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Heterozygous mutations in the X-linked MECP2 gene cause the profound neurological disorder 30 

Rett syndrome (RTT)1. MeCP2 protein is an epigenetic reader whose binding to chromatin 31 

primarily depends on 5-methylcytosine (mC)2,3. Functionally, MeCP2 has been implicated in 32 

several cellular processes based on its reported interaction with >40 binding partners4, including 33 

transcriptional co-repressors (e.g. the NCoR/SMRT complex5), transcriptional activators6, RNA7, 34 

chromatin remodellers8,9, microRNA-processing proteins10 and splicing factors11. Accordingly, 35 

MeCP2 has been cast as a multi-functional hub that integrates diverse processes that are essential 36 

in mature neurons12. At odds with the concept of broad functionality, missense mutations that 37 

cause RTT are concentrated in two discrete clusters coinciding with interaction sites for partner 38 

macromolecules: the Methyl-CpG Binding Domain (MBD)13 and the NCoR/SMRT Interaction 39 

Domain (NID)5. Here, we test the hypothesis that the single dominant function of MeCP2 is to 40 

physically connect DNA with the NCoR/SMRT complex, by removing almost all amino acid 41 

sequences except the MBD and NID. We find that mice expressing truncated MeCP2 lacking both 42 

the N- and C-terminal regions (approximately half of the native protein) are phenotypically near-43 

normal; and those expressing a minimal MeCP2 additionally lacking a central domain survive for 44 

over one year with only mild symptoms. This minimal protein is able to prevent or reverse 45 

neurological symptoms when introduced into MeCP2-deficient mice by genetic activation or virus-46 

mediated delivery to the brain. Thus, despite evolutionary conservation of the entire MeCP2 47 

protein sequence, the DNA and co-repressor binding domains alone are sufficient to avoid RTT-like 48 

defects and may therefore have therapeutic utility. 49 

The amino acid sequence of MeCP2 is highly conserved throughout vertebrate species (Fig. 1a), 50 

suggesting that most of the protein is under evolutionary selection. Accordingly, full-length MeCP2 is 51 

reported to interact with multiple binding partners and has been implicated in several cellular 52 

pathways required for neuronal function12,4. RTT-causing missense mutations, however, are 53 

concentrated in the MBD and NID – a small minority of the protein – whereas the general population 54 

shows numerous polymorphisms elsewhere in the protein suggesting that other regions may be 55 
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dispensable (Fig. 1a). To test whether the MBD and NID might be sufficient for MeCP2 function, we 56 

generated mouse lines expressing a stepwise series of deletions of MeCP2. The three regions 57 

removed were sequences N-terminal to the MBD (‘N’), C-terminal to the NID (‘C’) and the 58 

intervening amino acids between these domains (‘I’) (Fig. 1b). The Mecp2 gene has four exons, with 59 

transcripts alternatively spliced to produce two isoforms that differ only at the extreme N-termini 14. 60 

To conserve the Mecp2 gene structure in the knock-in mice, exons 1 and 2 and the first 10 bp of 61 

exon 3 (splice acceptor site) were retained, resulting in the inclusion of 29 and 12 N-terminal amino 62 

acids from isoforms e1 and e2, respectively (Extended Data Fig. 1a-b, 3, 5). A C-terminal EGFP tag 63 

was added to facilitate detection and recovery (Fig. 1b). We defined the MBD as residues 72-173 and 64 

the NID as residues 272-312 (Extended Data Fig. 1c-d). The intervening region of the ∆NIC allele was 65 

replaced by a nuclear localisation signal (NLS) from SV40 virus, connected by a short flexible linker. 66 

The proportions of native MeCP2 protein sequence retained in ΔN, ΔNC and ΔNIC are 88%, 52% and 67 

32%, respectively. 68 

We tested whether the truncated MeCP2 proteins retained the ability to interact with methylated 69 

DNA and the NCoR/SMRT co-repressor complex using cell culture-based assays. They each 70 

immunoprecipitated endogenous NCoR/SMRT complex components when overexpressed in HeLa 71 

cells, whereas this interaction was abolished in the negative control NID mutant, R306C (Extended 72 

Data Fig. 2a). They also localised to mCpG-rich heterochromatic foci in mouse fibroblasts, which is 73 

dependent on both DNA methylation2,16 and MBD functionality17, whereas the negative control MBD 74 

mutant (R111G) was diffusely distributed (Extended Data Fig. 2b). Finally, we tested whether the 75 

truncated derivatives were able to recruit TBL1X, an NCoR/SMRT complex subunit that interacts 76 

directly with MeCP25,18, to heterochromatin. Transiently expressed TBL1X-mCherry accumulates in 77 

the cytoplasm, but it is efficiently recruited to heterochromatic foci in the presence of co-expressed 78 

WT MeCP25. All three derivative proteins successfully bridged DNA with TBL1X-mCherry in vivo , 79 

whereas the negative control NID mutant (R306C) could not do so (Extended Data Fig. 2c). All 80 
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truncated proteins therefore retained the ability to bind methylated DNA and the NCoR/SMRT 81 

complex simultaneously. 82 

We generated ΔN and ΔNC knock-in mice by replacing the endogenous Mecp2 allele in ES cells, 83 

which were used to produce germline-transmitting chimaeras (Extended Data Fig. 3). Truncated 84 

proteins were expressed at approximately WT levels in brain and in neurons (Extended Data Fig. 4a-85 

d). To assess phenotypes, knock-in mice were crossed onto a C57BL/6J background (for four 86 

generations) and cohorts underwent weekly phenotypic scoring19,20 or behavioural analysis. 87 

Although heterozygous female mice are the genetic model for RTT, phenotypes develop late and are 88 

mild in the case of hypomorphic Mecp2 mutations21,15. Hemizygous males provide a more sensitive 89 

assay of MeCP2 function: Mecp2-null males exhibit severe phenotypes that develop shortly after 90 

weaning and median survival is 9 weeks21. Both ΔN and ΔNC male mice were viable, fertile and 91 

showed phenotypic scores indistinguishable from WT littermates over one year (Fig. 2a-d). ΔN mice 92 

had normal body weight (Extended Data Fig. 4e), whereas ΔNC mice were slightly heavier than WT 93 

littermates (Extended Data Fig. 4f). This difference was absent in a more outbred cohort (Extended 94 

Data Fig. 4g), consistent with previous observations that body weight of Mecp2 mutants is affected 95 

by genetic background21.  96 

At 20 weeks of age, cohorts were tested for RTT-like behaviours: hypoactivity, decreased anxiety and 97 

reduced motor abilities. Neither activity (distance travelled in an Open Field; Extended Data Fig. 4h) 98 

nor anxiety (time spent in the open arms of the Elevated Plus Maze; Fig. 2e) was abnormal in ΔN and 99 

ΔNC mice, although the latter did spend longer in the centre of the Open Field (Fig. 2f), indicative of 100 

mildly decreased anxiety. Motor coordination was assessed using the Accelerating Rotarod test over 101 

three days. Whereas mouse models of RTT show impaired performance that was most striking on 102 

the third day22,15, ΔN and ΔNC mice were comparable to WT littermates throughout this test (Fig. 103 

2g). Overall, the results suggest that contributions of the N- and C-terminal regions to MeCP2 104 

function are at best subtle. The result is remarkable given the presence of a neurological phenotype 105 
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in male mice expressing a slightly more severe C-terminal truncation, which lacks residues beyond 106 

T30823. The difference may be explained by retention of full NID function in ΔNC mice, as loss of the 107 

extra four C-terminal amino acids (309-312) markedly reduces the affinity of truncated MeCP2 for 108 

the NCoR/SMRT co-repressor complex5. 109 

We next replaced the endogenous Mecp2 gene with ΔNIC, a minimal allele comprising only the MBD 110 

and NID domains and retaining 32% of the full-length protein sequence (Fig. 1b, Extended Data Fig. 111 

5). ΔNIC protein levels were reduced in whole brain (~50% of WT-EGFP controls; Fig. 3a-b) and in 112 

neurons (~40% of WT-EGFP controls; Fig. 3b). The presence of normal levels of mRNA in ΔNIC mice 113 

(Fig. 3c) suggests that deletion of the intervening region compromises protein stability. Despite low 114 

protein levels, male ΔNIC mice had a normal lifespan (Fig. 3e, Extended Data Fig. 6a). However, 115 

phenotypic scoring over one year detected mild neurological phenotypes (Fig. 3d), predominantly 116 

gait abnormalities and partial hind-limb clasping. These symptoms were relatively stable throughout 117 

the scoring period. ΔNIC mice also weighed ~40% less than their WT littermates (Extended Data Fig. 118 

6b). 119 

Behavioural analysis of a separate cohort at 20 weeks showed decreased anxiety in male ΔNIC mice, 120 

signified by reduced time spent in the closed arms of an Elevated Plus Maze (Fig. 3f), although this 121 

phenotype was not detected by the Open Field test (Fig. 3g). No activity phenotype was detected in 122 

the Open Field (Extended Data Fig. 6c), but, consistent with the gait defects detected by weekly 123 

scoring, ΔNIC mice displayed declining motor coordination on the Accelerating Rotarod over three 124 

days, culminating in a significantly impaired performance on the third day (Fig. 3h). It is noteworthy 125 

that ΔNIC animals are much less severely affected than male mice with the mildest common 126 

mutation found in RTT patients, R133C, which had a median lifespan of 42 weeks, higher phenotypic 127 

scores and a more pronounced reduction in body weight15 (Extended Data Fig. 7). Reduced protein 128 

levels may contribute to the relatively mild phenotype, as mice with ~50% levels of full-length 129 

MeCP2 have neurological defects24. 130 
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To further test ΔNIC functionality, we asked whether late genetic activation could reverse 131 

phenotypic defects in symptomatic MeCP2-deficient mice, as previously shown with the full-length 132 

protein19. Mice that were MeCP2-deficient through insertion of a floxed transcriptional STOP 133 

cassette in intron 2 of the ΔNIC gene (Extended Data Fig. 5, 8a-b) resembled Mecp2-nulls (Extended 134 

Data Fig. 8c-d). This line was crossed with mice carrying a CreERT transgene (Cre recombinase fused 135 

to a modified estrogen receptor) to enable removal of the STOP cassette upon Tamoxifen treatment. 136 

Induced expression of ΔNIC after the onset of symptoms in STOP CreERT mice (Fig. 4a) resulted in 137 

high levels of Cre-mediated recombination (Extended Data Fig. 9a) and protein levels similar to those 138 

of ΔNIC mice (Extended Data Fig. 9b). ΔNIC activation had a dramatic effect on phenotypic 139 

progression, relieving neurological symptoms and restoring normal survival (Fig. 4b-c). Separation of 140 

the phenotypic scores into the six tested components showed clear reversal of tremor, hypoactivity 141 

and gait abnormalities (Extended Data Fig. 9c). In contrast, control STOP mice lacking the CreERT 142 

transgene developed severe symptoms and failed to survive beyond 26 weeks. Thus, despite its 143 

radically reduced length and relatively low abundance, ΔNIC was able to effectively rescue MeCP2-144 

deficient mice from RTT-like phenotypes. 145 

This finding prompted us to explore whether ΔNIC could be used for gene therapy in Mecp2-null 146 

mice. A human version of the ΔNIC gene (Fig. 4d), driven by a minimal Mecp2 promoter25, was 147 

tagged with a short Myc epitope (in place of EGFP) and packaged into a self-complementary adeno-148 

associated viral vector (scAAV). Neonatal mice (P1-2) injected intra-cranially with this virus (Fig. 4d) 149 

expressed hΔNIC protein (Extended Data Fig. 10a). Treated Mecp2-null mice showed reduced 150 

symptom severity and greatly extended survival compared with controls receiving vehicle alone (Fig. 151 

4e-g). Despite the lack of fine control over infection rate, we did not observe deleterious effects due 152 

to overexpression, even in WT animals (Extended Data Fig. 10b-d). It is possible that the moderate 153 

instability of hΔNIC protein mitigates toxic effects associated with overexpression, widening the 154 

dosage window. The results also demonstrate that hΔNIC protein is functional without the large 155 

EGFP tag. Minimal MeCP2 may therefore be therapeutically advantageous, as the shortening the 156 
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coding sequence creates room for additional regulatory sequences within the limited capacity of 157 

scAAV vectors, which may enable more precise control of expression.  158 

Our findings support a simple model whereby the predominant function of MeCP2 is to recruit the 159 

NCoR/SMRT co-repressor complex to methylated sites on chromatin. This scenario agrees with 160 

recent evidence that inhibition of gene transcription is proportional to MeCP2 occupancy within 161 

gene bodies26,27. Importantly, minimal MeCP2 protein (ΔNIC) is missing all or part of several domains 162 

that have been highlighted as potentially important, including the AT-hooks28, several activity-163 

dependent phosphorylation sites29,30 , an RNA binding motif7 and interaction sites for proteins 164 

implicated in micro-RNA processing10, splicing11 and chromatin remodelling9. While these parts of 165 

the protein may have biological relevance, their presence is evidently not required for prevention of 166 

the RTT-like phenotype. Importantly, the discovery that the MBD and NID are sufficient to partially 167 

restore neuronal function to MeCP2-deficient mice allowed us to explore the therapeutic potential 168 

of the minimal protein, with encouraging results. These results potentially set a precedent for 169 

reducing the length of other gene therapy constructs by identifying dispensable regions that cannot 170 

be predicted by evolutionary conservation. 171 

 172 

  173 
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Figure 1: Stepwise truncation of MeCP2 protein to retain only the MBD and NID 264 

 265 

a, Diagram of human MeCP2 protein sequence with the Methyl-CpG Binding Domain (MBD) and the 266 

NCoR/SMRT Interaction Domain (NID); annotated to show single nucleotide polymorphisms (SNPs) 267 

in males in the general population (black lines) and RTT-causing missense mutations (red lines). 268 

Sequence identity between human and other vertebrate MeCP2 proteins is shown by purple bars 269 

and insertions by dark lines. b, Schematic diagram of the deletion series based on the mouse e2 270 

isoform that were generated in this study, compared with WT-EGFP15.  271 

 272 

Figure 2: Deletion of the MeCP2 N- and C-terminal regions has minimal phenotypic consequence 273 

 274 

a, b, Phenotypic severity scores of hemizygous male (a) ΔN mice (n=10) and (b) ΔNC mice (n=10), 275 

compared to their WT littermates (n=10) over one year. Graphs show mean scores ± S.E.M. 276 

Published Mecp2-null data (n=12)15 is shown as a comparator. c, d, Kaplan-Meier plots showing 277 

survival of the cohorts shown in panels a and b. Mecp2-null data (n=24)15 is shown as a comparator. 278 

e,f,g, Behavioural analysis of separate cohorts performed at 20 weeks of age: ΔN (n=10) and ΔNC 279 

mice (n=10 for Open Field/Rotarod; 11 for Elevated Plus Maze), each compared to WT littermates 280 

(n=10). Graphs show individual values and medians, and statistical significance as follows : not 281 

significant (‘n.s.’) P>0.05, * P<0.05. e, Time spent in the closed and open arms of the Elevated Plus 282 

Maze during a 15 min trial. Genotypes were compared using KS tests: ΔN closed arms P=0.988 and 283 

open arms P=0.759; ΔNC closed arms P=0.950 and open arms P=0.932. f, Time spent in the central 284 

region of the Open Field test was measured during a 20 minute trial. Genotypes were compared 285 

using t-tests: ΔN P=0.822; ΔNC * P=0.020. g, Average latency to fall from the Accelerating Rotarod in 286 

four trials was calculated for each of the three days of the experiment. Genotypes were compared 287 

using KS tests: ΔN day 1 P=0.759, day 2 P=0.401 and day 3 P=0.055; ΔNC day 1 P=0.988, day 2 288 

P=0.401 and day 3 P=0.759. 289 
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 290 

Figure 3: Additional deletion of the intervening region leads to protein instability and mild RTT-like 291 

symptoms 292 

 293 

a, Western blot analysis of whole brain extract showing protein sizes and abundance of MeCP2 in 294 

ΔNIC mice and WT-EGFP controls, detected using a GFP antibody. Histone H3 was used as a loading 295 

control. *denotes a non-specific band detected by the GFP antibody. For gel source data, see 296 

Supplementary Information. b, Flow cytometry analysis of protein levels in nuclei from whole brain 297 

(‘All’) and the high-NeuN subpopulation (‘Neurons’) in ΔNIC mice (n=3) and WT-EGFP controls (n=3), 298 

detected using EGFP fluorescence. Graph shows mean ± S.E.M. and genotypes were compared by t-299 

test: ‘All’ *** P=0.0002 and ‘Neurons’ *** P=0.0001. ‘au’ = arbitrary units. c, Quantitative PCR 300 

analysis of mRNA prepared from whole brain of ΔNIC mice (n=3) and WT-EGFP controls (n=3). Mecp2 301 

transcript levels were normalised to Cyclophilin A mRNA. Graph shows mean ± S.E.M. (relative to 302 

WT-EGFP) and genotypes were compared by t-test:  P=0.110. d, Phenotypic severity scores of ΔNIC 303 

mice (n=10) compared to WT littermates (n=10) over one year. Graph shows mean scores ± S.E.M. 304 

Mecp2-null data (n=12)15 is shown as a comparator. e, Kaplan-Meier plot showing survival of the 305 

cohort shown in panel d. One ΔNIC animal died at 43 weeks, after receiving phenotypic scores of 306 

≤2.5. Mecp2-null data (n=24)15 is shown as a comparator. f, g, h, Behavioural analysis of a separate 307 

cohort performed at 20 weeks of age: ΔNIC (n=10) compared to WT littermates (n=10). Graphs show 308 

individual values and medians, and statistical significance as follows: not significant (‘n.s.’) P>0.05, * 309 

P<0.05, ** P<0.01. f, Time spent in the closed and open arms and centre of the Elevated Plus Maze 310 

during a 15 minute trial. Genotypes were compared using KS tests: closed arms ** P=0.003, open 311 

arms P=0.055 and centre * P=0.015. g, Time spent in the central region of the Open Field measured 312 

during a 20 minute trial. Genotypes were compared using a t-test: P=0.402. h, Average latency to fall 313 

from the Accelerating Rotarod in four trials was calculated for each of the three days of the 314 

experiment. Genotypes were compared using KS tests: day 1 P=0.164, day 2 P=0.055 and day 3 ** 315 
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P=0.003. Changed performance (learning/worsening) over the three day period was determined 316 

using Friedman tests: wild-type animals P=0.601, ΔNIC animals ** P=0.003. 317 

 318 

Figure 4: Activation or viral transduction of ΔNIC ameliorates neurological phenotypes in MeCP2-319 

deficient mice 320 

 321 

a, Timeline of Cre-mediated activation of ΔNIC induced by Tamoxifen injections. b, Phenotypic 322 

severity scores (mean ± SEM) of mice injected with Tamoxifen (arrows) from 4-28 weeks: WT (n=4), 323 

WT CreERT (n=4), STOP (n=9) and STOP CreER (n=9). c, Kaplan-Meier plot showing survival of the 324 

cohort shown in panel b. d, Diagram of the DNA sequence inserted into an scAAV viral vector, 325 

comprising a 426 nt Mecp2 promoter driving the human ΔNIC coding sequence plus a C-terminal 326 

Myc tag and 3’ UTR. A vector containing full-length human MECP225 is shown for comparison. e, 327 

Timeline of the scAAV-mediated gene therapy experiment. f, Phenotypic severity scores (mean ± 328 

SEM) of scAAV-injected mice from 5-30 weeks: WT + vehicle (n=15), Mecp2-null + vehicle (n=20) and 329 

Mecp2-null + hΔNIC (n=17). g, Kaplan-Meier plot showing survival of the cohort shown in panel f. 330 

Four Mecp2-null + hΔNIC animals reached their humane end-point. Five Mecp2-null + ΔNIC animals 331 

were culled due to injuries unrelated to RTT-like phenotypes at 16, 23, 25, 26 and 29 weeks of age 332 

(data shown as ticks). Survival of Mecp2-null + ΔNIC animals was compared to Mecp2-null + vehicle 333 

controls using the Mantel-Cox test: P=<0.0001. 334 

 335 

  336 
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Extended Data Figure 1: Design of the MeCP2 deletion series 337 

a, Diagram of the genomic DNA sequences encoding WT and ΔNIC MeCP2, showing the retention of 338 

the extreme N-terminal amino acids encoded in exons 1 and 2 and the first 10 bp of exon 3, the 339 

deletion of the N- and C-terminal regions, the replacement of the intervening region with a linker 340 

and SV40 NLS, and the addition of the C-terminal EGFP tag. Colour key: 5’UTR=white, MBD=blue, 341 

NID=pink, other MeCP2 coding regions=grey, SV40 NLS=orange, linkers=dark grey and EGFP=green. 342 

b, The N-terminal ends of the sequences of all three truncated proteins (e1 and e2 isoforms) 343 

showing the fusion of the extreme N-terminal amino acids to the MBD (starting with P72). c, d, 344 

Protein sequence alignment of the MBD (c) and NID (d) regions using ClustalWS, shaded according to 345 

BLOSUM62 score. Both alignments are annotated with RTT-causing missense mutations31 (red), 346 

activity-dependent phosphorylation sites29,32,33 (orange), sequence conservation, interaction 347 

domains and known34/predicted35 structure. Interaction sites: methyl-DNA binding (residues 78-348 

16213), AT hook 1 (residues 183-19536), AT hook 2 (residues 257-27228), NCoR/SMRT binding 349 

(residues 285-3095).  The bipartite nuclear localisation signal (NLS) is also shown (residues 253-256 350 

and 266-271). The regions retained in ΔNIC are: MBD resides 72-173 (highlighted by the blue shading 351 

in panel c) and NID resides 272-312 (highlighted by the pink shading panel d). Residue numbers 352 

correspond to that of mammalian e2 isoforms. 353 

Extended Data Figure 2: Truncated MeCP2 proteins retain the ability to bind methylated DNA and 354 

the NCoR/SMRT complex 355 

a, EGFP-tagged truncated proteins immunoprecipitate components of the NCoR/SMRT co-repressor 356 

complex: NCoR, HDAC3 and TBL1XR1. WT and R306C were used as positive and negative controls for 357 

binding, respectively. ‘In’ = input, ‘IP’ = immunoprecipiate. For gel source data, see Supplementary 358 

Information. b, EGFP-tagged truncated MeCP2 proteins localise to mCpG-rich heterochromatic foci 359 

when overexpressed in mouse fibroblasts (NIH-3T3 cells).  WT and R111G were used as controls to 360 

show focal and diffuse localisation, respectively. Scale bars indicate 10 µm. c, EGFP-tagged truncated 361 
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proteins recruit TBL1X-mCherry to heterochromatin when co-overexpressed in NIH-3T3 cells. WT 362 

and R306C were used as positive and negative controls for TBL1X-mCherry recruitment, respectively. 363 

scale bars indicate 10 µm. Quantification (right) shows the percentage of cells with focal TBL1X-364 

mCherry localisation, evaluated relative to WT using Fisher’s exact tests: R306C **** P<0.0001, ΔN 365 

P=0.071, ΔNC P=0.604, ΔNIC P=0.460. Total numbers of cells counted: WT n=117, R306C n=119, ΔN 366 

n=113, ΔNC n=119, ΔNIC n=125. 367 

Extended Data Figure 3: Generation of ΔN and ΔNC mice 368 

Diagrammatic representation of ΔN (a) and ΔNC (b) knock-in mouse line generation. The 369 

endogenous Mecp2 allele was targeted in male ES cells. The site of Cas9 cleavage in the WT 370 

sequence is shown by the scissors symbol (used for production of ΔN knock-in ES cells). The selection 371 

cassette was removed in vivo by crossing chimaeras with deleter (CMV-Cre) transgenic mice. 372 

Southern blot analysis shows correct targeting of ES cells and successful cassette deletion in the 373 

knock-in mice. The solid black line represents the sequence encoded in the targeted vector and the 374 

dotted lines indicate the flanking regions of mouse genomic DNA. For gel source data, see 375 

Supplementary Information. 376 

Extended Data Figure 4: ΔN and ΔNC knock-in mice express truncated proteins at approximately 377 

WT levels and display minimal phenotypes 378 

a, Western blot analysis of whole brain extract showing protein sizes and abundance of MeCP2 in ΔN 379 

and ΔNC mice and WT-EGFP controls, detected using a GFP antibody. Histone H3 was used as a 380 

loading control. *denotes a non-specific band detected by the GFP antibody. For gel source data, see 381 

Supplementary Information. b, Flow cytometry analysis of protein levels in nuclei from whole brain 382 

(‘All’) and the high-NeuN subpopulations (‘Neurons’) in WT-EGFP (n=3), ΔN (n=3) and ΔNC (n=3) 383 

mice, detected using EGFP fluorescence. Graph shows mean ± S.E.M. and genotypes were compared 384 

to WT-EGFP controls by t-test: ‘All’ ΔN P=0.338, ΔNC ** P=0.003; and ‘Neurons’ ΔN P=0.672, ΔNC * 385 

P=0.014. c, Flow cytometry analysis of protein levels in WT (n=3) and WT-EGFP (n=3) mice, detected 386 
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using an MeCP2 antibody. Graph shows mean ± S.E.M. and genotypes were compared by t-test: ‘All’ 387 

P=0.214; and ‘Neurons’ P=0.085. d, Example histogram (of one WT-EGFP sample) showing how the 388 

‘Neuronal’ subpopulation was defined according to NeuN-AF647 staining. ‘au’ = arbitrary units. e, f, 389 

g, Growth curves of the backcrossed scoring cohorts (e and f; see Fig. 2a-d) and an outbred (g; 75% 390 

C57BL/6J) cohort of ΔNC mice (n=7) and WT littermates (n=9). Graphs show mean values ± S.E.M. 391 

Genotypes were compared using repeated measures ANOVA: ΔN P=0.362, ΔNC **** P<0.0001, ΔNC 392 

(outbred) P=0.739. Mecp2-null data (n=20)15 is shown as a comparator for the backcrossed cohorts. 393 

h, Behavioural analysis of ΔN (n=10) and ΔNC mice (n=10) compared to their WT littermates (n=10) 394 

at 20 weeks of age (see Fig. 2e-g). Total distance travelled in the Open Field test was measured 395 

during a 20 minute trial. Graphs show individual values and medians. Genotypes were compared 396 

using t-tests: ΔN P=0.691; ΔNC P=0.791. ‘n.s.’ = not significant. 397 

 398 

Extended Data Figure 5: Generation of ΔNIC and STOP mice 399 

Diagrammatic representation of ΔNIC and STOP mouse line generation. The endogenous Mecp2 400 

allele was targeted in male ES cells. The site of Cas9 cleavage in the WT sequence is shown by the 401 

scissors symbol. The selection cassette was removed in vivo by crossing chimaeras with deleter 402 

(CMV-Cre) transgenic mice to produce constitutively expressing ΔNIC mice, or retained to produce 403 

STOP mice. Southern blot analysis shows correct targeting of ES cells and successful cassette 404 

deletion in the ΔNIC knock-in mice. The solid black line represents the sequence encoded in the 405 

targeted vector and the dotted lines indicate the flanking regions of mouse genomic DNA. For gel 406 

source data, see Supplementary Information. 407 

 408 

Extended Data Figure 6: ΔNIC mice have a normal lifespan and no activity phenotype but 409 

decreased body weight 410 
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a, Kaplan-Meier plot showing survival of an outbred (75% C57BL/6J) cohort of ΔNIC mice (n=10) and 411 

their WT littermate (n=1). b, Growth curve of the backcrossed cohort used for phenotypic scoring 412 

(see Fig. 3d-e). Graph shows mean ± S.E.M. Genotypes were compared using repeated measures 413 

ANOVA **** P<0.0001. Mecp2-null data (n=20)15 is shown as a comparator. c, Behavioural analysis 414 

of ΔNIC mice (n=10) compared to their WT littermates (n=10) at 20 weeks of age (see Fig. 3f-h). Total 415 

distance travelled the Open Field test was measured during a 20 minute trial. Graph shows individual 416 

values and medians. Genotypes were compared using a t-test P=0.333. ‘n.s.’ = not significant. 417 

 418 

Extended Data Figure 7: ΔNIC mice have a less severe phenotype than the mildest mouse model of 419 

RTT, R133C 420 

a, b, c, Repeat presentation of phenotypic analysis of ΔNIC mice and WT littermates in Fig. 3d-e and 421 

Extended Data Fig. 6b, this time including EGFP-tagged R133C mice (n=10)15 as a comparator. 422 

  423 
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Extended Data Figure 8: ‘STOP’ mice with transcriptionally silenced ΔNIC resemble Mecp2-nulls 424 

a, Western blot analysis of whole brain extract showing protein sizes and abundance of MeCP2 in 425 

STOP mice and WT-EGFP and ΔNIC controls, detected using a GFP antibody. Histone H3 was used as 426 

a loading control. *denotes a non-specific band detected by the GFP antibody. For gel source data, 427 

see Supplementary Information. b, Flow cytometry analysis of protein levels in nuclei from whole 428 

brain (‘All’) and the high-NeuN subpopulation (‘Neurons’) in WT-EGFP (n=3), ΔNIC (n=3) and STOP 429 

(n=3) mice, detected using EGFP fluorescence. Graph shows mean ± S.E.M. and genotypes were 430 

compared using t-tests: **** denotes a P value <0.0001. ‘au’ = arbitrary units. c, Phenotypic scoring 431 

of STOP mice (n=22) compared to published Mecp2-null data (n=12)15. Graph shows mean scores ± 432 

S.E.M. d, Kaplan-Meier plot showing survival of STOP mice (n=14) compared to Mecp2-null data 433 

(n=24)15. 434 

 435 

Extended Data Figure 9: Successful activation of ΔNIC in Tamoxifen-injected STOP CreERT mice led 436 

to symptom reversal 437 

a, Southern blot analysis of genomic DNA to determine the level of recombination mediated by 438 

CreERT in Tamoxifen-injected (+Tmx) STOP CreERT animals. WT, WT CreERT, ΔNIC and STOP samples, 439 

with or without Tamoxifen injection, were included as controls. (Bsu36I digestion, see restriction 440 

map in Extended Data Fig. 5.) b, Protein levels in Tamoxifen-injected STOP CreERT animals were 441 

determined using western blotting (upper, n=5) and flow cytometry (lower, n=3). Constitutively 442 

expressing ΔNIC mice (n=3) were used as a comparator. Graphs show mean values ± S.E.M. 443 

(quantification by western blotting is shown normalised to ΔNIC). Genotypes were compared using t-444 

tests: western blotting P=0.434; flow cytometry ‘All’ nuclei P=0.128 and ‘Neuronal’ nuclei * P=0.016. 445 

‘au’ = arbitrary units. For gel source data, see Supplementary Information. c, Heatmap of the 446 

phenotypic scores of the Tamoxifen-injected STOP CreERT (upper; n=9) and STOP (lower; n=9 until 8 447 
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weeks of age, see survival plot in Fig. 4c) animals (see Fig. 4b), divided into the six categories. The 448 

plot is shaded according to the mean score for each category. 449 

 450 

Extended Data Figure 10: Virus-encoded ΔNIC is expressed in brain and does not have adverse 451 

consequences in WT mice 452 

a, b, Representative confocal images from thalamus and brainstem of scAAV-injected Mecp2-null (a) 453 

and WT (b) mice; scale bars indicate 20 µm visualised using an antibody against the Myc epitope 454 

(red) and the neuronal marker NeuN (green). Nuclei are stained with DAPI (blue). Graphs show 455 

transduction efficiency (mean ± SEM) in different brain regions (n=3 mice per genotype, 27 fields 456 

from each brain region). c, Phenotypic scoring (mean ± SEM) of scAAV-injected mice from 5-30 457 

weeks: WT + vehicle (n=15), Mecp2-null + vehicle (n=20) and WT + hΔNIC (n=14). d, Kaplan-Meier 458 

plot showing survival of the cohort shown in panel c. One WT + hΔNIC animal was culled due to 459 

injuries at 28 weeks of age (shown by a tick). An arrow indicates the timing of the viral injection. 460 

 461 

  462 
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Full Methods 463 

 464 

Nomenclature 465 

 466 

According to convention, all amino acid numbers given refer to the e2 isoform. Numbers refer to 467 

homologous amino acids in human (NCBI accession P51608) and mouse (NCBI accession Q9Z2D6) 468 

until residue 385 where there is a two amino acid insertion in the human protein.  469 

 470 

Mutation analysis 471 

 472 

Mutational data was collected as described previously5: RTT-causing missense mutations were 473 

extracted from the RettBASE dataset31; and polymorphisms identified in males in the general 474 

population were extracted from the Exome Aggregation Consortium (ExAC) database37.  475 

 476 

Design of the truncated MeCP2 proteins 477 

 478 

The MBD and NID were defined as residues 72-173 and 272-312, respectively. All three constructs 479 

retain the extreme N-terminal sequences encoded by exons 1 and 2 - present in isoforms e1 and e2, 480 

respectively. They also include the first three amino acids of exons 3 (EEK) to preserve the splice 481 

acceptor site. The intervening region (I) was replaced in ΔNIC by the NLS of SV40 preceded by a 482 

flexible linker. The sequence of the NLS is PKKKRKV (DNA sequence: CCCAAGAAAAAGCGGAAGGTG) 483 

and of the linker is GSSGSSG (DNA sequence: GGATCCAGTGGCAGCTCTGGG). All three proteins were 484 

C-terminally tagged with EGFP connected by a linker. To be consistent with a previous study tagging 485 

full-length MeCP215, the linker sequence CKDPPVAT (DNA sequence: 486 

TGTAAGGATCCACCGGTCGCCACC) was used to connect the C-terminus of ΔN to EGFP. To connect 487 

the NID to the EGFP tag in ΔNC and ΔNIC, the flexible GSSGSSG linker was used instead (DNA 488 
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sequence: GGGAGCTCCGGCAGTTCTGGA). For expression in cultured cells, cDNA sequences encoding 489 

e2 isoforms of the MeCP2 deletion series were synthesised (GeneArt, Thermo Fisher Scientific) and 490 

cloned into the pEGFPN1 vector (Clontech) using XhoI and NotI restriction sites (NEB). Point 491 

mutations (R111G and R306C) were inserted into the WT-EGFP plasmid using the QuikChange II XL 492 

Site-Directed Mutagenesis Kit (Agilent Technologies). Primer sequences for R111G: Forward 493 

TGGACACGAAAGCTTAAACAAGGGAAGTCTGGCC and Reverse 494 

GGCCAGACTTCCCTTGTTTAAGCTTTCGTGTCCA; and R306C: Forward 495 

CTCCCGGGTCTTGCACTTCTTGATGGGGA and Reverse TCCCCATCAAGAAGTGCAAGACCCGGGAG. For ES 496 

cell targeting, genomic sequences encoding exons 3 and 4 of the EGFP-tagged truncated proteins 497 

were synthesised (GeneArt, Thermo Fisher Scientific) and cloned into a previously used19 targeting 498 

vector using MfeI restriction sites (NEB). This vector contains a Neomycin resistance gene followed 499 

by a transcriptional ‘STOP’ cassette flanked by loxP sites (‘floxed’) in intron 2. 500 

 501 

Cell culture 502 

 503 

HeLa and NIH-3T3 cells were grown in DMEM (Gibco) supplemented with 10% foetal bovine serum 504 

(FBS; Gibco) and 1% Penicillin-Streptomycin (Gibco). ES cells were grown in Glasgow MEM (Gibco) 505 

supplemented with 10% FBS (Gibco - batch tested), 1% Non-essential amino acids (Gibco), 1% 506 

Sodium Pyruvate (Gibco), 0.1% β-mercaptoethanol (Gibco) and 1000 units/ml LIF (ESGRO). 507 

 508 

Immunoprecipitation 509 

 510 

HeLa cells were transfected with pEGFPN1-MeCP2 plasmids using JetPEI (PolyPlus Transfection) and 511 

harvested after 24-48 hours. Nuclear extracts were prepared using Benzonase (Sigma E1014-25KU) 512 

and 150 mM NaCl, and MeCP2-EGFP complexes were captured using GFP-Trap_A beads (Chromotek) 513 

as described previously5. Proteins were analysed by western blotting using antibodies against GFP 514 
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(NEB #2956), NCoR (Bethyl A301-146A), HDAC3 (Sigma 3E11) and TBL1XR1 (Bethyl A300-408A), all at 515 

a dilution of 1:1000; followed by LI-COR secondary antibodies: IRDye® 800CW Donkey anti-Mouse 516 

(926-32212) and IRDye® 800CW Donkey anti-Rabbit (926-32213) or IRDye® 680LT Donkey anti-517 

Rabbit (926-68023) at a dilution of 1:10,000. 518 

 519 

 520 

MeCP2 localisation and TBL1X-mCherry recruitment assay 521 

 522 

NIH-3T3 cells were seeded on coverslips in 6-well plates (25,000 cells per well) and transfected with 523 

2 μg plasmid DNA (pEGFPN1-MeCP2 alone or pEGFPN1-MeCP2 and pmCherry-TBL1X5) using JetPEI 524 

(PolyPlus Transfection). After 48 hours, cells were fixed with 4% (w/v) paraformaldehyde, stained 525 

with DAPI (Sigma) and then mounted using ProLong Diamond (Life Technologies). Fixed cells were 526 

photographed on a confocal microscope (Leica SP5) using LAS AF software (Leica). The number of co-527 

transfected cells with TBL1X-mCherry recruitment to heterochromatic foci was determined for each 528 

MeCP2 construct. In total, 113-125 cells per construct were counted (from three independent 529 

transfection experiments). This analysis was performed blind. The total proportion of cells with 530 

TBL1X-mCherry recruitment by each mutant MeCP2 protein was compared to WT using Fisher’s 531 

exact tests. 532 

 533 

Generation of knock-in mice 534 

Targeting vectors were introduced into 129/Ola E14 TG2a ES cells by electroporation, and G418-535 

resistant clones with correct targeting at the Mecp2 locus were identified by PCR and Southern blot 536 

screening. CRISPR/Cas9 technology was used to increase the targeting efficiency of ΔN and ΔNIC 537 

lines: the guide RNA sequence (GGTTGTGACCCGCCATGGAT) was cloned into pX330-U6-Chimeric_BB-538 

CBh-hSpCas9 (a gift from Feng Zhang; Addgene plasmid #4223038), which was introduced into the ES 539 

cells with the targeting vectors. This introduced a double-strand cut in intron 2 of the wild-type gene 540 
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(at the site of the NeoSTOP cassette in the targeting vector). Mice were generated from ES cells as 541 

previously described21. The ‘floxed’ NeoSTOP cassette was removed in vivo by crossing  chimaeras 542 

with homozygous females from the transgenic CMV-Cre deleter strain (JAX Stock #006054) on a 543 

C57BL/6J background. The CMV-Cre transgene was subsequently bred out. All mice used in this 544 

study were bred and maintained at the University of Edinburgh or Glasgow animal facilities under 545 

standard conditions and procedures were carried out by staff licensed by the UK Home Office and 546 

according with the Animal and Scientific Procedures Act 1986. Knock-in mice were caged with their 547 

wild-type littermates. 548 

 549 

Biochemical characterisation of knock-in mice 550 

For biochemical analysis, brains were harvested by snap-freezing in liquid nitrogen at 6-13 weeks of 551 

age, unless otherwise stated. Brains of hemizygous male mice were used for all analysis, unless 552 

otherwise stated. For Southern blot analysis, half brains were homogenised in 50 mM Tris HCl pH7.5, 553 

100 mM NaCl, 5mM EDTA and treated with 0.4 mg/ml Proteinase K in 1% SDS at 55°C overnight. 554 

Samples were treated with 0.1 mg/ml RNAseA for 1-2 hours at 37°C, before phenol:chloroform 555 

extraction of genomic DNA. Genomic DNA was purified from ES cells using Puregene Core Kit A 556 

(Qiagen) according to manufacturer’s instructions for cultured cells. Genomic DNA was digested with 557 

restriction enzymes (NEB), separated by agarose gel electrophoresis and transferred onto ZetaProbe 558 

membranes (BioRad). DNA probes homologous to either exon 4 or the end of the 3’ homology arm 559 

were radioactively labelled with [α32]dCTP (Perkin Elmer) using the Prime-a-Gene Labeling System 560 

(Promega). Blots were probed overnight, washed, and exposed in Phosphorimager cassettes (GE 561 

Healthcare) before scanning on a Typhoon FLA 7000. Bands were quantified using ImageQuant 562 

software. 563 

 564 

Protein levels in whole brain crude extracts were quantified using western blotting. Extracts were 565 

prepared as described previously15, and blots were probed with antibodies against GFP (NEB #2956) 566 
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at a dilution of 1:1,000, followed by LI-COR secondary antibodies (listed above). Histone H3 (Abcam 567 

ab1791) was used as a loading control (dilution 1:10,000). Levels were quantified using Image Studio 568 

Lite Ver 4.0 software and compared using t-tests. WT-EGFP mice15 were used as controls. 569 

 570 

For flow cytometry analysis, fresh brains were harvested from 12 week-old animals and Dounce-571 

homogenised in 5 ml homogenisation buffer (320 mM sucrose, 5 mM CaCl2, 3 mM Mg(Ac)2, 10 mM 572 

Tris HCl pH.7.8, 0.1 mM EDTA, 0.1% NP40, 0.1 mM PMSF, 14.3mM β-mercaptoethanol, protease 573 

inhibitors (Roche)), and 5 ml of 50% OptiPrep gradient centrifugation medium (50% Optiprep (Sigma 574 

D1556-250ML), 5 mM CaCl2, 3mM Mg(Ac)2, 10 mM Tris HCl pH7.8, 0.1M PMSF, 14.3mM β-575 

mercaptoethanol) was added. This was layered on top of 10 ml of 29% OptiPrep solution (v/v in H2O, 576 

diluted from 60% stock) in Ultra clear Beckman Coulter centrifuge tubes, and samples were 577 

centrifuged at 10,100 xg for 30 mins, 4°C. Pelleted nuclei were resuspended in Resuspension buffer 578 

(20% glycerol in DPBS (Gibco) with protease inhibitors (Roche)). For flow cytometry analysis, nuclei 579 

were pelleted at 600 xg (5 mins, 4°C), washed in 1 ml PBTB (5% (w/v) BSA, 0.1% Triton X-100 in DPBS 580 

with protease inhibitors (Roche)), and then resuspended in 250 μl PBTB. To stain for NeuN, NeuN 581 

antibody (Millipore MAB377) was conjugated to Alexa Fluor 647 (APEX Antibody Labelling Kit, 582 

Invitrogen A10475), added at a dilution of 1:125 and incubated under rotation for 45 mins at 4°C. 583 

Flow cytometry (BD LSRFortessa SORP using FACSDIVA v8.0.1 software) was used to obtain the mean 584 

EGFP fluorescence for the total nuclei (n=50,000 per sample) and the high NeuN (neuronal) 585 

subpopulation (n>8,000 per sample). The protein levels of the novel mouse lines were compared to 586 

WT-EGFP controls using t-tests. To compare protein levels in WT-EGFP mice to wild-type littermates, 587 

nuclei were also stained with an MeCP2 antibody (Sigma M7443) conjugated to Alexa Fluor 568 588 

(APEX Antibody Labelling Kit, Invitrogen A10494) at a dilution of 1:125.  589 

 590 

To determine mRNA levels, RNA was purified and reverse transcribed from half brains (harvested at 591 

11 weeks of age); and Mecp2 and Cyclophilin A transcripts were analysed by qPCR using LightCycler 592 
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480 SW 1.5 software as previously described15. mRNA levels in ΔNIC mice were compared to WT-593 

EGFP controls using a t-test. 594 

 595 

Phenotypic characterisation of knock-in mice 596 

Consistent with a previous study15, mice were backcrossed for four generations to reach ~94% 597 

C57BL/6J before undergoing phenotypic characterisation. Two separate cohorts, each consisting of 598 

10 mutant animals (11 for ΔNC Elevated Plus Maze) and 10 wild-type littermates, were produced for 599 

each novel knock-in line. One cohort was scored and weighed regularly from 4-52 weeks of age as 600 

previously described19,20. Survival was graphed using Kaplan-Meier plots. (A preliminary outbred 601 

[75% C57BL/6J] cohort of 7 ΔNC mice and 9 wild-type littermates was also analysed.) Previously 602 

published15 data for Mecp2-null and R133C-EGFP (both backcrossed onto C57BL/6J) were included as 603 

comparators. The second backcrossed cohorts underwent behavioural analysis at 20 weeks of age 604 

(see 20 and 15 for detailed protocols). Tests were performed over a two-week period: Elevated Plus 605 

Maze on day 1, Open Field test on day 2, and Accelerating Rotarod test on days 6-9 (one day of 606 

training followed by three days of trials). All analysis was performed blind to genotype. 607 

 608 

Statistical analysis 609 

Growth curves were compared using repeated measures ANOVA (the animals that died within the 610 

experimental period – one wild-type in each ΔNC cohort and one ΔNIC in their cohort – were 611 

excluded from this analysis to enable a balanced design). Survival curves were compared using the 612 

Mantel-Cox test. For behavioural analysis, when all data fitted a normal distribution (Open Field 613 

centre time and distance travelled), genotypes were compared using t-tests (unpaired, two-tailed). If 614 

not (Elevated Plus Maze time in arms/centre and Accelerating Rotarod latency to fall), genotypes 615 

were compared using Kolmogorov-Smirnov tests. Change in performance over time in the 616 

Accelerating Rotarod test was determined using Friedman tests. All analysis was performed using 617 

GraphPad Prism 7 software. 618 
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 619 

Genetic activation of minimal MeCP2 (ΔNIC) 620 

Transcriptionally silent minimal MeCP2 (ΔNIC) was activated in symptomatic null-like ‘STOP’ mice 621 

following the procedure used in 19. In short, the ΔNIC Mecp2 allele was inactivated by the retention 622 

of the NeoSTOP cassette in intron 2 by mating chimaeras with wild-type females instead of CMV-Cre 623 

deleter mice. Resulting STOP/+ females were crossed with heterozygous CreERT transgenic males 624 

(JAX Stock #004682) to produce males of four genotypes (87.5% C57BL/6J). A cohort consisting of all 625 

four genotypes WT (n=4), WT CreERT (n=4), STOP (n=9) and STOP CreERT (n=9), was scored and 626 

weighed weekly from 4 weeks of age. From 6 weeks (when STOP and STOP CreERT mice displayed 627 

RTT-like symptoms), all individuals were given a series of Tamoxifen injections: two weekly followed 628 

by five daily, each at a dose of 100 μg/g body weight. Brain tissue from Tamoxifen-treated STOP 629 

CreERT (n=8), WT (n=1) and WT CreERT (n=1) animals was harvested at 28 weeks of age (after 630 

successful symptom reversal in STOP CreERT mice) for biochemical analysis. Brain tissue from one 631 

Tamoxifen-treated STOP mouse (harvested at its humane end-point) was also included in the 632 

biochemical analysis (methods described above). 633 

 634 

Vector delivery of minimal MeCP2 (ΔNIC) 635 

The AAV vector expressing minimal MeCP2 (ΔNIC) was tested in Mecp2-null and WT mice 636 

maintained on a C57BL/6J background. Self-complementary AAV (scAAV) particles, comprising AAV2 637 

ITR-flanked genomes packaged into AAV9 capsids, were generated at the UNC Gene Therapy Center 638 

Vector Core facility. Particles were produced as previously described39 by transfection of HEK293 639 

cells with helper plasmids (pXX6-80, pGSK2/9) and a plasmid containing the ITR-flanked construct in 640 

the presence of polyethyleneimine (Polysciences, Warrington, PA). For translational relevance, the 641 

ΔNIC-expressing construct utilised the equivalent human MECP2_e1 coding sequence tagged with a 642 

small C-terminal Myc epitope to replace the EGFP tag used in knock-in experiments. The transgene 643 

was under the control of an endogenous Mecp2 promoter fragment as previously described25. 644 
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Vector was formulated in high-salt PBS (containing 350 mM total NaCl) supplemented with 5% 645 

sorbitol. Virus (3 µl per site; dose = 1 x 1011 viral genome per mouse) was injected bilaterally into the 646 

neuropil of unanaesthetised P1/2 males, as described previously40. Control injections used the same 647 

diluent lacking vector (‘vehicle control’). The injected pups were returned to the home cage and 648 

assessed weekly from 5 weeks of age, as described above (performed blind to genotype). Cohorts 649 

were as follows: WT + vehicle (n=15); Mecp2-null + vehicle (n=20; 19 of which were scored as one 650 

reached its humane end-point early); WT + hΔNIC (n=14); and Mecp2-null + hΔNIC (n=17). 651 

 652 

To validate the expression of virally-delivered h∆NIC, mice were deeply anesthetized with 653 

pentobarbitone (50 mg, intraperitoneally) and transcardially perfused with 4% 654 

paraformaldehyde (0.1 M PBS). A vibrating microtome (Leica VT1200) was used to obtain 655 

70 µm sections of the brain. Sections were washed three times in 0.3 M PBS followed by 656 

blocking using 5% normal goat serum in 0.3 M PBS with 0.3% Triton X-100 (PBST) for 1 657 

hour at room temperature. Samples then were incubated for 48 hours on a shaker at 4°C 658 

with the following primary antibodies against: Myc (Abcam ab9106, 1:500 dilution) and NeuN 659 

(Abcam 104224; 1:500). Samples were washed three times with 0.3 M PBST and incubated 660 

in secondary antibodies (Alexa Fluor 594 goat anti- rabbit (Abcam 150080; 1:500) and Alexa 661 

Fluor 647 goat anti-mouse (Stratech scientific LTD, 115-605-003JIR; 1:500) at 4°C 662 

overnight. Finally, sections were incubated with DAPI (Sigma; 1:1,000) for 30 minutes at 663 

room temperature before mounting with Fluoroshield with DAPI (Sigma, F6057). Z-series at 664 

0.6–1.3 μm intervals were captured using a Zeiss LSM710 or Zeiss Axiovert LSM510 laser 665 

confocal microscope (40x objective). To estimate transduction efficiency, the ratio of Myc-666 

positive nuclei to DAPI-stained nuclei was calculated form random sections of hippocampus 667 

(CA1), layer 5 of primary motor cortex, thalamus, hypothalamus, and brainstem (n = 3 mice 668 

per genotype, 27 fields from each brain region). Mecp2-null + hΔNIC were analysed after 669 

reaching their humane endpoints (aged 33, 35 and 36 weeks). WT + h∆NIC mice were harvested 670 

for analysis at 4 weeks of age. 671 
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 672 

All data are available from the authors on reasonable request. Source data underlying all graphs and 673 

full scans of all western and Southern blots are included.  674 

 675 

Supplemental References 676 

31. RettBase: Rett Syndrome Variation Database. at <http://mecp2.chw.edu.au/> 677 

32. Tao, J. et al. Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and 678 

neurological function. Proc. Natl. Acad. Sci. U. S. A. 106, 4882–7 (2009). 679 

33. Ebert, D. H. et al. Activity-dependent phosphorylation of MeCP2 threonine 308 regulates 680 

interaction with NCoR. Nature 499, 341–5 (2013). 681 

34. Ho, K. L. et al. MeCP2 binding to DNA depends upon hydration at methyl-CpG. Mol. Cell 29, 682 

525–31 (2008). 683 

35. PHD Secondary structure prediction method. at <https://npsa-prabi.ibcp.fr/cgi-684 

bin/npsa_automat.pl?page=/NPSA/npsa_phd.html> 685 

36. Lyst, M. J., Connelly, J., Merusi, C. & Bird, A. Sequence-specific DNA binding by AT-hook 686 

motifs in MeCP2. FEBS Lett. 590, 2927–2933 (2016). 687 

37. Exome Aggregation Consortium (ExAC), Cambridge, MA. at <http://exac.broadinstitute.org> 688 

38. Cong, L. et al. Multiplex Genome Engineering Using CRISPR/VCas Systems. Science (80-. ). 339, 689 

819–823 (2013). 690 

39. Clément, N. & Grieger, J. C. Manufacturing of recombinant adeno-associated viral vectors for 691 

clinical trials. Mol. Ther. Methods Clin. Dev. 3, 16002 (2016). 692 

40. Gadalla, K. K. E. et al. Improved survival and reduced phenotypic severity following 693 

AAV9/MECP2 gene transfer to neonatal and juvenile male Mecp2 knockout mice. Mol. Ther. 694 

21, 18–30 (2013). 695 

 696 

 697 



 31

  698 



 32

 699 

 700 



Neutral variants ♂

RTT

Chimpanzee 100%

Mouse 95%

Xenopus 65%

Zebrafish 48%

WT-EGFP

ΔN

ΔNC

ΔNIC

MBD NID

MBD NID EGFP
NLS

SV40 NLS

1 12 72 173 272 312 484

Human MeCP2

b

a

Figure 1



c

e

b

Figure 2

g

a

0 4 8 12 16 20 24 28 32 36 40 44 48 52
0

2

4

6

8

10

12
Severity score

Av
er

ag
e 

sc
or

e

WT

Null

0 4 8 12 16 20 24 28 32 36 40 44 48 52
0

2

4

6

8

10

12
Severity score

Age (weeks)

Av
er

ag
e 

sc
or

e

Null

WT

d
Age (weeks)

0 4 8 12 16 20 24 28 32 36 40 44 48 52
0

50

100

Survival

Age (weeks)

Pe
rc

en
t s

ur
viv

al

WT

Null

Age (weeks)
0 4 8 12 16 20 24 28 32 36 40 44 48 52

0

50

100

Survival

Pe
rc

en
t s

ur
viv

al
Null

WT

Ti
m

e 
in

 a
rm

s 
(s

)

Ti
m

e 
in

 c
en

tre
 (s

)

Clos
ed

Ope
n

0

200

400

600

800

1000

Elevated Plus Maze
n.s.

n.s.

WT WT

Clos
ed

Ope
n

Elevated Plus Maze
n.s.

n.s.

f

WT
0

20

40

60

80

100

Open Field
n.s.

W
T

Open Field

*

La
te

nc
y 

(s
)

D D Day
 1

ay
 2

ay
 3

0

50

100

150

200

Accelerating Rotarod

n.s. n.s. n.s.

La
te

nc
y 

(s
)

Day
 1

Day
 2

Day
 3

0

50

100

150

200

Accelerating Rotarod

n.s. n.s. n.s.

ΔN ΔNC

ΔN ΔNC

ΔN
CΔN

ΔN ΔNC



d

f

b

Figure 3

h

a

e

0 4 8 12 16 20 24 28 32 36 40 44 48 52
0

2

4

6

8

10

12
Severity score

Age (weeks)

Av
er

ag
e 

sc
or

e

WT

Null

0 4 8 12 16 20 24 28 32 36 40 44 48 52
0

50

100

Survival

Age (weeks)

Pe
rc

en
t s

ur
viv

al

WT

Null

H3

GFP

WT-EGFP ΔNIC

*

15 -

55 -

kDa
100 -

WT-E
GFP

0.0

0.5

1.0

1.5

2.0

mRNA levels

M
eC

P2
/C

yc
A

All

Neu
ron

s
0

20000

40000

60000

Protein levels in nuclei

EG
FP

 le
ve

l (
au

)

WT-EGFP

c

WT

g

Ti
m

e 
in

 c
en

tre
 (s

)

WT
0

20

40

60

80

100

Open Field
n.s.

Day
 1

Day
 2

Day
 3

0

50

100

150

200

Accelerating Rotarod

La
te

nc
y (

s)

n.s. n.s. **

Ti
m

e 
in

 a
rm

s 
(s

)

Clos
ed

Ope
n

Cen
tre

0

200

400

600

800

1000

Elevated Plus Maze

**

n.s.
*

ΔNIC

ΔN
IC

ΔNICΔNIC

ΔN
IC

ΔNIC



b

d

a

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Age (weeks)

Tamoxifen

Harvested
STOP CreERT

brain tissue

Death of STOP controls

Scoring

0 4 8 12 16 20 24 28
0

2

4

6

8

10

12

Severity score

Age (weeks)

Av
er

ag
e 

sc
or

e

c

WT +Tmx
WT CreERT+Tmx
STOP +Tmx
STOP CreERT+Tmx

28

0 4 8 12 16 20 24 28
0

50

100

Survival

Age (weeks)

Pe
rc

en
t s

ur
viv

al

Tmx

WT +Tmx
WT CreERT+Tmx
STOP +Tmx
STOP CreERT+Tmx

Tmx

Age (weeks)

Viral injection

Death of Null + vehicle controls

Scoring

Promoter hMECP2

Promoter 3’UTR
linker + Myc

Established WT vector

∆NIC vector

3’UTR
linker + Myc

e

f g

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Figure 4

0 4 8 12 16 20 24 28 32
0

2

4

6

8

10

12

Severity score

Age (weeks)

Av
er

ag
e 

sc
or

e

0 4 8 12 16 20 24 28 32
0

50

100

Survival

Age (weeks)

Pe
rc

en
t s

ur
viv

al

WT + vehicle

Null +
Null + vehicle

WT + vehicle
Null + vehicle
Null +

Viral
injection

Viral
injection

hΔNIC

hΔNIC hΔNIC

****


