m altitude, wind direction and higher

livestock densities were associated with faster BTV movement. Results of dis-

crete phylogeographic analysis involving generalized linear models broadly

supported these findings, but varied considerably with the level of spatial par-

titioning. Contrary to common perception, we found no evidence for average

temperature having a positive effect on BTV diffusion, though both methodo-

logical and biological reasons could be responsible for this result. Our study

provides important insights into the drivers of BTV transmission at the land-

scape scale that could inform predictive models of viral spread and have

implications for designing control strategies.
1. Introduction
Vector-borne pathogens threaten human and animal health in many parts of

the world and are responsible for a high proportion of disease emergence events

[1,2]. Theses emergences often involve ecological and environmental drivers,

because vector populations are able to respond rapidly to such cues, including

shifts in host distribution and climatic as well as landscape characteristics [3].

Understanding the specific environmental factors that drive the emergence and

spread of vector-borne pathogens is, therefore, critical for the development of

improved control and prevention measures and to reduce disease impacts on

human and animal health as well as economic losses.

Bluetongue virus (BTV), an arbovirus, with a segmented double-stranded

RNA genome, is the causative agent of ‘bluetongue’, a major disease of ruminants.

Host-to-host transmission occurs via vector-competent biting midges in the

Culicoides spp. complex [4]. Bluetongue outbreaks cause severe economic
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Figure 1. Spatial distribution of samples and discretizations. (a) Spatial distribution of the 113 samples used to reconstruct the phylogeographic history of BTV in
continuous space and discretizations of these samples in (b) arbitrary locations (balanced), (c) individual countries or (d ) geographical zones as described in Materials
and methods section. Dots were placed at centroids and their sizes are proportional to the sample size.
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damage due to the direct effects on livestock [5,6], trade restric-

tions, and the cost of surveillance and control. In recent decades,

Europe has repeatedly experienced numerous BTV incursions

of different serotypes, topotypes (regional variants of particular

serotypes) and strains [7]. Most incursions occurred either

through the eastern Mediterranean or from North Africa

through the Iberian peninsula [8,9]. In addition, a BTV-8

strain, thought to be of sub-Saharan origin [10], emerged in

2006 in The Netherlands, resulting in the largest European out-

break to date and causing economic damage of greater than $2

billion [11–13]. Following initial elimination, BTV-8 recently re-

emerged in France [14]. Moreover, large areas of southern and

eastern Europe continue to be affected by the circulation of

both established and newly introduced BTV strains [15,16]

with strains commonly undergoing reassortment [17].

Considerable uncertainty remains about the key factors

responsible for the emergence, spread and persistence of BTV

in Europe. So far, environmental and climatic changes as well

as meteorological conditions and events have been suggested

[18–20]. This includes distributional changes in the Afro-Asiatic

vector Culicoides imicola, likely combined with wind-mediated

introduction of infected midges. BTV diffusion is expected to

be facilitated under conditions that are favourable for midge

activity and viral replication. For example, the extrinsic

incubation period of the virus is reduced at higher ambient

temperature [21], whereas midge flight activity is considerably

reduced at higher wind speeds [22,23] and likely higher precipi-

tation too [24]. Moreover, variation in elevation may influence

the velocity of BTV spread through its effect on vector move-

ment with open water and higher elevation acting as likely

barriers (which could still be overcome through passive wind-

mediated dispersal). BTV can infect a wide range of ruminant

species including sheep, goat and cattle. However, infection

does not always cause clinical signs, raising questions about

the role of livestock distribution and abundance in BTV trans-

mission. Identifying which of these factors affect BTV spatial

diffusion, and determining their relative importance, is a critical

prerequisite for designing interventions and limiting spread.

Recently developed phylogeographic models provide a

powerful framework for gaining insights into the diffusion

processes of pathogens and their drivers from time-stamped,

geo-referenced sequences. One approach to quantify the associ-

ation between environmental variables and viral lineage

movements combines phylogeographic reconstructions in con-

tinuous space [25,26] with a novel analytical and statistical

framework [27]. However, this approach is unable to deal

with environmental data that do not come in a raster-based

format, such as information on the prevailing wind direction.
A second phylogeographic method incorporates a generalized

linear model (GLM) directly into a diffusion model in discrete

space to explicitly test for several potential predictors of viral

spread [28,29]. However, few studies have examined the robust-

ness of this approach to the chosen level of discretization

or assessed its consistency with the continuous approach

outlined above.

Here, we apply phylogeographic models to an extensive

dataset of BTV genome sequences to determine which factors

most affected BTV spread within Europe. More specifically,

we apply existing approaches using continuous and discrete

state reconstruction to explain heterogeneities of diffusion

rates as a function of candidate predictors, including data on

climate, environment and host species. Moreover, we extend

and evaluate these approaches to address some of their current

limitations (incorporation of environmental predictors in

non-rasterized format, sensitivity to the level of discretization).
2. Material and methods
(a) Genomic data
We included all the 113 available geo-referenced and time-stamped

BTV genomes of isolates that had been collected in European

countries, and in countries flanking the Mediterranean Sea,

which represent likely source populations of BTV incursions into

Europe (figure 1a; electronic supplementary material, table S1).

Open reading frames for each of the 10 segments within the BTV

genome were aligned according to the protein sequence, then con-

verted to codon alignment using ‘PAL2NAL’ [30]. Approximate

geo-references (latitude and longitude) were obtained using

Google Maps for those cases where only rough meta-data on spatial

origin were available (e.g. country, region or city).

(b) Predictors of bluetongue virus diffusion
We considered several potential predictors of BTV diffusion in

Europe that represent relevant climatic, landscape and host-related

factors (table 1; electronic supplementary material, figure S1):

(i) Great circle distances
These were computed with the distVincentyEllipsoid function of

the geosphere R package [31].

(ii) Climate data
We extracted monthly means of precipitation, temperature, wind

speed, and the U and V components of wind (components of the

horizontal wind towards the east and north) from the European

Centre for Medium-range Weather Forecasts (http://www.ecmwf.

http://www.ecmwf.int
http://www.ecmwf.int
http://rspb.royalsocietypublishing.org/


Table 1. Description of the variables used in this study to explain recent BTV spread in Europe. n.a., not applicable.

predictors distance measures computed sources and URLs

GCD great-circle distance n.a.

bearing start and

endpoints

angles shaped between the direction of the virus

diffusion movement and wind directions at both

starting and endpoints of this movement

European Centre for Medium-range Weather Forecasts http://

apps.ecmwf.int/datasets/data/interim-full-mnth/

precipitation resistance distances computed when raster treated either

as a conductance or resistance factors

European Centre for Medium-range Weather Forecasts http://

apps.ecmwf.int/datasets/data/interimtemperature

wind speed

mean elevation Global Multi-resolution Terrain Elevation Data (GMTED 2010)

from the United States Geological Survey http://eros.usgs.

gov/#Find_Data/Products_and_Data_Available

standard deviation

of elevation

low elevation derived from mean elevation raster

mid elevation

high elevation

terrestrial habitat derived from cattle density raster

cattle density Food and Agriculture Organisation http://www.fao.org/ag/

AGAInfo/resources/en/glw/GLW_dens.htmlsheep density

goats density
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int) over 15 years (from January 1998 to December 2012) at a resol-

ution grid of 0.125 � 0.125. Averaged data over the 15 years were

generated with the netCDF Operators (NCO) suite of programs

(available at http://nco.sourceforge.net). Wind U and V com-

ponents were used to compute prevailing meteorological wind

direction (in degrees) over the 15 years. Based on this, we used the

difference in degree angle between the direction of virus diffusion

along a branch (see phylogeographic analyses below) and the pre-

vailing wind direction at both starting and end nodes as predictors.

(iii) Elevation
Mean and standard deviation of elevation (as a measure for the local

variation in elevation) were acquired from the Global Multi-resol-

ution Terrain Elevation Data of the United States Geological

Survey (GMTED2010, [32]). GMTED2010 combines the available

global elevation data from different public datasets and they are pro-

vided as tiles with 308 of longitude � 208 of latitude at a 30-arc-s

resolution. The mean elevation raster was used to generate three

additional binary rasters. Because the airborne spread of Culicoides
species and the viral velocity is thought to decrease significantly

above 300 m or so [33,34], cells below this elevation were assigned

high values of 1000 when corresponding to cells of terrestrial habitat

with a mean elevation under 300 m, whereas all other cells were

given a value of 0.001 (low elevation). However, members of the

C. obsoletus species complex are commonly found above 1000 m

[35]. For two alternative rasters, high values were, therefore,

assigned to cells with a mean elevation between 300 and 1000 m

(mid elevation), or to the cells above 1000 m (high elevation).

(iv) Livestock densities
Modelled densities of three ungulate livestock species (cattle,

sheep and goats) were obtained from the Food and Agriculture

Organisation at a resolution grid of 0.05 � 0.05 [36].

(v) Terrestrial habitat
Information about the distribution of habitat and non-habitat

associated with the livestock density data was used to build a
binary raster in which cells corresponding to terrestrial areas

were assigned a value of 1000 and cells corresponding to open

sea a value of 0.001.

Spatial coverage of all environmental rasters was reduced to

Europe and the Mediterranean basin with the following bound-

aries: north ¼ 75.0; south ¼ 20.0; east ¼ 220.0; west ¼ 50.0. All

rasters were visualized in QGIS [37] and grid resolutions were

reduced to 0.125 � 0.125 to speed up analysis while keeping a suf-

ficient degree of detail. All environmental raster cell values were

increased by 1 (except for cells with no data) to avoid cells with

values equal to 0. For host density rasters, cells with no data

(non-habitat) were assigned the small value of 0.001.

After transformation, resistance distances were computed

from rasters using Circuitscape 4.0 [38]. Resistance distances

were preferred to least cost path distances because of their ability

to accommodate the uncertainty in the route taken by viral

lineages. Under this approach, each lineage is considered to have

travelled via a random walk between its start and end location

as estimated from phylogeographic analyses (see below). Indeed,

the computed resistance distance is a graph-theoretic metric

based on circuit theory, which takes into account all possible path-

ways connecting a given pair of locations [38]. Rasters can be

treated as either resistance or conductance factors [38], correspond-

ing to the expectation of lower and higher permeability to viral

movement associated with this predictor.
(c) Phylogeography and predictor testing
We reconstructed the spread of BTV in Europe and investigated the

potential predictors of virus diffusion by combining information

gathered from two phylogeographic analyses. First, BTV phylo-

geographic history was reconstructed using a continuous space

diffusion model and variables were tested a posteriori with two stat-

istical approaches. Second, we used a discrete phylogeography

approach that simultaneously estimates phylogeographic diffu-

sion parameters and the effect of different variables on diffusion,

within a GLM framework. Both phylogeographic analyses were

done using the BEAST v. 1.8.2 software package (available at

http://code.google.com/p/beast-mcmc/), which uses a Bayesian

http://www.ecmwf.int
http://nco.sourceforge.net
http://nco.sourceforge.net
http://code.google.com/p/beast-mcmc/
http://code.google.com/p/beast-mcmc/
http://apps.ecmwf.int/datasets/data/interim-full-mnth/
http://apps.ecmwf.int/datasets/data/interim-full-mnth/
http://apps.ecmwf.int/datasets/data/interim-full-mnth/
http://apps.ecmwf.int/datasets/data/interim
http://apps.ecmwf.int/datasets/data/interim
http://apps.ecmwf.int/datasets/data/interim
http://eros.usgs.gov/%23Find_Data/Products_and_Data_Available
http://eros.usgs.gov/%23Find_Data/Products_and_Data_Available
http://eros.usgs.gov/%23Find_Data/Products_and_Data_Available
http://www.fao.org/ag/AGAInfo/resources/en/glw/GLW_dens.html
http://www.fao.org/ag/AGAInfo/resources/en/glw/GLW_dens.html
http://www.fao.org/ag/AGAInfo/resources/en/glw/GLW_dens.html
http://rspb.royalsocietypublishing.org/
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Markov chain Monte Carlo (MCMC) method [39,40]. Further

details regarding these analyses are provided below. All BEAST

runs were performed using the BEAGLE library to enhance com-

putation speed [41,42]. Convergence of the MCMC outputs was

confirmed using Tracer v. 1.6 [43]. Where required, multiple run

outputs were combined using LogCombiner v. 1.8.2. and maxi-

mum clade credibility (MCC) trees were generated using

TreeAnnotator v. 1.8.2 (both provided as part of the BEAST pack-

age). Annotated trees were visualized using FigTree v. 1.4.2

(available at http://tree.bio.ed.ac.uk/).

(d) Phylogeography in continuous space
BTV diffusion dynamics in continuous space were estimated as

described in Lemey et al. [26]. Unlinked time-scaled phylogenies

of BTV segments, with linked evolutionary and demographic

models, were simultaneously estimated by combining three chains

of 109 steps, sub-sampled every 50 000 generations after discarding

10 per cent of the generations from each, as burn-in. Analyses were

performed using a SRD06 model of nucleotide substitutions and

an uncorrelated lognormal-relaxed molecular clock under a flex-

ible Bayesian skygrid model as coalescent prior, as described

previously [17]. We used the jitter function to add random noise

from a fixed window (0.1) to location data for samples with

identical geo-references, as recommended by the developers. We

compared the homogeneous Brownian diffusion model with

random walk (RRW) models, which involve branch-specific scal-

ing factors that are drawn from an underlying distribution

(Cauchy, gamma, lognormal). Models were compared using

Bayes factors (BFs) based on log marginal likelihoods obtained

by path sampling and stepping stone sampling [44–46]. Prelimi-

nary investigations revealed that model convergence could not

be achieved for more flexible diffusion models (gamma and log-

normal, [26]) and that the RWW model under the Cauchy

distribution provided a much better fit to the data with very

strong support (BF . 500, data not shown). Consequently, only

results from the RRW Cauchy model are presented in the follow-

ing (a summary of the parameter estimates can be found in

electronic supplementary material, table S2).

For further analysis, the history of lineage dispersal

was recovered from spatially and temporally calibrated phylo-

genetic trees, in which each internal node has an estimated

time and location, allowing for travel times to be calculated for

each branch.

(i) A posteriori testing of single predictors using SERAPHIM
We investigated the potential of each raster variable to be a predic-

tor of BTV diffusion, when it was treated either as a conductance or

resistance factor, using the SERAPHIM library in R [47]. This

method is based on the comparison of coefficients of determination,

obtained either when travel times are regressed against resistance

distances computed from the environmental raster ðR2
envÞ, or

when travel times are regressed against resistance distances

obtained from a null raster ðR2
nullÞ. Based on these two values, the

Q statistic, with Q ¼ R2
env � R2

null, can be calculated. Here, we

resampled 100 trees from the BEAST RWW model outputs corre-

sponding to 10 trees per BTV segment. For each predictor, we

computed their associated Q-values. To assess statistical confi-

dence, we estimated BFs and considered values greater than 3 as

evidence of support [48].

(ii) A posteriori testing of single predictors and great circle
distances using linear regression

The SERAPHIM method deals only with variables that can be

expressed in a spatial raster in order to compute resistances (or

any other distance metric based on a path model). Here, we

propose an alternative approach that can accommodate both
rasterized and non-rasterized variables. An example of the

latter includes the degree angle difference between the direction

of the virus diffusion movement and wind directions at both

starting and endpoints of the lineages’ movement. First, locations

and travel times estimated for every branch of the MCC trees of

the 10 BTV segments were extracted using the OutbreakTools

library in R [49]. For each rasterized predictor, resistances were

computed for the corresponding inferred lineage movements.

Resistance distances include a spatial component, resulting in

resistances that are larger for the points separated by higher

geographical distances. In order to make both rasterized and

non-rasterized variables comparable, we had to remove the

spatial component from the former. To achieve that, we took

the residuals from a regression of resistances computed with

the predictor against those from a null raster representing spatial

distance only. These residuals, thus, represent the variation in

environmental distance beyond what we would expect based

on spatial distance alone. Locations associated with the parent

and descendent nodes of each branch were also used to compute

the degree angle difference between the direction of the virus

diffusion movement and wind direction at both starting and end-

points of movements. All variables used were log-transformed

and standardized to limit the impact of extreme values and to

make variables as comparable as possible. Then, travel times

were regressed as a function of great circle distances (GCD)

and resistance residuals or non-resistance-based predictors:

lm(times � GCD þ Predictor). As in SERAPHIM, we then used

the statistic Q to compare the coefficient of determination of

each model with the coefficient of the univariate regression of

times against GCD only. Different from SERAPHIM, we assessed

the statistical support for a predictor based on its significance in

the linear model but also its regression coefficient: a variable can

only be considered as explanatory if both its associated Q value

and regression coefficient are positive (figure 2). By contrast, a

positive Q value combined with a negative coefficient would

indicate model misspecification, in that it implies a proposed

conductor having a resistance effect or vice versa.

For long branches, representing deep phylogenetic diver-

gences within the tree, spatial inference is potentially unreliable.

To examine whether this could have affected our results, we

repeated our analysis after excluding all phylogenetic branches

with estimated branch lengths greater than 500 years.

A limitation of these approaches is that they allow only one

predictor to be assessed at a time. While simultaneous testing of

multiple predictors would be desirable and more biologically rea-

listic, the high degree of collinearity between variables (see

electronic supplementary material, figure S2) made this proble-

matic. Preliminary analyses involving multiple predictors further

revealed that the resulting models were unstable in this case

(data not shown). We have, therefore, limited the results presented

to those obtained from the univariate approach.

(e) Phylogeography in discrete space and simultaneous
predictors testing

As a complementary approach to continuous phylogeographic

inference, we also determined the spatial and temporal dynamics

of BTV transmission in Europe in a discrete space [25]. Classifi-

cation into discrete states contains a level of arbitrariness and

sample sizes can strongly impact ancestral reconstruction [29].

We, therefore, analysed patterns of spatial diffusion at three

levels of geographical resolution, in order to assess the robustness

of the main conclusions with respect to the spatial discretization. In

an attempt to include all sequence data while keeping the number

of samples per location as balanced as possible, we considered a

first partitioning where sequences were arbitrary grouped into

17 locations (figure 1b). The second partitioning simply used the

country of origin (21 discrete states, figure 1c). For the third spatial

http://tree.bio.ed.ac.uk/
http://tree.bio.ed.ac.uk/
http://rspb.royalsocietypublishing.org/
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discretization, we grouped samples in geographical zones.

Samples belonging to the same country or to bordering countries

were grouped together if they were separated by less than

300 km and not separated by the sea, resulting in 25 different dis-

crete states (figure 1d). Spatial discretizations are summarized in

electronic supplementary material, table S1. Owing to the very

high computation times needed to achieve sufficient mixing and

convergence for the analysis in BEAST, we used a set of 500 empiri-

cal trees per BTV segment from a previous analysis that did not

consider any traits [29].

We used a recent extension of the discrete diffusion approach

that simultaneously tests and quantifies potential predictors of

the diffusion process in a GLM framework [29,50]. Estimated

rates of virus movement among the fixed number of discrete

locations are parameterized as a linear function of one or multiple

predictors. For each of the three partitioning schemes, we used the

cluster centroids to compute distance and resistance matrices to be

incorporated in the model. For efficiency and high correlation

between variables, we chose to include one representative predic-

tor in the GLM for each kind of variable used in this study:

temperature for the meteorological features and the ‘low elevation’

and cattle density for the landscape and livestock components.

Resistances were computed when rasters were treated as conduc-

tors and again adjusted, keeping residuals of their regression

against resistances computed from a null raster. In the end, the

model used only included variables reasonably correlated to

each other (electronic supplementary material, figure S3). In this

case, a resistance predictor correctly specified in the model is

expected to be associated with a negative coefficient (figure 2).

To control for variation in sample size, it was added as an

additional predictor. Following Lemey et al. [51], we determined

the support for predictors within the model using BFs that are

obtained dividing the posterior odds of predictor inclusion by

their prior odds. In addition to providing a measure of support

for each predictor, the GLM approach also allows the contribution

or effect size of each predictor to be quantified by estimating the

associated GLM coefficients.
3. Results
(a) Phylogeographic inference in continuous space
(i) A posteriori testing of single predictors using SERAPHIM
For each rasterized variable, we estimated Q-values, measuring

the improvement in the regression fit as a result of including that

predictor, for each of the 100 re-sampled trees (10 trees/BTV

segment). This generated a distribution of 100 Q-values (elec-

tronic supplementary material, figure S4) and associated BFs

(table 2). None of the predictors showed strong positive or

negative associations with BTV movement rates (i.e. BF . 10).

However, substantial evidence for associations was seen for

livestock density (all species) when treated as conductance fac-

tors (i.e. 3 � BF , 10). The standard deviation of elevation, the

‘low elevation’ (elevation below 300 m) and the terrestrial habi-

tat as conductors also showed substantial associations with

faster BTV movements (BF � 3.35). When temperature was trea-

ted as a conductance factor, 60% of the Q-values were positive,

but support was low (BF: 1.63). Similarly, 73% of trees had posi-

tive Q-values when treating precipitation as a resistance factor,

but the support was weak (BF: 1.04). For all remaining pre-

dictors, no association with lineage movement was evident

(BF , 3, less than 50% positive Q-values).
(ii) A posteriori testing of single predictors and great circle
distances using linear regression

As an alternative to SERAPHIM, we used estimated travelling

times extracted from MCC trees of the 10 segments (see elec-

tronic supplementary material), to estimate Q-values and

coefficients for all predictors, by comparing the coefficients of

determination of the regression of travel times against GCD

with and without inclusion of that predictor (table 2).

http://rspb.royalsocietypublishing.org/


Table 2. Results of phylogeography in continuous space and a posteriori predictor testing.

rasters treated as

SERAPHIM analysisa alternative approachb

Qc > 0 (%) BF Qc estimated p-value

bearing start point n.a. n.a. n.a. þ 0.094 6.400 � 1023

bearing endpoint n.a. n.a. n.a. þ 0.093 1.110 � 1022

precipitation conductance factors 27 0.92 2 20.002 7.510 � 1021

temperature 60 1.63 þ 20.011 2.070 � 1021

wind speed 30 0.54 þ 20.009 2.290 � 1021

mean elevation 38 1.27 2 0.006 6.530 � 1021

standard deviation of elevation 36 3.55 þ 0.188 ,2 � 10216

low elevation 39 4.00 þ 0.039 1.260 � 1026

mid elevation 15 1.63 þ 0.026 4.050 � 1023

high elevation 15 0.75 2 0.005 7.250 � 1021

terrestrial habitat 28 3.35 þ 0.089 ,2 � 10216

cattle density 28 3.00 þ 0.131 ,2 � 10216

sheep density 29 3.55 þ 0.123 ,2 � 10216

goats density 29 3.00 þ 0.120 ,2 � 10216

precipitation resistance factors 73 1.04 2 20.001 8.050 � 1021

temperature 39 0.69 þ 20.010 2.300 � 1021

wind speed 47 1.77 2 20.001 8.530 � 1021

mean elevation 21 1.70 þ 20.019 9.900 � 1022

standard deviation of elevation 6 0.72 þ 20.206 ,2 � 10216

low elevation 1 1.33 þ 20.041 1.830 � 10214

mid elevation 1 0.56 þ 20.045 7.730 � 10216

high elevation 4 1.38 þ 20.018 2.130 � 1022

terrestrial habitat 6 0.82 þ 20.101 ,2 � 10216

cattle density 1 0.75 þ 20.160 ,2 � 10216

sheep density 0 2.23 þ 20.169 ,2 � 10216

goats density 3 0.89 þ 20.150 ,2 � 10216

aPercentages of positive Q-values and associated BF based on 100 sub-sampled trees (10 per BTV segments) using the SERAPHIM R package.
bSign of Q-values, predictors coefficient estimates and associated p-values based on MCC trees diffusion histories.
cQ are coefficients of determination.
dEstimate refers to the regression coefficient of the bivariate regression.
n.a., not applicable.
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With respect to non-rasterized data, we found that BTV

travel time decreased with increasing deviation from the pre-

vailing wind direction at the starting and endpoint of virus

movement. Specifically, values of Q and coefficients for the

degree angle difference between wind direction at start

and end locations and the direction of virus movement were

positive with p-values , 0.05, highlighting the association

between the predominant wind direction and the direction of

BTV spread. Excluding long branches from the analysis gave

equivalent results (electronic supplementary material, table S3).

For all rasters for which a BF value higher than 3 had been

obtained in the SERAPHIM analysis (table 2), we obtained posi-

tive values of Q associated with positive coefficients and

significant p-values (figure 2 for interpretation). This verified

that the two methods lead to congruent results and confirmed

correct specification of predictors as causing either conductance

or resistance. The only exception was ‘mid-elevation’ habitat
(elevation between 300 and 1000 m) as a conductor, which

received support in our method but not in SERAPHIM.

(b) Phylogeography in discrete space and simultaneous
multiple predictors testing

We assessed the ability of phylogeographic inference in dis-

crete space (MCC trees available upon request), combined

with GLM approaches, to evaluate which variables predict

the rates of location exchange. This was done for a subset

of representative predictors and for three different spatial

discretizations: ‘balanced’, ‘countries’ and ‘zones’ (figure 1).

While there was some variability in the results for the

three spatial discretizations, some robust patterns emerged

(figure 3). There was consistent evidence that GCD between

locations negatively influenced the frequency of BTV exchange

between locations. The associated log scale conditional effect

http://rspb.royalsocietypublishing.org/


inclusion probability log conditional effect size log conditional effect size log conditional effect size
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low elevation
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Figure 3. Support and contribution for a subset of predictors of BTV movement between locations for three different spatial discretizations. For each potential
predictor, support is represented by an inclusion probability and a relative contribution indicated for log scale GLM coefficients conditional on the predictor
being included in the model ( posterior mean and 95% Bayesian CI). Darker dots indicate conditional effect sizes supported by Bayes factors greater than 3.
For rasterized variables, resistance distances were obtained with raster treated as a conductance factor.
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was high (close to 2) for the three spatial discretizations compared

to other inferred coefficients, indicating geographical distance

plays a major role in determining rates of BTV movement.

Consistent with results from continuous approaches, viral

dispersal occurred significantly more frequently between

localities separated by a higher cattle density (variable treated

as conductance factor, negative conditional effect size,

figure 2 for interpretation) for the ‘balanced’ and ‘countries’

spatial discretizations. No significant effect of the variable

was detected at the ‘zones’ level.

In contrast with the continuous trait analysis, results

obtained from the three spatial discretizations suggested

that BTV spread was limited between locations separated

by ‘low-elevation’ habitats (variable treated as a conductance

factor, positive conditional effect size). Conversely, while no

effect of the temperature was obvious from the continuous

approach, a significantly positive effect was seen for two of

the discretizations (‘balanced’ and ‘countries’).

For all three spatial discretizations, sample size was identified

as an important predictor of BTV exchange between locations.

Summarizing across the different analytical approaches

used, our analyses revealed consistent support for BTV

diffusion being positively affected by higher livestock den-

sities and low altitude terrestrial habitat (below 300 m) as

conductors and by the direction of winds.
4. Discussion
This study provides the most comprehensive investigation of

BTV incursion and spread in Europe to date. It represents the

first time that BTV genetic data have been used to reconstruct

the phylogeographic history of the virus and to relate hetero-

geneity in diffusion process to climate, landscape and host

factors. We assessed different methods combining phylo-

genetic and spatial approaches and found evidence for

several predictors affecting BTV diffusion.

(a) Livestock densities as a key factor in bluetongue
virus epidemics

Our results support the idea that densities and distributions of

cattle and sheep play a key role in BTV diffusion. Cattle are

usually considered a major reservoir of BTV infection. They

have been shown to be the preferred target for Culicoides
biting, possibly because they are larger, emit more semiochem-

ical substances, do not have a woolly coat, and they have

detectable viraemia for longer compared to sheep [52]. Initial

spread of BTV-8 in The Netherlands in 2006 is thought to have

taken place in cattle, before moving more into sheep in 2007

where it caused major losses [53,54]. Consistent with this

hypothesis, the re-emergence of the virus in France in 2015

occurred in a cattle production region and only involved a few

cases in sheep [14]. Results revealing a considerable role played

by sheep are, however, also congruent with a recent work that

showed that BTV-1 transmission increased significantly in

areas with higher densities of sheep during the epidemic of

2007 in southern Spain [55]. Our results also supported a positive

association of BTV spread with the density of goats, which rarely

display clinical signs and are generally not considered to play an

important role in BTV transmission [56]. However, all resistance

distances computed from the three host species densities rasters

were highly correlated, which will have limited our ability to

distinguish between the effects each individual host species

had at this spatial resolution. Applying the approaches used

here on data obtained on a smaller spatial scale within a single

outbreak would likely be a more fruitful strategy to reveal the

role of different types of livestock in BTV spread.

(b) Marine open water and high altitude as barriers of
bluetongue virus diffusion

Our results suggested that BTV spread is facilitated by terres-

trial habitat, particularly at low elevation (up to 300 m). These

observations are congruent with a barrier effect associated

with open ocean and mountains areas, limiting the dispersal

of Culicoides vectors. While seas and oceans are hostile habitats

for the vector, large populations of species in the Obsoletus com-

plex can be found in Europe up to 1000 m [35]. However, areas

above 300 m failed to be significantly associated with faster

viral diffusion in most of our analyses. This suggests that

vector populations at these altitudes either have a lower ability

to support virus infection and replication (i.e. a lower compe-

tence) and/or exhibit a lower ability to transmit BTV in these

environments (i.e. a lower capacity) for example due to lower

temperatures or higher wind speeds. Further studies on the

competence of the Obsoletus complex are needed to elucidate

the change in vector competence and capacity in relation with

landscape features. Conflicting results, suggesting a negative
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effect of ‘low-elevation’ habitat on BTV movements rates, were

obtained in the discrete trait analysis. However, we consider

this finding less reliable due to methodological issues seen

with this approach, as discussed below.
alsocietypublishing.org
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(c) Prevailing winds and bluetongue virus long-distance
dispersal

We found support for an effect of the prevailing wind directions

on BTV diffusion, both at the starting and endpoints of the travel

pathway. In the 2006 BTV-8 epidemic in northwest Europe, 2%

of infections were inferred to have occurred at distances over

31 km [57,58]. Although other mechanisms such as human

transport of infected midges or movement of domestic or wild

animals could not be ruled out, our result suggest that these

infections are likely to be related to wind dispersal of infected

Culicoides. Much attention has been given to unusual wind

and weather patterns explaining BTV emergence events due

to the passive movement of infected vectors (e.g. 2007 in the

UK) [59]. The current results suggest that predictive models of

BTV spread would benefit from including data on prevailing

wind direction, in addition to considering rare weather events.
(d) Complex role of temperature in bluetongue virus
spread

In a 2005 review, Purse et al. concluded that host densities

and non-climatic abiotic factors are unlikely to be responsible

for recent BTV incursions in Europe as these factors had lar-

gely remained unchanged during the last century. This, along

with mechanistic modelling of BTV transmission risk [20],

argues that the repeated emergence of BTV in Europe in

recent decades could be related to a general increase in temp-

erature. However, none of our analyses yielded evidence for

the role of temperature, considered either as a conductance

or resistance factor, in BTV spread in Europe. Multiple

non-exclusive lines of argument might explain this result.

First, the relationship between temperature and the par-

ameters affecting BTV transmission is complex and probably

nonlinear. BTV transmission is optimal at a mean temperature

of 208C–258C and decreases at both warmer and cooler temp-

eratures [21,60]. During a 2007 outbreak of BTV-1 in Andalusia

for example, there was an overall positive correlation between

temperature and basic reproductive number (R0); however, it

has been shown that this relationship was not linear [55].

Given these complexities, it might be more appropriate to con-

sider temperature in a nonlinear fashion by examining critical

thresholds and classifying resistance values accordingly [61].

This would also require working at a finer temporal scale.

In addition, our study encompassed data from 12 different

BTV serotypes introduced to Europe over the past 15 years.

There could be considerable phenotypic variability among

these viruses, with respect to their interactions with different

vector species at different temperatures. For instance, during

the Spanish 2007 BTV-1 epidemic, involving C. imicola as the

main vector, the reproductive number fell below one when

temperatures dropped below 218C. By contrast, a much

lower threshold of 158C was reported in the BTV-8 epidemic

in Northern Europe in 2007/08 that involved C. obsoletus [62].

Applying phylogeographic analyses and test of temperature

effects to a single serotype or virus strains might, therefore,

be more appropriate and yield a clearer signal.
As an additional factor, climate data in our analysis

were summarized over a 15-year window and could have

masked potentially important temporal fluctuations. A recent

phylodynamic application to relax the time–homogeneity

assumption in phylogeographic reconstructions [63] represents

a promising possibility for incorporating this temporal

heterogeneity in the future.

(e) Diffusion models and predictor testing methodology
We considered different analytical tools available for phylo-

geographic analysis of pathogen diffusion, but encountered

some methodological challenges and inconsistencies. In the

analysis using space as a discrete trait, spatial scale and discre-

tization were shown to have a strong effect on our results, in

terms of effect sizes and in some cases even the direction of

the effect. Difficulties associated with geographical partition-

ing in phylodynamic models have previously been noted [29]

and our results reinforce this. Using centroid positions to rep-

resent clusters, we inherently lose a lot of spatially explicit

information that may be informative in explaining the overall

diffusion process. This could be particularly problematic at

the large geographical scale at which we were working here.

Increasing the number of clusters and centroids might help

to retain more resolution, but results in smaller sample sizes

per cluster and becomes more computationally intensive as it

increases model complexity.

Although the use of GLMs for predictor testing of patho-

gen diffusion has inherent advantages due to the ability to

include large numbers of predictors simultaneously, we

found that it can suffer from problems of non-independence

among the spatial predictors. Multicollinearity among expla-

natory variables is a well-recognized issue in multivariate

regression analyses and our results show that the GLM

approach implemented as part of the Bayesian phylogeo-

graphic inference in BEAST is no exception to this. An

improvement for future work would be to allow the proper

co-analysis of several environmental factors in a multivariate

framework using, for instance, commonality analysis [64].

Until more systematic investigations are performed, we

suggest that continuous phylogeography combined with uni-

variate or bivariate approaches might be more appropriate

and reliable for testing hypotheses concerning pathogen

spread throughout natural landscapes, at least for the kind

of sampling and geographical scales considered here.

( f ) Considerations for future work
Our study combined data of different BTV serotypes, topo-

types (geographical variants within serotypes) and genome

segments. While sample size limitations precluded us from

conducting analyses at these finer levels, there are valid bio-

logical reasons why these could be important to consider. For

example, some serotypes may not require a midge vector for

transmission, which instead could happen via the placenta or

through direct contact [65,66]. The importance of a given

environmental driver for BTV diffusion might, thus, depend

on the virus type or strain, as already discussed with respect

to the effect of temperature (see above). Furthermore, the rate

and mode of BTV diffusion across a landscape may differ

among segments. Segments vary in their propensity for enter-

ing other strains through reassortment [17] and some segment

variants might have an adaptive advantage in particular host

or vector species. Finally, BTV transmission dynamics might
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differ between cattle/sheep breeds, or due to other forms of

host heterogeneity, which could add geographical variation

to spatial diffusion patterns. While ignoring these different

aspects of variability, as we did here, is not expected to bias

results, it will add statistical noise that could obscure biologi-

cally interesting relationships. Future work that examines

potential sources of heterogeneity for their relevance to BTV

spread would be valuable.
hing.org
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5. Conclusion
Our findings indicate that BTV spread occurs under the com-

bined influence of climatic, landscape and host density

factors, which will be useful for the development of better pre-

dictive models for BTV. Our results are also relevant to the

spread of BTV vaccine strains, or their individual segments,

given evidence that such strains have repeatedly undergone

reassortment with field strains in Europe, followed by spatial

dissemination [17]. More broadly, our work demonstrates

how different phylogenetic and spatial approaches can be com-

bined to gain insights into the ecological factors underlying

pathogen diffusion and how this can be applied to the study

of vector-borne diseases. In addition to these biological insights,
the study highlights several important areas for methodological

improvement that can currently limit robust inference of spatial

transmission dynamics from pathogen genetic data. Addres-

sing these limitations is timely, given the ongoing threat of

disease emergence, creating an urgent need to better integrate

molecular, spatial and epidemiological information to guide

strategies for early warning, surveillance and control.
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