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Abstract: 6 

“Although Brain computer interface (BCI) devices are beginning to aim at the consumer level, their 7 
cognitive usability is still limited, especially for a physically-disabled person. To improve usability 8 
of BCI interfaced devices, we employed the Emotiv Epoc, a low-priced electroencephalography 9 
(EEG) headset, to design and build a proof-of-concept document reader system that allows users to 10 
navigate the document without the need of physical actions. Our prototype has been implemented 11 
and evaluated with 12 participants who were trained to navigate documents using brain signals 12 
acquired by Emotive EEG. In addition to testing cognitive actions of participants, we also proposed 13 
an automata theory based benchmark to model the participants’ behaviours. Furthermore, our 14 
framework is also able to identify every software bottleneck and to provide future ways for 15 
improvement.” 16 

 17 

Keywords:  Brain Computer Interface; Document Reader; Affordable; BCI 18 

 19 

1. Introduction  20 

BCIs produce a way of communicating brain activity, which can help physically disabled people 21 
make use of more common assistive technologies. When an individual thinks of an action they wish 22 
to make, such as pushing a mouse device, electrical activity produced by the brain penetrates the 23 
skull and can be measured on the scalp using electrodes. This is called 24 
electroencephalography (EEG). Different actions (and specifically action intents – which is the 25 
intention or desire to stimulate an action) are associated with different patterns of electrical activity. 26 
These associated patterns of electrical brain activity, enable the actions or intent of the user to be 27 
interpreted without the physical action occurring.  28 

 29 
Affordable brain-computer interface technology has only recently become accessible to users 30 

with limited and experimental software. This subject therefore, although emerging, has only seen 31 
limited (yet promising) research. The effects of affordable brain computer interface technology being 32 
integrated into people's lives can have a positive impact in the way that both non-disabled and 33 
disabled people interact with their surroundings through technology.  This social aspect has not yet 34 
been researched. Inclusive design such as this can allow individuals to live better, more comfortable 35 
and productive lives, enabling them to interact better in society. Beyond the affordable physical 36 
interaction, the research can play a positive psychological, social and emotional role for disabled 37 
people. The applications of a brain computer interface is primarily to introduce another level of 38 
multimodality to a user. The work is therefore not limited in findings to those individuals with 39 
disabilities but rather produces a basis and foundation that will ultimately be used to enable those 40 
people within the disability spectrum.  41 

In this paper we propose a framework using an affordable, non-intrusive method to investigate 42 
cognitive control usability for EEG enabled BCI devices. Firstly an affordable prototype is 43 
implemented to investigate the efficacy of allowing quadriplegic patients elementary control over a 44 



document reader thus reinstating autonomy to the individual without the need for assistive care. By 45 
detecting EEG activity from a brain computer interface (BCI) and mapping the cognitive functions to 46 
physical actions, users are able to navigate through a document without any movement from their 47 
limbs. The initial phase of testing is to improve the validity of our framework using an in-suited 48 
software (see details in section 3). In future we will improve the prototype to make it easier for users 49 
which then will be tested by paraplegic and quadriplegic individuals. 50 

The work presented in this paper is organized as follows: The background and related work 51 
section describes the required background knowledge of BCI devices; The prototype and the user 52 
study description is then outlined; The results and discussion regarding to user actions with a 53 
mathematical automata based theory language are presented a) to create a foundation for visual 54 
inspection, b) to evaluate action impacts and improvements c) to increase the ecological validity of 55 
the findings by therefore allowing wide communication of the work to other disciplines. 56 

2.  Background and Related work 57 

A brain computer interface (BCI) devices provide a new channel for communication and control, 58 
which can offer a new range of assistive and rehabilitative applications for people who suffer from 59 
motor impairment [1, 2]. Traditionally the BCI area related research is based on expensive and 60 
complex prototypes such as the Graz brain-computer interface II [3, 4]. The cost for conducting 61 
research using EEG based BCI devices was still relatively high for individuals and require a number 62 
of specially trained people to set up[5,6]. 63 

During the last decade, more affordable/consumer BCI devices have been released and used for 64 
academic research purposes. These include: the Neurosky Mindset headset 1 , used to enhance 65 
cognitive functions and increase satisfaction within a game called ‘Neuro Wander’ [7]; the Myndplay 66 
Brainband, used to elicit different mind states of participants viewing emotional videos [8]; and the 67 
OpenBCI system, used for investigating optimal electrode placement for motor imagery applications 68 
[9]. 69 

 70 
The Emotiv Epoc2 device is inexpensive, commercially available and has been used extensively 71 

in the past for similar types of research with good results [10-15]. This device is used to measure the 72 
engagement level of users using the physiological reading method [10] and is an innovative approach 73 
that aims to enhance the user’s learning experience by measuring the engagement of the user. 74 
Stytsenko et al reported that Epoc was “able to acquire real EEG data which is comparable to the one 75 
acquired by using conservative EEG devices” [16].  Their research team also used this device for 76 
measuring and evaluating user experience [11]. These measures were used as part of a simulation 77 
where the users were controlling the movement of a simulated robot. The engagement data showed 78 
that each test provided a different kind of experience for users and an unbalanced experience between 79 
the users. Epoc was also used for evaluating if a low priced commercial device can be used as an 80 
interface for users with no impairments for controlling assistive technology devices with their 81 
thoughts [12]. The results supported this as all of the participants achieved positive success rates at 82 
the end of the training period. 83 

 84 
 85 
Duvinage et al’s work reported a high signal-to-noise ratio problem of Emotive Epoc, but they 86 

demonstrated that Epoc was capable of recording EEG [15]. They warned that the device would be 87 
more suitable for non-critical applications rather than prosthetics or rehabilitation as it may cause 88 
serious consequences if the control fails or lacks accuracy [15]. Furthermore, Taylor et al produced 89 
results which “found the system to perform significantly better than chance for all mental actions, 90 
and improve over time with additional training data” [17]. 91 

                                                 
1 http://neurosky.com/biosensors/eeg-sensor/ - Accessed March 2016 
2 https://emotiv.com/epoc.php - Accessed March 2016 



3. Materials and Methods 92 

3. 1 Prototype  93 

The prototype system architecture consists of four key components. These are: 94 

1. Emotiv Epoc EEG Headset 95 

2. EmoKey Software 96 

3. Epoc Control Panel 97 

4. MindReader Software 98 

The Emotiv Epoc Headset is used to receive raw EEG data and brain patterns from the 99 

individual and send the signal to the Epoc Control Panel. The BCI contains 14 channels (See electrodes 100 
AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4 in Figure 3) and 2 reference points (In the 101 
CMS/DRL noise cancellation configuration P3/P4 locations). It uses a sequential sampling rate of 2048 102 
Hz, a bandwidth of 0.2 – 43Hz, digital notch filters (at 50Hz and 60Hz) and a dynamic range of 8400 103 
μV(pp). The P300 evoked potential causes a 300ms delay after a relevant sensory stimulus. 104 

The Control Panel then clears the noise and separates distinct and recognizable pattern actions 105 
such as “think push”, “think pull”, “think lift”, “smile” and  “Clench”. Upon detecting on of the 106 
selected patterns that constitute a specific action, the control panel then triggers the (customized) 107 
Emokey Software. 108 

Emokey Software translates the thought actions to physical keyboard keystrokes. In turn, 109 
keystrokes are detected by the MindReader Software which instigates navigational actions on the 110 
document reader. 111 

 112 

Figure 1. Key Components to Operate MindReader System 113 

Our prototype software MindReader is written in C# through WinForms under the .NET 114 

framework. The specific release (Beta V.01) presented in the paper and used for the user testing 115 
comprises of a document reader that loads a series of documents that have been translated to images 116 
from PDFs. Although the MindReader code is not open source yet, we are plan to publish the source 117 
code in near future. 118 

 In this work, MindReader software produces a two page reading format (See Figure 2) for the 119 
user but can be adapted beforehand to a single page view. The software currently in its beta stage 120 
allows for user testing controls; namely, the investigator can imitate a “start task” trigger which will 121 
take readings such as location, navigation speed and user intent (actions performed). The software is 122 
also able to use simple key strokes or buttons to move between the pages but these are only visible 123 
as an addition for future work involving the integration of eye-tracking equipment with BCI devices. 124 
Users should be able to navigate forward and backward one page at a time, controlled by the Emotiv 125 
Epoc.  126 



 127 

Figure 2. MindReader Beta Version 0.1 128 

Code snippets of the navigating algorithm can be found below (C#):  129 

// initialise timer and record at 100ms 130 

aTimer.Elapsed += new ElapsedEventHandler(OnTimedEvent); 131 

aTimer.Interval = 100; 132 

 133 

// append all details of time to file when state changes 134 

hour = DateTime.Now.Hour; 135 

min = DateTime.Now.Minute; 136 

sec = DateTime.Now.Second; 137 

TimeSpan time = new TimeSpan(hour, min, sec); 138 

File.AppendAllText(file_times, time.ToString()); 139 

File.AppendAllText(file_times, ","); 140 

 141 

// append all details of location to file during all intervals 142 

File.AppendAllText(file_pages, pageisat.ToString()); 143 

File.AppendAllText(file_pages, ","); 144 

 145 

// change page state when EEG pattern indicates next page 146 

if (e.KeyCode == Keys.R) 147 

{ 148 

Next.PerformClick(); 149 

} 150 

pageisat = pageisat + 1; 151 

pictureBox1.Image = WindowsFormsApplication1.Properties.Resources.Page5; 152 

pictureBox2.Image = WindowsFormsApplication1.Properties.Resources.Page6; 153 
 154 



 155 

Figure 3. Emotiv Epoc Electrode placements from [20]. CMS and DRL are ground and work as reference point 156 
in our experiment. 157 

3.2. Experiments  158 

To test the prototype we chose 14 participants to take part in our study. 2 of the participants 159 
were asked to be pilot subjects to fine tune the testing variables such as the amount of saline solution 160 
needed on the BCI pads, time required per test and the sensitivity settings on all the software that 161 
needed to communicate. 162 

The 12 main participants (5 female – 7 male) were given a short description of the experiment 163 
and each was given a choice of actions that they could choose from in order to calibrate the forward 164 
and backward actions. Specifically, participants could choose from Think Push, Think Pull, Lift, 165 
Clench and Smile. Once the participant had chosen a set of actions, they would then be calibrated to 166 
the specific individual, a process that took no more than 5 minutes per participant (See Figure 3).  167 

‘Signatures’ classify user EEG input into mapped expressions and intentions. A default signature 168 
is known as the universal signature and is an average estimation of the predicted readings that any 169 
user would produce in terms of brain activity for a given action. For our calibration we rejected the 170 
universal signature in place for a per participant, trained signature. These are called baseline 171 
signatures. In order to create the baseline signatures performance metrics require the user to train the 172 
system by performing the desired action before it can be detected.  173 

 174 

All 14 electrode placements were placed on the users’ head with 2 noise cancelling points (See 175 
Figure 3 - CMS and DRL). Motor action thoughts were prevalent with readings elevated on the 176 
primary motor cortex and supplementary motor area during training. The Premotor cortex also 177 
spiked in activity during the training exercises. The algorithm used to capture each user’s individual 178 
signature is internal to the custom software from the BCI headset and is beyond the scope of this 179 
study. In future we will refine the individual electrode readings to allow us to focus on specific 180 
electrode readings only and work towards our own universal signatures. 181 



 182 

Figure 4. User Interacting with MindReader 183 

Once the BCI connection was established and calibrated, our prototype software MindReader 184 
was loaded with a document containing 16 pages in a two page view (book style view) and the 185 
participants were then given a set of tasks to complete. These tasks were: 186 

TASK 1 – Navigate to the Contents Page – this was page 1 187 

TASK 2 – Navigate back to the beginning (page 0) 188 

TASK 3 – Navigate to Page 6 189 

TASK 4 - Navigate back to the beginning (page 0) 190 

TASK 5 – Navigate to Page 12 191 

TASK 6 - Navigate back to the beginning (page 0) 192 

TASK 7 – Navigate to the last Page  193 

TASK 8 - Navigate back to the beginning (page 0) 194 

TASK 9 – Answer the question: How many babies do female goats give birth to? (the answer is on 195 

page 2) 196 

TASK 10 – Feel free to browse the magazine. (For the qualitative feedback) 197 
No think–aloud comments were permitted. After the tasks a semi-structured interview was 198 

conducted for qualitative feedback. 199 
 200 

4. Results 201 

To test the validity of our work, raw data samples of EEG activity were recorded.  It was used 202 
to establish a baseline of the actions that the users were able to select EEG level in terms of a specific 203 
action their chosen. The users were recorded in a ‘neutral state’ and then their EEG activity was 204 
recorded with five options: Smile, Clench, Pull, Push and Lift. Afterwards a statistical t-test was used 205 
to identify elevation in EEG between neutral states and action states. Most of the actions produced 206 
statistically significant changes in the readings from the majority of the electrodes (See Figure 5).  207 

 208 



 209 

Figure 5: T-Test of neutral state verses actions states of electrode EEG readings (p <0.01 n = 1200) 210 
 211 
We can report on the high level of noise that occurs from the different regions of the EEG activity 212 

but can verify that the F3 and F4 regions associated mostly with motor actions produced also 213 
significant differences which can give evidence towards the successful use of motor intentions EEG 214 
to control the virtual actions of our software [18].  215 

We also checked specifically for EMG contamination [19] from testing the active readings 216 
between the F3/F4 and AF3/AF4 electrodes during active thoughts by the participants. An example 217 
can be seen in Figure 6 - Left. We wanted to check for elevation of the F3/F4 electrodes closer to the 218 
motor cortex. The results can be seen in Figure 6 - Right. All the tests were statistically significant 219 
with a t-test revealing p < 0.01 (n = 1200). All the results were statistically significant to the 0.01 level 220 
with 1200 samples for all actions. 221 

 222 
 223 

 

 

F3 - 

AF3 

F4 - 

AF4 

Smile < 0.01 < 0.01 

Clench < 0.01 < 0.01 

Pull < 0.01 < 0.01 

Push < 0.01 < 0.01 

Lift < 0.01 < 0.01 
 

 

  

  

  

  

  
 

 224 

Figure 6: (left) Readings (in μV microVolts) of an active state of the user thinking ‘Lift’ of the F3 and AF3 225 

electrodes. (Right) statistical difference in F3/F4 and AF3/AF4 electrodes during action thoughts P < 226 

0.01, n = 1200. 227 
 228 

In this section we present the raw data and make observations based on the performance of the 229 
participants via visual inspection. Tasks 1,2,5,6,7 and 8 are reported on. The remaining two tasks (3 230 
and 4) do not produce data that adds to the findings and therefore were not included in the results. 231 
Figure 7 presents an overview of the tasks and the time taken, as well as the errors that were made in 232 
taking the tasks. 233 

 234 
 235 

Task Number 

Error 

Free 

Number  

Errors 

Minimum 

Time 

(seconds) 

Maximum 

Time(seconds) 

 

1 9 1 2 8 

2 7 5 2 7 

5 8 9 8 29 

AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4

Smile < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.343301 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Clench 0.89134 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Pull < 0.01 < 0.01 < 0.01 < 0.01 0.392256 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Push < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.343301 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Lift 0.654926 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

3600

3800

4000

4200

4400

4600

F3 AF3



6 8 4 7 41 

7 8 18 8 40 

8 11 1 8 50 

Figure 7. Data Overview (including time and errors) 236 

Task 1 237 

Figure 8 shows the results obtained when the participants were asked to navigate from the first 238 
to the next page. Clearly there are great variations in the times taken, the minimum time being 2 239 
seconds, and the maximum 8 seconds. Only one participant made the error of moving onto the second 240 
page, the others navigated to page 1 directly. 241 

 242 

Figure 8. Task One Results 243 

Task 2 244 

Figure 9 shows the results obtained when the participants were asked to navigate from the 245 
second page to the start. Again there are great variations in the times taken, the minimum time being 246 
2 seconds, and the maximum 7 seconds. Seven of the ten participants completed the task without 247 
error. Two participants made 2 errors each. The remaining participant did not attempt the task. 248 



 249 

Figure 9. Task 2 Results 250 

Task 5 251 

Figure 10 illustrates the patterns taken by the twelve participants when asked to navigate to page 252 
six.  Clearly there is great diversity, 8 of the 12 participants navigated to page 6 without error, but 253 
the time taken to do this varied from 8 to 29 seconds.  The number of errors made by the other 4 254 
participants varied from 1 to 5.  There is no evidence of a relationship between the number of errors 255 
made and the time taken to complete the task, and it would appear that errors are equally likely to 256 
occur at any stage of the task. 257 

 258 

  259 

Figure 10. Task 5 Results 260 

Task 6 261 

Figure 11 illustrates the patterns taken by the twelve participants when asked to navigate from 262 
page six back to the start. Again there is great diversity. 8 of the 12 participants sucsessfully navigated 263 
from  page 6  to the start without error, but the time taken to do this varied from 7 to 41 seconds, 264 



the other 4 participants each made exactly one error. Times varied between 9 and 41 seconds, and 265 
there appears to be little or no relationship between errors being made and completion time. 266 

 267 

Figure 11. Task 6 Results 268 

Task 7 269 

Figure 12 illustrates the patterns taken by the twelve participants when they were asked to 270 
navigate from the start to the end (page 8). Unsurprisingly, the results are similar to those of task 5, 271 
where participants had to navigate to page 6. Eight of the twelve participants navigated to page 8 272 
without error. One participant failed to commence the task and the other three made 2, 6 and 9 errors.  273 
Completion times, (excluding the person who failed to start) varied between 8 and 40 seconds. 274 

 275 

Figure 12. Task 7 Results 276 

Task 8 277 

Figure 13 illustrates the patterns obtained when the participants were asked to navigate back to 278 
the start from the end. One participant (represented by the green line of the top diagram) appears not 279 



to have properly attempted the task. All of the remaining participants completed the task without 280 
error, in times varying from 8 seconds to 50 seconds. 281 

 282 

Figure 13. Task 8 Results 283 

Task 9 284 

In this task, participants were asked to `` Answer the question: How many babies do female 285 
goats give birth to?’’  The answer was on page 2. It would appear that there was confusion about the 286 
nature of this task as few participants navigated to page two and stopped (See Figure 12). 287 

 288 

Figure 14. Task 9 Results 289 

5. Automata Theory Based Evaluation Model 290 

In addition to testing the validity of our document reader prototype system, we also presented 291 
a framework to analyse user actions. Our aim is to describe a universal framework which can be 292 
modified and applied to a variety of situations. We introduce 293 

 a collection of tools and techniques based on Automata Theory, an area on the boundary of 294 
theoretical computer science and mathematics. Automata Theory is often used to model computation, 295 



but in this work we demonstrate how it can be used to model the human behavior [21]. A finite 296 
automaton can be pictured by a directed graph called a state transition diagram with nodes 297 
representing states and arrows labeled by letters of the alphabet. 298 

We use states Q= {0,1,2,3,4,5,6} corresponding to the pages. If a participant is at page q , his/her 299 
movement can either to page q+1 via transition R or to page q-1 via transition L.  The initial state in 300 
the model is state s which does not correspond to a page in the document. It serves as a start state 301 
only. Each task begins by moving via an empty transition ε from state s to the required start page. 302 
Then the task is accomplished by a sequence of transitions from the start state to the accepting state.  303 
In the initial model (See Figure 15) it is possible to make an empty transition to every state and ever 304 
state is classified as an accepting state. 305 

 306 

Figure 15. Total Transition Model 307 

To carry out a task we restrict the possibilities for empty transitions and we restrict the set of 308 
accepting states (See Figure 16). 309 

 310 

Figure 16. Single Transition Possibility Model 311 
There is only one empty transition available; from state s  to state  0 . The task terminates 312 

successfully when the participant navigates to page 6. Thus the only accepting state is now state 6. 313 
The restricted model from the overall model above for tasks 1,2,5,6,7 and 8 are shown in Figure 17. 314 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Restricted Model Variations Based on the Assigned Tasks 315 

A notion of optimality exists in the above tasks. For example, task 6 requires the user to navigate 316 
from page 6 to page 0. The optimal solution here is to perform the sequence of transitions LLLLLL. 317 
In task 7 the optimal sequence of transitions is RRRRRRRR. The variety if terms of sequences of 318 
transitions used by the participants is summarized in the graphs in the previous Section. 319 

6. Conclusions and Future Work 320 

We described the prototype of document reader to identify the efficacy in using affordable brain 321 
computer interfaces to control elementary functions. This work included with a) creating a prototype 322 
document reader which could be controlled with affordable commercial BCI equipment b) testing 323 
with 12 participants to identify the successful use of the software in order to improve cognitive 324 
usability. 325 

Our experiment results demonstrate that participants can navigate through the pages of a 326 
document reader in order, although minimal calibration is needed and errors were present (such as 327 
overshooting pages).  We have also modelled the user behavior for further identifying software 328 
bottlenecks and transfer the finding into other software with navigation capabilities.  329 

 330 
We present our results as a pilot testing. The main aim of the study was to show reasonable 331 

evidence of the efficacy of using affordable BCI equipment to control basic actions of a document 332 
reader. The number of participants (12) means that there is limited scope in this study for in depth 333 
comparisons. In future, an experiment with a much larger participants will be conducted.  334 
Specifically the future work will include with (a) reducing errors through improving the software 335 

Task 1 Task 2 

Task 5 Task 6 

Task 7 Task 8 



algorithms and by testing further hardware variations; (b) answering behavioural and interactivity 336 
questions such as “Is getting further in the magazine of proportional effort to getting to an earlier 337 
page?” The sequential nature of the experiment means that it is likely that participants “improved” 338 
as they progressed from task to task. These learning effects can be minimized by randomizing the 339 
tasks in future experiments. “Do different tasks seem to give more difficulties than others and why?” 340 
This can be tackled by changes test variables such as assigning longer tasks. 341 

Furthermore, we will also introduce our improved document reader assistive system to 342 
quadraplegic patients. We also plan to include further compliments to the setup that will give further 343 
autonomy and freedom to users, such as pairing the BCI with an eye-tracker for gaze / fixation 344 
recognition. Further software, such as internet browsers are also being developed based on the same 345 
principles. 346 

 347 
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