

Tillotson, R., Selfridge, J., Koerner, M. V., Gadalla, K. K.E., Guy, J., De Sousa, D., Hector, R. D., Cobb, S. R. and Bird, A. (2017) Radically truncated MeCP2 rescues Rett syndrome-like neurological defects. *Nature*, 550, pp. 398-401. (doi:<u>10.1038/nature24058</u>)

This is the author's final accepted version.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/147430/

Deposited on: 25 October 2017

Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk

1 Radically truncated MeCP2 rescues Rett syndrome-like neurological defects

- 2 Rebekah Tillotson¹, Jim Selfridge¹, Martha V. Koerner¹, Kamal K. E. Gadalla^{2,3}, Jacky Guy¹, Dina De
- 3 Sousa¹, Ralph D. Hector², Stuart R. Cobb² and Adrian Bird^{1,4}
- 4
- ¹ The Wellcome Centre for Cell Biology
- 6 University of Edinburgh
- 7 Michael Swann Building
- 8 King's Buildings
- 9 Max Born Crescent
- 10 Edinburgh
- 11 EH9 3BF
- 12 UK
- 13
- 14 ² Institute of Neuroscience and Psychology,
- 15 College of Medical, Veterinary and Life Sciences,
- 16 University of Glasgow,
- 17 Glasgow
- 18 G12 8QQ
- 19 UK
- 20
- 21 ³ Pharmacology Department,
- 22 Faculty of Medicine,
- 23 Tanta University,
- 24 Tanta 31527,
- 25 Egypt

~	-
•)	ь
~	υ

27 ⁴ Corresponding author

30	Heterozygous mutations in the X-linked MECP2 gene cause the profound neurological disorder
31	Rett syndrome (RTT) ¹ . MeCP2 protein is an epigenetic reader whose binding to chromatin
32	primarily depends on 5-methylcytosine (mC) ^{2,3} . Functionally, MeCP2 has been implicated in
33	several cellular processes based on its reported interaction with >40 binding partners ⁴ , including
34	transcriptional co-repressors (e.g. the NCoR/SMRT complex ⁵), transcriptional activators ⁶ , RNA ⁷ ,
35	chromatin remodellers ^{8,9} , microRNA-processing proteins ¹⁰ and splicing factors ¹¹ . Accordingly,
36	MeCP2 has been cast as a multi-functional hub that integrates diverse processes that are essential
37	in mature neurons ¹² . At odds with the concept of broad functionality, missense mutations that
38	cause RTT are concentrated in two discrete clusters coinciding with interaction sites for partner
39	macromolecules: the <u>M</u> ethyl-CpG <u>B</u> inding <u>D</u> omain (MBD) ¹³ and the <u>N</u> CoR/SMRT <u>I</u> nteraction
40	Domain (NID) ⁵ . Here, we test the hypothesis that the single dominant function of MeCP2 is to
41	physically connect DNA with the NCoR/SMRT complex, by removing almost all amino acid
42	sequences except the MBD and NID. We find that mice expressing truncated MeCP2 lacking both
43	the N- and C-terminal regions (approximately half of the native protein) are phenotypically near-
44	normal; and those expressing a minimal MeCP2 additionally lacking a central domain survive for
45	over one year with only mild symptoms. This minimal protein is able to prevent or reverse
46	neurological symptoms when introduced into MeCP2-deficient mice by genetic activation or virus-
47	mediated delivery to the brain. Thus, despite evolutionary conservation of the entire MeCP2
48	protein sequence, the DNA and co-repressor binding domains alone are sufficient to avoid RTT-like
49	defects and may therefore have therapeutic utility.

50 The amino acid sequence of MeCP2 is highly conserved throughout vertebrate species (Fig. 1a), 51 suggesting that most of the protein is under evolutionary selection. Accordingly, full-length MeCP2 is 52 reported to interact with multiple binding partners and has been implicated in several cellular 53 pathways required for neuronal function^{12,4}. RTT-causing missense mutations, however, are 54 concentrated in the MBD and NID – a small minority of the protein – whereas the general population 55 shows numerous polymorphisms elsewhere in the protein suggesting that other regions may be

56 dispensable (Fig. 1a). To test whether the MBD and NID might be sufficient for MeCP2 function, we 57 generated mouse lines expressing a stepwise series of deletions of MeCP2. The three regions 58 removed were sequences N-terminal to the MBD ('N'), C-terminal to the NID ('C') and the 59 intervening amino acids between these domains ('I') (Fig. 1b). The Mecp2 gene has four exons, with 60 transcripts alternatively spliced to produce two isoforms that differ only at the extreme N-termini¹⁴. 61 To conserve the *Mecp2* gene structure in the knock-in mice, exons 1 and 2 and the first 10 bp of 62 exon 3 (splice acceptor site) were retained, resulting in the inclusion of 29 and 12 N-terminal amino 63 acids from isoforms e1 and e2, respectively (Extended Data Fig. 1a-b, 3, 5). A C-terminal EGFP tag 64 was added to facilitate detection and recovery (Fig. 1b). We defined the MBD as residues 72-173 and 65 the NID as residues 272-312 (Extended Data Fig. 1c-d). The intervening region of the ΔNIC allele was replaced by a nuclear localisation signal (NLS) from SV40 virus, connected by a short flexible linker. 66 67 The proportions of native MeCP2 protein sequence retained in ΔN , ΔNC and ΔNIC are 88%, 52% and 68 32%, respectively. 69 We tested whether the truncated MeCP2 proteins retained the ability to interact with methylated 70 DNA and the NCoR/SMRT co-repressor complex using cell culture-based assays. They each 71 immunoprecipitated endogenous NCoR/SMRT complex components when overexpressed in HeLa 72 cells, whereas this interaction was abolished in the negative control NID mutant, R306C (Extended 73 Data Fig. 2a). They also localised to mCpG-rich heterochromatic foci in mouse fibroblasts, which is dependent on both DNA methylation^{2,16} and MBD functionality¹⁷, whereas the negative control MBD 74 75 mutant (R111G) was diffusely distributed (Extended Data Fig. 2b). Finally, we tested whether the 76 truncated derivatives were able to recruit TBL1X, an NCoR/SMRT complex subunit that interacts directly with MeCP2^{5,18}, to heterochromatin. Transiently expressed TBL1X-mCherry accumulates in 77 78 the cytoplasm, but it is efficiently recruited to heterochromatic foci in the presence of co-expressed 79 WT MeCP2⁵. All three derivative proteins successfully bridged DNA with TBL1X-mCherry in vivo, 80 whereas the negative control NID mutant (R306C) could not do so (Extended Data Fig. 2c). All

truncated proteins therefore retained the ability to bind methylated DNA and the NCoR/SMRT
complex simultaneously.

83 We generated ΔN and ΔNC knock-in mice by replacing the endogenous *Mecp2* allele in ES cells, 84 which were used to produce germline-transmitting chimaeras (Extended Data Fig. 3). Truncated 85 proteins were expressed at approximately WT levels in brain and in neurons (Extended Data Fig. 4a-86 d). To assess phenotypes, knock-in mice were crossed onto a C57BL/6J background (for four generations) and cohorts underwent weekly phenotypic scoring^{19,20} or behavioural analysis. 87 88 Although heterozygous female mice are the genetic model for RTT, phenotypes develop late and are mild in the case of hypomorphic *Mecp2* mutations^{21,15}. Hemizygous males provide a more sensitive 89 90 assay of MeCP2 function: Mecp2-null males exhibit severe phenotypes that develop shortly after weaning and median survival is 9 weeks²¹. Both ΔN and ΔNC male mice were viable, fertile and 91 92 showed phenotypic scores indistinguishable from WT littermates over one year (Fig. 2a-d). ΔN mice 93 had normal body weight (Extended Data Fig. 4e), whereas *DNC* mice were slightly heavier than *WT* 94 littermates (Extended Data Fig. 4f). This difference was absent in a more outbred cohort (Extended 95 Data Fig. 4g), consistent with previous observations that body weight of Mecp2 mutants is affected by genetic background²¹. 96

97 At 20 weeks of age, cohorts were tested for RTT-like behaviours: hypoactivity, decreased anxiety and 98 reduced motor abilities. Neither activity (distance travelled in an Open Field; Extended Data Fig. 4h) 99 nor anxiety (time spent in the open arms of the Elevated Plus Maze; Fig. 2e) was abnormal in ΔN and 100 ΔNC mice, although the latter did spend longer in the centre of the Open Field (Fig. 2f), indicative of 101 mildly decreased anxiety. Motor coordination was assessed using the Accelerating Rotarod test over 102 three days. Whereas mouse models of RTT show impaired performance that was most striking on 103 the third day^{22,15}, ΔN and ΔNC mice were comparable to WT littermates throughout this test (Fig. 104 2g). Overall, the results suggest that contributions of the N- and C-terminal regions to MeCP2 105 function are at best subtle. The result is remarkable given the presence of a neurological phenotype

in male mice expressing a slightly more severe C-terminal truncation, which lacks residues beyond T308²³. The difference may be explained by retention of full NID function in ΔNC mice, as loss of the extra four C-terminal amino acids (309-312) markedly reduces the affinity of truncated MeCP2 for the NCoR/SMRT co-repressor complex⁵.

110 We next replaced the endogenous *Mecp2* gene with ΔNIC , a minimal allele comprising only the MBD 111 and NID domains and retaining 32% of the full-length protein sequence (Fig. 1b, Extended Data Fig. 112 5). ΔNIC protein levels were reduced in whole brain (~50% of WT-EGFP controls; Fig. 3a-b) and in 113 neurons (~40% of WT-EGFP controls; Fig. 3b). The presence of normal levels of mRNA in ΔNIC mice 114 (Fig. 3c) suggests that deletion of the intervening region compromises protein stability. Despite low 115 protein levels, male ΔNIC mice had a normal lifespan (Fig. 3e, Extended Data Fig. 6a). However, 116 phenotypic scoring over one year detected mild neurological phenotypes (Fig. 3d), predominantly 117 gait abnormalities and partial hind-limb clasping. These symptoms were relatively stable throughout 118 the scoring period. ΔNIC mice also weighed ~40% less than their WT littermates (Extended Data Fig. 119 6b).

120 Behavioural analysis of a separate cohort at 20 weeks showed decreased anxiety in male ΔNIC mice, 121 signified by reduced time spent in the closed arms of an Elevated Plus Maze (Fig. 3f), although this 122 phenotype was not detected by the Open Field test (Fig. 3g). No activity phenotype was detected in 123 the Open Field (Extended Data Fig. 6c), but, consistent with the gait defects detected by weekly 124 scoring, *ANIC* mice displayed declining motor coordination on the Accelerating Rotarod over three 125 days, culminating in a significantly impaired performance on the third day (Fig. 3h). It is noteworthy 126 that ΔNIC animals are much less severely affected than male mice with the mildest common 127 mutation found in RTT patients, R133C, which had a median lifespan of 42 weeks, higher phenotypic 128 scores and a more pronounced reduction in body weight¹⁵ (Extended Data Fig. 7). Reduced protein 129 levels may contribute to the relatively mild phenotype, as mice with ~50% levels of full-length MeCP2 have neurological defects²⁴. 130

131 To further test Δ NIC functionality, we asked whether late genetic activation could reverse 132 phenotypic defects in symptomatic MeCP2-deficient mice, as previously shown with the full-length 133 protein¹⁹. Mice that were MeCP2-deficient through insertion of a floxed transcriptional STOP 134 cassette in intron 2 of the ΔNIC gene (Extended Data Fig. 5, 8a-b) resembled Mecp2-nulls (Extended 135 Data Fig. 8c-d). This line was crossed with mice carrying a CreER^T transgene (Cre recombinase fused 136 to a modified estrogen receptor) to enable removal of the STOP cassette upon Tamoxifen treatment. 137 Induced expression of Δ NIC after the onset of symptoms in STOP CreER^T mice (Fig. 4a) resulted in 138 high levels of Cre-mediated recombination (Extended Data Fig. 9a) and protein levels similar to those 139 of ΔNIC mice (Extended Data Fig. 9b). ΔNIC activation had a dramatic effect on phenotypic 140 progression, relieving neurological symptoms and restoring normal survival (Fig. 4b-c). Separation of 141 the phenotypic scores into the six tested components showed clear reversal of tremor, hypoactivity 142 and gait abnormalities (Extended Data Fig. 9c). In contrast, control STOP mice lacking the $CreER^{T}$ 143 transgene developed severe symptoms and failed to survive beyond 26 weeks. Thus, despite its 144 radically reduced length and relatively low abundance, ΔNIC was able to effectively rescue MeCP2-145 deficient mice from RTT-like phenotypes. 146 This finding prompted us to explore whether Δ NIC could be used for gene therapy in *Mecp2*-null mice. A human version of the ΔNIC gene (Fig. 4d), driven by a minimal Mecp2 promoter²⁵, was 147 148 tagged with a short Myc epitope (in place of EGFP) and packaged into a self-complementary adeno-149 associated viral vector (scAAV). Neonatal mice (P1-2) injected intra-cranially with this virus (Fig. 4d) 150 expressed hΔNIC protein (Extended Data Fig. 10a). Treated Mecp2-null mice showed reduced 151 symptom severity and greatly extended survival compared with controls receiving vehicle alone (Fig. 152 4e-g). Despite the lack of fine control over infection rate, we did not observe deleterious effects due

to overexpression, even in WT animals (Extended Data Fig. 10b-d). It is possible that the moderate

154 instability of $h\Delta NIC$ protein mitigates toxic effects associated with overexpression, widening the

dosage window. The results also demonstrate that hΔNIC protein is functional without the large

156 EGFP tag. Minimal MeCP2 may therefore be therapeutically advantageous, as the shortening the

coding sequence creates room for additional regulatory sequences within the limited capacity of
 scAAV vectors, which may enable more precise control of expression.

159 Our findings support a simple model whereby the predominant function of MeCP2 is to recruit the 160 NCoR/SMRT co-repressor complex to methylated sites on chromatin. This scenario agrees with 161 recent evidence that inhibition of gene transcription is proportional to MeCP2 occupancy within gene bodies^{26,27}. Importantly, minimal MeCP2 protein (ΔNIC) is missing all or part of several domains 162 that have been highlighted as potentially important, including the AT-hooks²⁸, several activity-163 dependent phosphorylation sites^{29,30}, an RNA binding motif⁷ and interaction sites for proteins 164 implicated in micro-RNA processing¹⁰, splicing¹¹ and chromatin remodelling⁹. While these parts of 165 166 the protein may have biological relevance, their presence is evidently not required for prevention of 167 the RTT-like phenotype. Importantly, the discovery that the MBD and NID are sufficient to partially 168 restore neuronal function to MeCP2-deficient mice allowed us to explore the therapeutic potential 169 of the minimal protein, with encouraging results. These results potentially set a precedent for 170 reducing the length of other gene therapy constructs by identifying dispensable regions that cannot 171 be predicted by evolutionary conservation.

172

174 References

175	1.	Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-
176		CpG-binding protein 2. <i>Nat. Genet.</i> 23, 185–8 (1999).
177	2.	Lewis, J. D. et al. Purification, sequence, and cellular localization of a novel chromosomal
178		protein that binds to methylated DNA. <i>Cell</i> 69, 905–14 (1992).
179	3.	Skene, P. J. et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally
180		alters the chromatin state. <i>Mol. Cell</i> 37, 457–468 (2010).
181	4.	Lyst, M. J. & Bird, A. Rett syndrome: a complex disorder with simple roots. Nat. Rev. Genet.
182		16, 261–274 (2015).
183	5.	Lyst, M. J. et al. Rett syndrome mutations abolish the interaction of MeCP2 with the
184		NCoR/SMRT co-repressor. Nat. Neurosci. 16, 898–902 (2013).
185	6.	Chahrour, M. et al. MeCP2, a key contributor to neurological disease, activates and represses
186		transcription. <i>Science (80).</i> 320, 1224–9 (2008).
187	7.	Jeffery, L. & Nakielny, S. Components of the DNA methylation system of chromatin control
188		are RNA-binding proteins. J. Biol. Chem. 279, 49479–49487 (2004).
189	8.	Nan, X. et al. Interaction between chromatin proteins MECP2 and ATRX is disrupted by
190		mutations that cause inherited mental retardation. Proc. Natl. Acad. Sci. U. S. A. 104, 2709–
191		14 (2007).
192	9.	Agarwal, N. et al. MeCP2 interacts with HP1 and modulates its heterochromatin association
193		during myogenic differentiation. Nucleic Acids Res. 35, 5402–8 (2007).
194	10.	Cheng, TL. et al. MeCP2 suppresses nuclear microRNA processing and dendritic growth by
195		regulating the DGCR8/Drosha complex. <i>Dev. Cell</i> 28, 547–60 (2014).

- 196 11. Young, J. I. *et al.* Regulation of RNA splicing by the methylation-dependent transcriptional
- 197 repressor methyl-CpG binding protein 2. *Proc. Natl. Acad. Sci. U. S. A.* **102,** 17551–8 (2005).
- 198 12. Ragione, F. Della, Vacca, M., Fioriniello, S., Pepe, G. & Esposito, M. D. MECP2, a multi-
- talented modulator of chromatin architecture. *Brief. Funct. Genomics* **15**, 1–12 (2016).
- Nan, X., Meehan, R. R. & Bird, A. Dissection of the methyl-CpG binding domain from the
 chromosomal protein MeCP2. *Nucleic Acids Res.* 21, 4886–4892 (1993).
- Kriaucionis, S. & Bird, A. The major form of MeCP2 has a novel N-terminus generated by
 alternative splicing. *Nucleic Acids Res.* 32, 1818–23 (2004).
- Brown, K. *et al.* The molecular basis of variable phenotypic severity among common missense
 mutations causing Rett syndrome. *Hum. Mol. Genet.* 25, 558–570 (2016).
- 16. Nan, X., Tate, P., Li, E. & Bird, A. DNA methylation specifies chromosomal localization of
 207 MeCP2. *Mol. Cell. Biol.* 16, 414–21 (1996).
- Kudo, S. *et al.* Heterogeneity in residual function of MeCP2 carrying missense mutations in
 the methyl CpG binding domain. *J. Med. Genet.* 40, 487–93 (2003).
- 210 18. Kruusvee, V. *et al.* Structure of the MeCP2–TBLR1 complex reveals a molecular basis for Rett
- 211 syndrome and related disorders. *Proc. Natl. Acad. Sci.* 17007311114 (2017).
- 212 doi:10.1073/pnas.1700731114
- Guy, J., Gan, J., Selfridge, J., Cobb, S. & Bird, A. Reversal of neurological defects in a mouse
 model of Rett syndrome. *Science (80-.).* 315, 1143–7 (2007).
- 215 20. Cheval, H. *et al.* Postnatal inactivation reveals enhanced requirement for MeCP2 at distinct
 216 age windows. *Hum. Mol. Genet.* 21, 3806–3814 (2012).
- 217 21. Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse Mecp2-null mutation causes

218		neurological symptoms that mimic Rett syndrome. <i>Nat. Genet.</i> 27 , 322–6 (2001).
219	22.	Goffin, D. et al. Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability
220		and ERP responses. Nat. Neurosci. 15, 274–83 (2012).
221	23.	Shahbazian, M. et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features
222		and display hyperacetylation of histone H3. Neuron 35 , 243–54 (2002).
223	24.	Samaco, R. C. et al. A partial loss of function allele of Methyl-CpG-binding protein 2 predicts a
224		human neurodevelopmental syndrome. <i>Hum. Mol. Genet.</i> 17, 1718–1727 (2008).
225	25.	Gadalla, K. K. E. et al. Development of a Novel AAV Gene Therapy Cassette with Improved
226		Safety Features and Efficacy in a Mouse Model of Rett Syndrome. Mol. Ther Methods Clin.
227		<i>Dev.</i> 5, 180–190 (2017).
228	26.	Lagger, S. et al. MeCP2 recognizes cytosine methylated tri-nucleotide and di-nucleotide
229		sequences to tune transcription in the mammalian brain. PLOS Genet. 13 , e1006793 (2017).
230	27.	Kinde, B., Wu, D. Y., Greenberg, M. E. & Gabel, H. W. DNA methylation in the gene body
231		influences MeCP2-mediated gene repression. Proc. Natl. Acad. Sci. 113, 15114–15119 (2016).
232	28.	Baker, S. A. et al. An AT-hook domain in MeCP2 determines the clinical course of Rett
233		syndrome and related disorders. Cell 152, 984–96 (2013).
234	29.	Zhou, Z. et al. Brain-Specific Phosphorylation of MeCP2 Regulates Activity-Dependent Bdnf
235		Transcription, Dendritic Growth, and Spine Maturation. Neuron 52, 255–269 (2006).
236	30.	Li, H., Zhong, X., Chau, K. F., Williams, E. C. & Chang, Q. Loss of activity-induced
237		phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nat. Neurosci.
238		14, 1001–8 (2011).

240 **Supplementary Information** is available in the online version of the paper.

241

242 Acknowledgements

- 243 This work was supported by the Sylvia Aiken Charitable Trust, the Rett Syndrome Research Trust and
- 244 Wellcome. R.T. was funded by a BBSRC Doctoral Training Partnership studentship. We thank the
- following people for assistance: Atlanta Cook (advice on designing the truncated proteins), Alan
- 246 McClure (animal husbandry), David Kelly (microscopy), Martin Waterfall (flow cytometry) and
- 247 Alastair Kerr (statistics). We also thank members of the Bird, Cobb, M. E. Greenberg and G. Mandel
- 248 labs for helpful discussions. A.B. and S.R.C. are members of the Simons Initiative for the Developing
- 249 Brain at the University of Edinburgh.

250

251 Author contributions

- 252 R.T., A.B. and S.R.C. designed research. R.T., J.S., M.V.K., K.K.E.G., J.G., D.D.S and R.D.H performed
- the experiments. R.T. and S.R.C. analysed the data. R.T. and A.B. wrote the manuscript. All authors
 reviewed the manuscript.

255

256 Author information

257 Reprints and permissions information is available at www.nature.com/reprints. Conflict of interest

- statement: A.B. is a member of the Board of ArRETT, a company based in the United States with the
- 259 goal of developing therapies for Rett syndrome. Correspondence and requests for materials should
- 260 be addressed to A.B. (a.bird@ed.ac.uk).

261

262

Figure 1: Stepwise truncation of MeCP2 protein to retain only the MBD and NID

265

266	a, Diagram of human MeCP2 protein sequence with the Methyl-CpG Binding Domain (MBD) and the
267	NCoR/SMRT Interaction Domain (NID); annotated to show single nucleotide polymorphisms (SNPs)
268	in males in the general population (black lines) and RTT-causing missense mutations (red lines).
269	Sequence identity between human and other vertebrate MeCP2 proteins is shown by purple bars
270	and insertions by dark lines. b , Schematic diagram of the deletion series based on the mouse e2
271	isoform that were generated in this study, compared with WT-EGFP ¹⁵ .
272	
273	Figure 2: Deletion of the MeCP2 N- and C-terminal regions has minimal phenotypic consequence
274	
275	a , b , Phenotypic severity scores of hemizygous male (a) ΔN mice (<i>n</i> =10) and (b) ΔNC mice (<i>n</i> =10),
276	compared to their WT littermates ($n=10$) over one year. Graphs show mean scores ± S.E.M.
277	Published Mecp2-null data $(n=12)^{15}$ is shown as a comparator. c, d, Kaplan-Meier plots showing
278	survival of the cohorts shown in panels a and b . <i>Mecp2</i> -null data $(n=24)^{15}$ is shown as a comparator.
279	e,f,g, Behavioural analysis of separate cohorts performed at 20 weeks of age: ΔN (<i>n</i> =10) and ΔNC
280	mice (n=10 for Open Field/Rotarod; 11 for Elevated Plus Maze), each compared to WT littermates
281	(n=10). Graphs show individual values and medians, and statistical significance as follows : not
282	significant ('n.s.') <i>P</i> >0.05, * <i>P</i> <0.05. e, Time spent in the closed and open arms of the Elevated Plus
283	Maze during a 15 min trial. Genotypes were compared using KS tests: ΔN closed arms P=0.988 and
284	open arms P=0.759; ΔNC closed arms P=0.950 and open arms P=0.932. f , Time spent in the central
285	region of the Open Field test was measured during a 20 minute trial. Genotypes were compared
286	using t-tests: $\Delta N P$ =0.822; $\Delta NC * P$ =0.020. g , Average latency to fall from the Accelerating Rotarod in
287	four trials was calculated for each of the three days of the experiment. Genotypes were compared
288	using KS tests: ΔN day 1 P=0.759, day 2 P=0.401 and day 3 P=0.055; ΔNC day 1 P=0.988, day 2
289	<i>P</i> =0.401 and day 3 <i>P</i> =0.759.

Figure 3: Additional deletion of the intervening region leads to protein instability and mild RTT-like
 symptoms

294	a, Western blot analysis of whole brain extract showing protein sizes and abundance of MeCP2 in
295	ΔNIC mice and WT-EGFP controls, detected using a GFP antibody. Histone H3 was used as a loading
296	control. *denotes a non-specific band detected by the GFP antibody. For gel source data, see
297	Supplementary Information. b , Flow cytometry analysis of protein levels in nuclei from whole brain
298	('All') and the high-NeuN subpopulation ('Neurons') in ΔNIC mice (n=3) and WT-EGFP controls (n=3),
299	detected using EGFP fluorescence. Graph shows mean ± S.E.M. and genotypes were compared by t-
300	test: 'All' *** P=0.0002 and 'Neurons' *** P=0.0001. 'au' = arbitrary units. c, Quantitative PCR
301	analysis of mRNA prepared from whole brain of ΔNIC mice (n=3) and WT-EGFP controls (n=3). Mecp2
302	transcript levels were normalised to Cyclophilin A mRNA. Graph shows mean ± S.E.M. (relative to
303	WT-EGFP) and genotypes were compared by t-test: $P=0.110$. d , Phenotypic severity scores of ΔNIC
304	mice ($n=10$) compared to WT littermates ($n=10$) over one year. Graph shows mean scores ± S.E.M.
305	<i>Mecp2</i> -null data $(n=12)^{15}$ is shown as a comparator. e , Kaplan-Meier plot showing survival of the
306	cohort shown in panel d . One ΔNIC animal died at 43 weeks, after receiving phenotypic scores of
307	\leq 2.5. <i>Mecp2</i> -null data (<i>n</i> =24) ¹⁵ is shown as a comparator. f , g , h , Behavioural analysis of a separate
308	cohort performed at 20 weeks of age: ΔNIC (n=10) compared to WT littermates (n=10). Graphs show
309	individual values and medians, and statistical significance as follows: not significant ('n.s.') P >0.05, *
310	P<0.05, ** P<0.01. f, Time spent in the closed and open arms and centre of the Elevated Plus Maze
311	during a 15 minute trial. Genotypes were compared using KS tests: closed arms ** P=0.003, open
312	arms <i>P</i> =0.055 and centre * <i>P</i> =0.015. g , Time spent in the central region of the Open Field measured
313	during a 20 minute trial. Genotypes were compared using a t-test: P=0.402. h, Average latency to fall
314	from the Accelerating Rotarod in four trials was calculated for each of the three days of the
315	experiment. Genotypes were compared using KS tests: day 1 P=0.164, day 2 P=0.055 and day 3 **

- 316 *P*=0.003. Changed performance (learning/worsening) over the three day period was determined
- 317 using Friedman tests: wild-type animals P=0.601, ΔNIC animals ** P=0.003.
- 318

Figure 4: Activation or viral transduction of ΔNIC ameliorates neurological phenotypes in MeCP2 deficient mice

- 321
- 322 **a**, Timeline of Cre-mediated activation of ΔNIC induced by Tamoxifen injections. **b**, Phenotypic 323 severity scores (mean \pm SEM) of mice injected with Tamoxifen (arrows) from 4-28 weeks: WT (n=4), 324 WT CreER^T (n=4), STOP (n=9) and STOP CreER (n=9). **c**, Kaplan-Meier plot showing survival of the 325 cohort shown in panel b. d, Diagram of the DNA sequence inserted into an scAAV viral vector, comprising a 426 nt Mecp2 promoter driving the human ANIC coding sequence plus a C-terminal 326 Myc tag and 3' UTR. A vector containing full-length human MECP2²⁵ is shown for comparison. e, 327 328 Timeline of the scAAV-mediated gene therapy experiment. f, Phenotypic severity scores (mean \pm 329 SEM) of scAAV-injected mice from 5-30 weeks: WT + vehicle (n=15), Mecp2-null + vehicle (n=20) and 330 Mecp2-null + $h\Delta NIC$ (n=17). g, Kaplan-Meier plot showing survival of the cohort shown in panel f. 331 Four Mecp2-null + $h\Delta NIC$ animals reached their humane end-point. Five Mecp2-null + ΔNIC animals 332 were culled due to injuries unrelated to RTT-like phenotypes at 16, 23, 25, 26 and 29 weeks of age 333 (data shown as ticks). Survival of Mecp2-null + ΔNIC animals was compared to Mecp2-null + vehicle 334 controls using the Mantel-Cox test: *P*=<0.0001. 335
- 336

337 Extended Data Figure 1: Design of the MeCP2 deletion series

338	a , Diagram of the genomic DNA sequences encoding WT and Δ NIC MeCP2, showing the retention of
339	the extreme N-terminal amino acids encoded in exons 1 and 2 and the first 10 bp of exon 3, the
340	deletion of the N- and C-terminal regions, the replacement of the intervening region with a linker
341	and SV40 NLS, and the addition of the C-terminal EGFP tag. Colour key: 5'UTR=white, MBD=blue,
342	NID=pink, other MeCP2 coding regions=grey, SV40 NLS=orange, linkers=dark grey and EGFP=green.
343	b , The N-terminal ends of the sequences of all three truncated proteins (e1 and e2 isoforms)
344	showing the fusion of the extreme N-terminal amino acids to the MBD (starting with P72). c, d,
345	Protein sequence alignment of the MBD (c) and NID (d) regions using ClustalWS, shaded according to
346	BLOSUM62 score. Both alignments are annotated with RTT-causing missense mutations ³¹ (red),
347	activity-dependent phosphorylation sites ^{29,32,33} (orange), sequence conservation, interaction
348	domains and known ³⁴ /predicted ³⁵ structure. Interaction sites: methyl-DNA binding (residues 78-
349	162 ¹³), AT hook 1 (residues 183-195 ³⁶), AT hook 2 (residues 257-272 ²⁸), NCoR/SMRT binding
350	(residues 285-309 ⁵). The bipartite nuclear localisation signal (NLS) is also shown (residues 253-256
351	and 266-271). The regions retained in Δ NIC are: MBD resides 72-173 (highlighted by the blue shading
352	in panel c) and NID resides 272-312 (highlighted by the pink shading panel d). Residue numbers
353	correspond to that of mammalian e2 isoforms.

Extended Data Figure 2: Truncated MeCP2 proteins retain the ability to bind methylated DNA and the NCoR/SMRT complex

a, EGFP-tagged truncated proteins immunoprecipitate components of the NCoR/SMRT co-repressor
complex: NCoR, HDAC3 and TBL1XR1. WT and R306C were used as positive and negative controls for
binding, respectively. 'In' = input, 'IP' = immunoprecipiate. For gel source data, see Supplementary
Information. b, EGFP-tagged truncated MeCP2 proteins localise to mCpG-rich heterochromatic foci
when overexpressed in mouse fibroblasts (NIH-3T3 cells). WT and R111G were used as controls to
show focal and diffuse localisation, respectively. Scale bars indicate 10 µm. c, EGFP-tagged truncated

- 362 proteins recruit TBL1X-mCherry to heterochromatin when co-overexpressed in NIH-3T3 cells. WT
- and R306C were used as positive and negative controls for TBL1X-mCherry recruitment, respectively.
- scale bars indicate 10 μm. Quantification (right) shows the percentage of cells with focal TBL1X-
- 365 mCherry localisation, evaluated relative to WT using Fisher's exact tests: R306C **** P<0.0001, ΔN
- 366 *P*=0.071, ΔNC *P*=0.604, ΔNIC *P*=0.460. Total numbers of cells counted: WT *n*=117, R306C *n*=119, ΔN
- 367 *n*=113, ΔNC *n*=119, ΔNIC *n*=125.

368 Extended Data Figure 3: Generation of ΔN and ΔNC mice

- 369 Diagrammatic representation of ΔN (**a**) and ΔNC (**b**) knock-in mouse line generation. The
- 370 endogenous Mecp2 allele was targeted in male ES cells. The site of Cas9 cleavage in the WT
- 371 sequence is shown by the scissors symbol (used for production of ΔN knock-in ES cells). The selection
- 372 cassette was removed *in vivo* by crossing chimaeras with deleter (*CMV-Cre*) transgenic mice.
- 373 Southern blot analysis shows correct targeting of ES cells and successful cassette deletion in the
- 374 knock-in mice. The solid black line represents the sequence encoded in the targeted vector and the
- dotted lines indicate the flanking regions of mouse genomic DNA. For gel source data, see
- 376 Supplementary Information.

377 Extended Data Figure 4: ΔN and ΔNC knock-in mice express truncated proteins at approximately

- 378 WT levels and display minimal phenotypes
- a, Western blot analysis of whole brain extract showing protein sizes and abundance of MeCP2 in ΔN
- and *ANC* mice and *WT-EGFP* controls, detected using a GFP antibody. Histone H3 was used as a
- 381 loading control. *denotes a non-specific band detected by the GFP antibody. For gel source data, see
- 382 Supplementary Information. **b**, Flow cytometry analysis of protein levels in nuclei from whole brain
- 383 ('All') and the high-NeuN subpopulations ('Neurons') in WT-EGFP (n=3), ΔN (n=3) and ΔNC (n=3)
- 384 mice, detected using EGFP fluorescence. Graph shows mean ± S.E.M. and genotypes were compared
- 385 to WT-EGFP controls by t-test: 'All' ΔN P=0.338, ΔNC ** P=0.003; and 'Neurons' ΔN P=0.672, ΔNC *
- 386 P=0.014. c, Flow cytometry analysis of protein levels in WT (n=3) and WT-EGFP (n=3) mice, detected

387 using an MeCP2 antibody. Graph shows mean ± S.E.M. and genotypes were compared by t-test: 'All' 388 P=0.214; and 'Neurons' P=0.085. d, Example histogram (of one WT-EGFP sample) showing how the 389 'Neuronal' subpopulation was defined according to NeuN-AF647 staining. 'au' = arbitrary units. e, f, 390 g, Growth curves of the backcrossed scoring cohorts (e and f; see Fig. 2a-d) and an outbred (g; 75% 391 C57BL/6J) cohort of ΔNC mice (n=7) and WT littermates (n=9). Graphs show mean values ± S.E.M. 392 Genotypes were compared using repeated measures ANOVA: $\Delta N P=0.362$, $\Delta NC **** P<0.0001$, ΔNC 393 (outbred) P=0.739. Mecp2-null data (n=20)¹⁵ is shown as a comparator for the backcrossed cohorts. 394 **h**, Behavioural analysis of ΔN (n=10) and ΔNC mice (n=10) compared to their WT littermates (n=10) 395 at 20 weeks of age (see Fig. 2e-g). Total distance travelled in the Open Field test was measured 396 during a 20 minute trial. Graphs show individual values and medians. Genotypes were compared 397 using t-tests: $\Delta N P=0.691$; $\Delta NC P=0.791$. 'n.s.' = not significant. 398

399 Extended Data Figure 5: Generation of ΔNIC and STOP mice

400 Diagrammatic representation of ΔNIC and STOP mouse line generation. The endogenous Mecp2 401 allele was targeted in male ES cells. The site of Cas9 cleavage in the WT sequence is shown by the 402 scissors symbol. The selection cassette was removed in vivo by crossing chimaeras with deleter 403 (CMV-Cre) transgenic mice to produce constitutively expressing ΔNIC mice, or retained to produce 404 STOP mice. Southern blot analysis shows correct targeting of ES cells and successful cassette 405 deletion in the ΔNIC knock-in mice. The solid black line represents the sequence encoded in the 406 targeted vector and the dotted lines indicate the flanking regions of mouse genomic DNA. For gel 407 source data, see Supplementary Information. 408

409 Extended Data Figure 6: ΔNIC mice have a normal lifespan and no activity phenotype but

410 decreased body weight

411	a , Kaplan-Meier plot showing survival of an outbred (75% C57BL/6J) cohort of ΔNIC mice (<i>n</i> =10) and
412	their WT littermate ($n=1$). b , Growth curve of the backcrossed cohort used for phenotypic scoring
413	(see Fig. 3d-e). Graph shows mean ± S.E.M. Genotypes were compared using repeated measures
414	ANOVA **** P<0.0001. Mecp2-null data (n=20) ¹⁵ is shown as a comparator. c , Behavioural analysis
415	of $\Delta N/C$ mice (n=10) compared to their WT littermates (n=10) at 20 weeks of age (see Fig. 3f-h). Total
416	distance travelled the Open Field test was measured during a 20 minute trial. Graph shows individual
417	values and medians. Genotypes were compared using a t-test <i>P</i> =0.333. 'n.s.' = not significant.
418	

Extended Data Figure 7: *ANIC* mice have a less severe phenotype than the mildest mouse model of RTT, R133C

a, **b**, **c**, Repeat presentation of phenotypic analysis of ΔNIC mice and WT littermates in Fig. 3d-e and

Extended Data Fig. 6b, this time including EGFP-tagged R133C mice $(n=10)^{15}$ as a comparator.

424 Extended Data Figure 8: 'STOP' mice with transcriptionally silenced ΔNIC resemble Mecp2-nulls

425 a, Western blot analysis of whole brain extract showing protein sizes and abundance of MeCP2 in 426 STOP mice and WT-EGFP and ΔNIC controls, detected using a GFP antibody. Histone H3 was used as 427 a loading control. *denotes a non-specific band detected by the GFP antibody. For gel source data, 428 see Supplementary Information. b, Flow cytometry analysis of protein levels in nuclei from whole 429 brain ('All') and the high-NeuN subpopulation ('Neurons') in WT-EGFP (n=3), ΔNIC (n=3) and STOP 430 (n=3) mice, detected using EGFP fluorescence. Graph shows mean \pm S.E.M. and genotypes were 431 compared using t-tests: **** denotes a P value <0.0001. 'au' = arbitrary units. c, Phenotypic scoring of STOP mice (n=22) compared to published *Mecp2*-null data (n=12)¹⁵. Graph shows mean scores ± 432 433 S.E.M. d, Kaplan-Meier plot showing survival of STOP mice (n=14) compared to Mecp2-null data $(n=24)^{15}$. 434

435

436 Extended Data Figure 9: Successful activation of ΔNIC in Tamoxifen-injected STOP CreER^T mice led 437 to symptom reversal

438	a, Southern blot analysis of genomic DNA to determine the level of recombination mediated by
439	CreER ^T in Tamoxifen-injected (+Tmx) STOP CreER ^T animals. WT, WT CreER ^T , ΔNIC and STOP samples,
440	with or without Tamoxifen injection, were included as controls. (Bsu36I digestion, see restriction
441	map in Extended Data Fig. 5.) b, Protein levels in Tamoxifen-injected STOP CreER ^T animals were
442	determined using western blotting (upper, $n=5$) and flow cytometry (lower, $n=3$). Constitutively
443	expressing ΔNIC mice (n=3) were used as a comparator. Graphs show mean values ± S.E.M.
444	(quantification by western blotting is shown normalised to ΔNIC). Genotypes were compared using t-
445	tests: western blotting <i>P</i> =0.434; flow cytometry 'All' nuclei <i>P</i> =0.128 and 'Neuronal' nuclei * <i>P</i> =0.016.
446	'au' = arbitrary units. For gel source data, see Supplementary Information. c , Heatmap of the
447	phenotypic scores of the Tamoxifen-injected STOP CreER ^T (upper; $n=9$) and STOP (lower; $n=9$ until 8

448 weeks of age, see survival plot in Fig. 4c) animals (see Fig. 4b), divided into the six categories. The

449 plot is shaded according to the mean score for each category.

450

451 Extended Data Figure 10: Virus-encoded ΔNIC is expressed in brain and does not have adverse

452 consequences in WT mice

- 453 **a, b,** Representative confocal images from thalamus and brainstem of scAAV-injected *Mecp2*-null (**a**)
- and *WT* (**b**) mice; scale bars indicate 20 μ m visualised using an antibody against the Myc epitope
- 455 (red) and the neuronal marker NeuN (green). Nuclei are stained with DAPI (blue). Graphs show
- 456 transduction efficiency (mean ± SEM) in different brain regions (*n*=3 mice per genotype, 27 fields
- 457 from each brain region). **c**, Phenotypic scoring (mean ± SEM) of scAAV-injected mice from 5-30
- 458 weeks: WT + vehicle (*n*=15), *Mecp2*-null + vehicle (*n*=20) and WT + $h\Delta NIC$ (*n*=14). **d**, Kaplan-Meier
- 459 plot showing survival of the cohort shown in panel **c**. One $WT + h\Delta NIC$ animal was culled due to
- 460 injuries at 28 weeks of age (shown by a tick). An arrow indicates the timing of the viral injection.

461

463	Full Methods
464	
465	Nomenclature
466	
467	According to convention, all amino acid numbers given refer to the e2 isoform. Numbers refer to
468	homologous amino acids in human (NCBI accession P51608) and mouse (NCBI accession Q9Z2D6)
469	until residue 385 where there is a two amino acid insertion in the human protein.
470	
471	Mutation analysis
472	
473	Mutational data was collected as described previously ⁵ : RTT-causing missense mutations were
474	extracted from the RettBASE dataset ³¹ ; and polymorphisms identified in males in the general
475	population were extracted from the Exome Aggregation Consortium (ExAC) database ³⁷ .
476	
477	Design of the truncated MeCP2 proteins
478	
479	The MBD and NID were defined as residues 72-173 and 272-312, respectively. All three constructs
480	retain the extreme N-terminal sequences encoded by exons 1 and 2 - present in isoforms e1 and e2,
481	respectively. They also include the first three amino acids of exons 3 (EEK) to preserve the splice
482	acceptor site. The intervening region (I) was replaced in ΔNIC by the NLS of SV40 preceded by a
483	flexible linker. The sequence of the NLS is PKKKRKV (DNA sequence: CCCAAGAAAAAGCGGAAGGTG)
484	and of the linker is GSSGSSG (DNA sequence: GGATCCAGTGGCAGCTCTGGG). All three proteins were
485	C-terminally tagged with EGFP connected by a linker. To be consistent with a previous study tagging
486	full-length MeCP2 ¹⁵ , the linker sequence CKDPPVAT (DNA sequence:
487	TGTAAGGATCCACCGGTCGCCACC) was used to connect the C-terminus of ΔN to EGFP. To connect
488	the NID to the EGFP tag in Δ NC and Δ NIC, the flexible GSSGSSG linker was used instead (DNA

- 489 sequence: GGGAGCTCCGGCAGTTCTGGA). For expression in cultured cells, cDNA sequences encoding
- 490 e2 isoforms of the MeCP2 deletion series were synthesised (GeneArt, Thermo Fisher Scientific) and
- 491 cloned into the pEGFPN1 vector (Clontech) using XhoI and NotI restriction sites (NEB). Point
- 492 mutations (R111G and R306C) were inserted into the WT-EGFP plasmid using the QuikChange II XL
- 493 Site-Directed Mutagenesis Kit (Agilent Technologies). Primer sequences for R111G: Forward
- 494 TGGACACGAAAGCTTAAACAAGGGAAGTCTGGCC and Reverse
- 495 GGCCAGACTTCCCTTGTTTAAGCTTTCGTGTCCA; and R306C: Forward
- 496 CTCCCGGGTCTTGCACTTCTTGATGGGGA and Reverse TCCCCATCAAGAAGTGCAAGACCCGGGAG. For ES
- 497 cell targeting, genomic sequences encoding exons 3 and 4 of the EGFP-tagged truncated proteins
- 498 were synthesised (GeneArt, Thermo Fisher Scientific) and cloned into a previously used¹⁹ targeting
- 499 vector using MfeI restriction sites (NEB). This vector contains a Neomycin resistance gene followed
- 500 by a transcriptional 'STOP' cassette flanked by *loxP* sites ('floxed') in intron 2.

502 Cell culture

503

- 504 HeLa and NIH-3T3 cells were grown in DMEM (Gibco) supplemented with 10% foetal bovine serum
- 505 (FBS; Gibco) and 1% Penicillin-Streptomycin (Gibco). ES cells were grown in Glasgow MEM (Gibco)
- 506 supplemented with 10% FBS (Gibco batch tested), 1% Non-essential amino acids (Gibco), 1%
- 507 Sodium Pyruvate (Gibco), 0.1% β-mercaptoethanol (Gibco) and 1000 units/ml LIF (ESGRO).

508

509 Immunoprecipitation

510

511 HeLa cells were transfected with pEGFPN1-MeCP2 plasmids using JetPEI (PolyPlus Transfection) and

- 512 harvested after 24-48 hours. Nuclear extracts were prepared using Benzonase (Sigma E1014-25KU)
- and 150 mM NaCl, and MeCP2-EGFP complexes were captured using GFP-Trap_A beads (Chromotek)
- 514 as described previously⁵. Proteins were analysed by western blotting using antibodies against GFP

515	(NEB #2956), NCoR (Bethyl A301-146A), HDAC3 (Sigma 3E11) and TBL1XR1 (Bethyl A300-408A), all at
516	a dilution of 1:1000; followed by LI-COR secondary antibodies: IRDye® 800CW Donkey anti-Mouse
517	(926-32212) and IRDye [®] 800CW Donkey anti-Rabbit (926-32213) or IRDye [®] 680LT Donkey anti-
518	Rabbit (926-68023) at a dilution of 1:10,000.
519	
520	
521	MeCP2 localisation and TBL1X-mCherry recruitment assay
522	
523	NIH-3T3 cells were seeded on coverslips in 6-well plates (25,000 cells per well) and transfected with
524	2 μg plasmid DNA (pEGFPN1-MeCP2 alone or pEGFPN1-MeCP2 and pmCherry-TBL1X ⁵) using JetPEI
525	(PolyPlus Transfection). After 48 hours, cells were fixed with 4% (w/v) paraformaldehyde, stained
526	with DAPI (Sigma) and then mounted using ProLong Diamond (Life Technologies). Fixed cells were
527	photographed on a confocal microscope (Leica SP5) using LAS AF software (Leica). The number of co-
528	transfected cells with TBL1X-mCherry recruitment to heterochromatic foci was determined for each
529	MeCP2 construct. In total, 113-125 cells per construct were counted (from three independent
530	transfection experiments). This analysis was performed blind. The total proportion of cells with
531	TBL1X-mCherry recruitment by each mutant MeCP2 protein was compared to WT using Fisher's
532	exact tests.
533	
534	Generation of knock-in mice
535	Targeting vectors were introduced into 129/Ola E14 TG2a ES cells by electroporation, and G418-
536	resistant clones with correct targeting at the Mecp2 locus were identified by PCR and Southern blot
537	screening. CRISPR/Cas9 technology was used to increase the targeting efficiency of ΔN and ΔNIC
538	lines: the guide RNA sequence (GGTTGTGACCCGCCATGGAT) was cloned into pX330-U6-Chimeric_BB-
539	CBh-hSpCas9 (a gift from Feng Zhang; Addgene plasmid #42230 ³⁸), which was introduced into the ES

540 cells with the targeting vectors. This introduced a double-strand cut in intron 2 of the wild-type gene

541 (at the site of the NeoSTOP cassette in the targeting vector). Mice were generated from ES cells as previously described²¹. The 'floxed' NeoSTOP cassette was removed *in vivo* by crossing chimaeras 542 543 with homozygous females from the transgenic CMV-Cre deleter strain (JAX Stock #006054) on a 544 C57BL/6J background. The CMV-Cre transgene was subsequently bred out. All mice used in this 545 study were bred and maintained at the University of Edinburgh or Glasgow animal facilities under 546 standard conditions and procedures were carried out by staff licensed by the UK Home Office and 547 according with the Animal and Scientific Procedures Act 1986. Knock-in mice were caged with their 548 wild-type littermates.

549

550 Biochemical characterisation of knock-in mice

551 For biochemical analysis, brains were harvested by snap-freezing in liquid nitrogen at 6-13 weeks of 552 age, unless otherwise stated. Brains of hemizygous male mice were used for all analysis, unless 553 otherwise stated. For Southern blot analysis, half brains were homogenised in 50 mM Tris HCl pH7.5, 100 mM NaCl, 5mM EDTA and treated with 0.4 mg/ml Proteinase K in 1% SDS at 55°C overnight. 554 555 Samples were treated with 0.1 mg/ml RNAseA for 1-2 hours at 37°C, before phenol:chloroform 556 extraction of genomic DNA. Genomic DNA was purified from ES cells using Puregene Core Kit A 557 (Qiagen) according to manufacturer's instructions for cultured cells. Genomic DNA was digested with 558 restriction enzymes (NEB), separated by agarose gel electrophoresis and transferred onto ZetaProbe 559 membranes (BioRad). DNA probes homologous to either exon 4 or the end of the 3' homology arm 560 were radioactively labelled with $[\alpha 32]$ dCTP (Perkin Elmer) using the Prime-a-Gene Labeling System 561 (Promega). Blots were probed overnight, washed, and exposed in Phosphorimager cassettes (GE 562 Healthcare) before scanning on a Typhoon FLA 7000. Bands were quantified using ImageQuant 563 software.

564

Protein levels in whole brain crude extracts were quantified using western blotting. Extracts were
 prepared as described previously¹⁵, and blots were probed with antibodies against GFP (NEB #2956)

567	at a dilution of 1:1,000, followed by LI-COR secondary antibodies (listed above). Histone H3 (Abcam
568	ab1791) was used as a loading control (dilution 1:10,000). Levels were quantified using Image Studio

Lite Ver 4.0 software and compared using t-tests. WT-EGFP mice¹⁵ were used as controls.

570

571 For flow cytometry analysis, fresh brains were harvested from 12 week-old animals and Dounce-572 homogenised in 5 ml homogenisation buffer (320 mM sucrose, 5 mM CaCl₂, 3 mM Mg(Ac)₂, 10 mM 573 Tris HCl pH.7.8, 0.1 mM EDTA, 0.1% NP40, 0.1 mM PMSF, 14.3mM β-mercaptoethanol, protease 574 inhibitors (Roche)), and 5 ml of 50% OptiPrep gradient centrifugation medium (50% Optiprep (Sigma 575 D1556-250ML), 5 mM CaCl₂, 3mM Mg(Ac)₂, 10 mM Tris HCl pH7.8, 0.1M PMSF, 14.3mM β-576 mercaptoethanol) was added. This was layered on top of 10 ml of 29% OptiPrep solution (v/v in H_2O , 577 diluted from 60% stock) in Ultra clear Beckman Coulter centrifuge tubes, and samples were 578 centrifuged at 10,100 xg for 30 mins, 4°C. Pelleted nuclei were resuspended in Resuspension buffer 579 (20% glycerol in DPBS (Gibco) with protease inhibitors (Roche)). For flow cytometry analysis, nuclei 580 were pelleted at 600 xg (5 mins, 4°C), washed in 1 ml PBTB (5% (w/v) BSA, 0.1% Triton X-100 in DPBS 581 with protease inhibitors (Roche)), and then resuspended in 250 µl PBTB. To stain for NeuN, NeuN 582 antibody (Millipore MAB377) was conjugated to Alexa Fluor 647 (APEX Antibody Labelling Kit, 583 Invitrogen A10475), added at a dilution of 1:125 and incubated under rotation for 45 mins at 4°C. 584 Flow cytometry (BD LSRFortessa SORP using FACSDIVA v8.0.1 software) was used to obtain the mean 585 EGFP fluorescence for the total nuclei (n=50,000 per sample) and the high NeuN (neuronal) 586 subpopulation (n>8,000 per sample). The protein levels of the novel mouse lines were compared to 587 WT-EGFP controls using t-tests. To compare protein levels in WT-EGFP mice to wild-type littermates, 588 nuclei were also stained with an MeCP2 antibody (Sigma M7443) conjugated to Alexa Fluor 568 589 (APEX Antibody Labelling Kit, Invitrogen A10494) at a dilution of 1:125. 590

To determine mRNA levels, RNA was purified and reverse transcribed from half brains (harvested at
11 weeks of age); and *Mecp2* and *Cyclophilin A* transcripts were analysed by qPCR using LightCycler

593 480 SW 1.5 software as previously described¹⁵. mRNA levels in ΔNIC mice were compared to WT-594 EGFP controls using a t-test.

595

596 Phenotypic characterisation of knock-in mice

Consistent with a previous study¹⁵, mice were backcrossed for four generations to reach ~94% 597 598 C57BL/6J before undergoing phenotypic characterisation. Two separate cohorts, each consisting of 599 10 mutant animals (11 for ΔNC Elevated Plus Maze) and 10 wild-type littermates, were produced for 600 each novel knock-in line. One cohort was scored and weighed regularly from 4-52 weeks of age as previously described^{19,20}. Survival was graphed using Kaplan-Meier plots. (A preliminary outbred 601 602 [75% C57BL/6J] cohort of 7 ΔNC mice and 9 wild-type littermates was also analysed.) Previously published¹⁵ data for *Mecp2*-null and R133C-EGFP (both backcrossed onto C57BL/6J) were included as 603 604 comparators. The second backcrossed cohorts underwent behavioural analysis at 20 weeks of age (see ²⁰ and ¹⁵ for detailed protocols). Tests were performed over a two-week period: Elevated Plus 605 606 Maze on day 1, Open Field test on day 2, and Accelerating Rotarod test on days 6-9 (one day of 607 training followed by three days of trials). All analysis was performed blind to genotype.

608

609 Statistical analysis

610 Growth curves were compared using repeated measures ANOVA (the animals that died within the 611 experimental period – one wild-type in each ΔNC cohort and one ΔNIC in their cohort – were 612 excluded from this analysis to enable a balanced design). Survival curves were compared using the 613 Mantel-Cox test. For behavioural analysis, when all data fitted a normal distribution (Open Field 614 centre time and distance travelled), genotypes were compared using t-tests (unpaired, two-tailed). If 615 not (Elevated Plus Maze time in arms/centre and Accelerating Rotarod latency to fall), genotypes 616 were compared using Kolmogorov-Smirnov tests. Change in performance over time in the 617 Accelerating Rotarod test was determined using Friedman tests. All analysis was performed using 618 GraphPad Prism 7 software.

620 Genetic activation of minimal MeCP2 (ΔNIC)

621	Transcriptionally silent minimal MeCP2 (Δ NIC) was activated in symptomatic null-like 'STOP' mice
622	following the procedure used in ¹⁹ . In short, the $\Delta NIC Mecp2$ allele was inactivated by the retention
623	of the NeoSTOP cassette in intron 2 by mating chimaeras with wild-type females instead of CMV-Cre
624	deleter mice. Resulting STOP/+ females were crossed with heterozygous $CreER^{T}$ transgenic males
625	(JAX Stock #004682) to produce males of four genotypes (87.5% C57BL/6J). A cohort consisting of all
626	four genotypes WT ($n=4$), WT CreER ^T ($n=4$), STOP ($n=9$) and STOP CreER ^T ($n=9$), was scored and
627	weighed weekly from 4 weeks of age. From 6 weeks (when STOP and STOP CreER ^T mice displayed
628	RTT-like symptoms), all individuals were given a series of Tamoxifen injections: two weekly followed
629	by five daily, each at a dose of 100 $\mu\text{g/g}$ body weight. Brain tissue from Tamoxifen-treated STOP
630	CreER ^T (n=8), WT (n=1) and WT CreER ^T (n=1) animals was harvested at 28 weeks of age (after
631	successful symptom reversal in STOP CreER ^T mice) for biochemical analysis. Brain tissue from one
632	Tamoxifen-treated STOP mouse (harvested at its humane end-point) was also included in the
633	biochemical analysis (methods described above).

634

635 Vector delivery of minimal MeCP2 (ΔNIC)

636 The AAV vector expressing minimal MeCP2 (Δ NIC) was tested in *Mecp2*-null and *WT* mice 637 maintained on a C57BL/6J background. Self-complementary AAV (scAAV) particles, comprising AAV2 638 ITR-flanked genomes packaged into AAV9 capsids, were generated at the UNC Gene Therapy Center Vector Core facility. Particles were produced as previously described³⁹ by transfection of HEK293 639 640 cells with helper plasmids (pXX6-80, pGSK2/9) and a plasmid containing the ITR-flanked construct in 641 the presence of polyethyleneimine (Polysciences, Warrington, PA). For translational relevance, the 642 ΔNIC-expressing construct utilised the equivalent human MECP2 e1 coding sequence tagged with a 643 small C-terminal Myc epitope to replace the EGFP tag used in knock-in experiments. The transgene 644 was under the control of an endogenous Mecp2 promoter fragment as previously described²⁵.

645	Vector was formulated in high-salt PBS (containing 350 mM total NaCl) supplemented with 5%
646	sorbitol. Virus (3 μ l per site; dose = 1 x 10 ¹¹ viral genome per mouse) was injected bilaterally into the
647	neuropil of unanaesthetised P1/2 males, as described previously ⁴⁰ . Control injections used the same
648	diluent lacking vector ('vehicle control'). The injected pups were returned to the home cage and
649	assessed weekly from 5 weeks of age, as described above (performed blind to genotype). Cohorts
650	were as follows: WT + vehicle (n=15); Mecp2-null + vehicle (n=20; 19 of which were scored as one
651	reached its humane end-point early); $WT + h\Delta NIC$ (n=14); and $Mecp2$ -null + $h\Delta NIC$ (n=17).

653 To validate the expression of virally-delivered $h\Delta NIC$, mice were deeply anesthetized with 654 pentobarbitone (50 mg, intraperitoneally) and transcardially perfused with 4% 655 paraformaldehyde (0.1 M PBS). A vibrating microtome (Leica VT1200) was used to obtain 656 70 µm sections of the brain. Sections were washed three times in 0.3 M PBS followed by 657 blocking using 5% normal goat serum in 0.3 M PBS with 0.3% Triton X-100 (PBST) for 1 658 hour at room temperature. Samples then were incubated for 48 hours on a shaker at 4°C 659 with the following primary antibodies against: Myc (Abcam ab9106, 1:500 dilution) and NeuN 660 (Abcam 104224; 1:500). Samples were washed three times with 0.3 M PBST and incubated 661 in secondary antibodies (Alexa Fluor 594 goat anti- rabbit (Abcam 150080; 1:500) and Alexa 662 Fluor 647 goat anti-mouse (Stratech scientific LTD, 115-605-003JIR; 1:500) at 4°C 663 overnight. Finally, sections were incubated with DAPI (Sigma; 1:1,000) for 30 minutes at 664 room temperature before mounting with Fluoroshield with DAPI (Sigma, F6057). Z-series at 665 0.6–1.3 µm intervals were captured using a Zeiss LSM710 or Zeiss Axiovert LSM510 laser 666 confocal microscope (40x objective). To estimate transduction efficiency, the ratio of Myc-667 positive nuclei to DAPI-stained nuclei was calculated form random sections of hippocampus 668 (CA1), layer 5 of primary motor cortex, thalamus, hypothalamus, and brainstem (n = 3 mice 669 per genotype, 27 fields from each brain region). Mecp2-null + $h\Delta NIC$ were analysed after 670 reaching their humane endpoints (aged 33, 35 and 36 weeks). $WT + h\Delta NIC$ mice were harvested 671 for analysis at 4 weeks of age.

- All data are available from the authors on reasonable request. Source data underlying all graphs and
- full scans of all western and Southern blots are included.
- 675

676	Supp	lemental	References
-----	------	----------	------------

- 677 31. RettBase: Rett Syndrome Variation Database. at <http://mecp2.chw.edu.au/>
- 678 32. Tao, J. et al. Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and
- 679 neurological function. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 4882–7 (2009).
- 680 33. Ebert, D. H. et al. Activity-dependent phosphorylation of MeCP2 threonine 308 regulates
- 681 interaction with NCoR. *Nature* **499**, 341–5 (2013).
- 682 34. Ho, K. L. *et al.* MeCP2 binding to DNA depends upon hydration at methyl-CpG. *Mol. Cell* **29**,
- 683 525–31 (2008).
- 684 35. PHD Secondary structure prediction method. at <https://npsa-prabi.ibcp.fr/cgi-
- 685 bin/npsa_automat.pl?page=/NPSA/npsa_phd.html>
- 686 36. Lyst, M. J., Connelly, J., Merusi, C. & Bird, A. Sequence-specific DNA binding by AT-hook
- 687 motifs in MeCP2. FEBS Lett. **590**, 2927–2933 (2016).
- 688 37. Exome Aggregation Consortium (ExAC), Cambridge, MA. at <http://exac.broadinstitute.org>
- 689 38. Cong, L. *et al.* Multiplex Genome Engineering Using CRISPR/VCas Systems. *Science (80-.).* 339,
 690 819–823 (2013).
- 691 39. Clément, N. & Grieger, J. C. Manufacturing of recombinant adeno-associated viral vectors for
 692 clinical trials. *Mol. Ther. Methods Clin. Dev.* 3, 16002 (2016).
- 693 40. Gadalla, K. K. E. et al. Improved survival and reduced phenotypic severity following
- 694 AAV9/MECP2 gene transfer to neonatal and juvenile male Mecp2 knockout mice. *Mol. Ther.*
- **21,** 18–30 (2013).
- 696

Figure 3

