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Abstract

Lowest-Unmatched Price Auctions (LUPA) specify that the lowest bid placed
by only one participant wins. They are used in internet trading and TV
and radio shows. We model LUPAs as games with minimal restrictions, in
particular allowing players to place more than one bid, since multiple bids
have been observed in most actual LUPAs. Though LUPAs are games for
which a closed-form solution does not seem to exist in general, our model
generates several testable implications about the type of strategies played in
equilibrium and the highest bid in a given LUPA. Our analysis suggests that
players follow strategic considerations and arrive at decisions which, at least in
the aggregate, are generally consistent with theoretical predictions, yet there
are some remarkable deviations.
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1 Introduction

In standard auctions, the highest bid wins. Depending on the price which the

winner pays, the auction may be a First Price (FPA), Second Price (SPA), or a lower

price auction. More recently, a special extreme form of auction proved to be popular

in di!erent areas. "Reverse auctions" or "backward auctions", as they are sometimes

called, specify that the lowest bid wins. Without further restrictions this rule would

induce all bidders to bunch on the lowest price. The additional rule that only an

unmatched (single) bid can win, however, forces participants to predict the bids of

other participants. It is this prediction problem, which makes the Lowest-Unmatched

Price Auction (LUPA1) worth studying from a strategic point of view.

In 2006, the Þrst 250 LUPAs in the USA awarded prizes worth approximately

$360,000 for bids totalling less than $1,0002. The UK-based company "Auction Air

Ltd.". organized more than 500 LUPAs since fall 2004, with a total prize value of more

than $700,000 for about $12,000 worth of winning bids. LUPAs are occasionally used

as a marketing instrument by TV- and radio broadcasters. In fall 2005, in a period of

sky-rocketing fuel prices, the German radio station "Radio Brocken" conducted a daily

LUPA in which participants could bid for a !500 petrol voucher. "London Capital

FM" auctioned o! a ßat in London, a house in Spain, and a Bentley Continental in

LUPAs in 2004. Several other LUPAs were run on German radio and television during

the years 2005 and 2006, for which we have obtained micro-level data.3 More recent

examples would include LUPA-sales of houses worth !250 000, with extra !100 000

cash to buy a plot of land, organized by German newspaper Die Bild Zeitung in March

2012 and November 2013.4

We suggest here a model which imposes minimal restrictions on the bidding

behavior. In particular, players may place as many bids as they wish. This feature

is typical for many LUPAs, but distinguishes our study from several other papers on

1 One can also read the acronym as "lowest unique price auction".
2 As reported by the USA Today on the 25th of October, 2006.
3 We thank "Legion Telekommunkation GmbH" and "Radio Regenbogen" for cooperation and help.
4 See http://www.bild.de/geld/immobilien/auktion/ersteigern-sie-dieses-traumhaus-rueckwaertsauktion-
23110814.bild.html, and http://www.bild.de/lifestyle/2013/gewinnspiele/ersteigern-sie-ihr-traumhaus-
bei-der-bild-auktion-33254352.bild.html!
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lowest unmatched bid auctions like Houba et al. (2011) and Ostling, et al.

(2011), where players are restricted to placing only one bid. In addition to LUPAs,

Rapoport et al. (2007) andRaviv and Virag (2009) consider their counterpart,

the highest unique bid auctions, also under a single bid assumption. In Ostling, et

al. (2011), the number of players is assumed uncertain, the auction is modelled as

a Poisson game, which yields a closed-form solution for the single bid case. A concise

review of the most recent literature can be found in Costa-Gomes and Shimoji

(2014) who note that (a) most studies so far focused on the case where players place

a single bid, (b) a closed-form solution in most cases could not be obtained, and (c)

some properties of the equilibrium strategies are consistent across di!erent studies, for

example, there are no gaps in the equilibrium support, and the higher the value of the

bid, the lower the probability with which this bid is placed in equilibrium. Although

most researchers have focused on the frequencies with which bids are placed, some

studies also investigate how high players would bid in the optimum. Scarsini et

al. (2010) derive an upper bound on bids for a two-player game; Costa-Gomes

and Shimoji (2014) obtain this limit for more than two players under the singleton

bidding assumption.

Rare exceptions from the one-bid-per-player assumption are Eichberger and

Vinogradov (2008) and Scarsini et al. (2010). Both provide closed-form so-

lutions — the latter for a two-player game, and the former for any number of players

in the special case of bidders playing "block" strategies in which any bid can only

be placed jointly with all lower bids. The two-player case implies "block" bidding

because any gap in the strategy of a designated player gives a winning opportunity to

the counterpart, and thus makes the designated player strictly worse o! by lowering

the probability of winning with bids above the gap. In contrast, with three and more

players there is a possibility that two or more rivals of the designated player place the

same bid and thus the designated player could be better o! by allowing gaps in the

pure strategy chosen. Still, as players follow mixed strategies, in equilibrium gaps in

pure strategies would not imply gaps in the set of bids placed. This strategic limitation

of the two-player case implies a need to focus on multiple players, along with multiple

3
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bids.

Our analysis in this paper shows that, in general, bidders in a LUPA place more

than one bid and that the vast majority of bidders do not bid in blocks, consistent with

the theory. Moreover, we derive and test an equilibrium upper bound on bids, related

solely to the prize and bidding fee of the LUPA. We also compute the frequency with

which individual bids win in observed auctions and compare it with the theoretically

predicted probability of winning. Our Þndings indicate that, in aggregate, players in

actual LUPAs behave consistently with the prediction of the Nash equilibrium.

The paper proceeds as follows. In Section 2 we derive some stylized facts of real

life LUPAs. Section 3 models LUPAs as a simultaneous-move game. We characterize

the solution of the game in Section 4 and derive predictions with regards to the bidding

behavior of participants in Section 5. In Section 6, we present the data from several

lowest unmatched price auctions and compare it with our theoretical predictions. Sec-

tion 7 concludes the paper. Appendix A contains auxiliary results used in the proofs

gathered in Appendix B.

2 LUPAs

We consider LUPAs with the following rules. The organizer of the game an-

nounces the item to be sold (the prize), and the period within which bidding may take

place (bidding phase). Bids must be submitted in local currency, e.g., in euros and

cents. Bids in non-integer amount of euros and cents are not accepted. Players who

wish to take part in the game, can place their bids via a phone call, a text message or

the internet. The number of bids which an agent can submit is not restricted. For each

bid a Þxed fee is charged, which includes the cost of calling or texting. No information

about bids placed is provided during the bidding phase of the game.

As soon as the bidding phase is over, the winner is determined from the set of

valid bids submitted. The winning bid must meet two conditions:

1. It must be unmatched, i.e., there should be no other participant of the game who

has placed the same bid.

4
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2. It must be the lowest bid among all unmatched bids.

The winner is the player, who made the winning bid. The winner pays the

winning bid to the auctioneer and receives the prize.

The remainder of this section discusses some variations of actual LUPAs and

draws attention to several stylized facts that our theoretical model will aim to explain.

In 2005-2006 several LUPAs took place in Germany for which we could obtain

detailed data. Table 1 provides a summary of these auctions. All auctions had a

Þxed duration and were run in radio or TV shows and in newspapers. In all auctions,

providers charged bidders 49 cents per bid.

ID Media Prize Bidders
Total
bids

Bids
per bidder

Duration Winner

RB Radio
10000!
monetary

9400 47872 5.09 19 days 14.55!

AMV Radio
10000!
monetary

10660 52847 4.96 8 days 14.65!

AD1 Radio
1000!

monetary
537 1798 3.35 2 days 0.60!

AD2 Radio
3000!

monetary
916 6732 7.35 4 days 5.82!

AD3 Radio
5000!

monetary
631 6201 9.83 5 days 11.16!

LSR Newspaper
1099!
bike

437 1272 2.91 17 days 1.51!

BB TV
20 000!

car
89862 266824 2.96 7 days 20.65!

RTL Radio
350 000!
house

72588 610104 8.41 23 days 99.82!

Table 1. Summary of some LUPAs run in Germany in 2005-2006.

In Table 1, Auction ID stands for the organizer’s acronym. In all cases bidding

cost is 49c. Two features distinguish these LUPAs. Firstly, the auctioned "item" is

often an amount of money5, which we refer to as a monetary prize. Hence, we will

assume that the valuation of the prize is identical among the participants. Secondly,

players are allowed to place as many bids as they wish. This feature makes strategy

sets complicated and the analysis of Nash equilibrium di"cult.

5 If prizes are commodities, they were standard products with clearly advertised value. Hence,
the common-value assumption appears justiÞed.
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A similar mechanism is used by some online traders. Table 2 gives examples

of LUPAs organized online by AuctionAirTM in 2004-05. Participants were charged

a fee during a short online registration. In these auctions, the maximum number of

bidders was predetermined (see the column "Bids required" ). Once the maximum

number of bidders is reached, the auction is closed. Hence, the duration of the auction

is uncertain. Several auctions for the same item were run in a series with the same

rules. All participants were informed about the number of times a similar item had

been auctioned before (see "preceding auctions"). Data from preceding auctions was

available for bidders. Bidders were restricted in the number of bids they could place

(see column "Max bids per pers."). Table 2 also provides information about the

winning bids. IdentiÞcation of bidders took place by their credit card number (in our

data bidders are identiÞed by the invoice number). These auctions are still running

regularly.

Prize Cost
Bids

required
Max bids
per bidder

Preceding
auctions

Winner

£259
80 GB iPod

£3.00 120 10 6 £24.00

£1,695
40" LCD TV

£4.00 575 20 28 £6.00

£5,900
7 nights in Mauritius

£12.00 530 20 2 £49.00

£275
Headphones

£5.00 60 5 39 £12.00

£16,900
Mini Cooper

£25.00 945 20 11 £20.00

Table 2. Summary of some LUPAs run by AuctionAir.com

No constraint on the number of bids required to complete the auction is a feature

that distinguishes the German LUPAs in Table 1 from those of AcutionAir in Table 2.

In both types of LUPA, the potential number of bidders is exogenous and unknown,

e!ectively they are all people who became aware of the auction. The number of actual

bidders in German LUPAs is endogenous, whilst it is exogenously constrained in the

AuctionAir LUPAs, since the total number of bids and the number of bids per bidder

were bounded. Despite this di!erence, the two types of LUPAs generate qualitatively

similar behavior of players due to the strategic similarity.

6
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Our approach is applicable to both types of auctions. It relaxes the time con-

straint in LUPAs from Table 1 and the constraint on the total number of bids required

in LUPAs fromTable 2. Modelling the time constraint would require a dynamic version

of the game. Modelling the number-of-bids constraint makes the model signiÞcantly

more complicated, as strategy sets of players become dependent on each other (if one

player places more bids, other players’ strategy sets shrink). We resolve this theo-

retical challenge by modelling the LUPAs as an unconstrained one-shot game where

players can place as many bids as they like, including the option of submitting no bid.

Hence, although there is an exogenously given number of players, the e!ective number

of bidders is endogenously determined as all players have the option of not bidding.

2.1 Bids per participant

In the German LUPAs, there was no constraint on the number of bids that a

participant could submit in the above auctions. Table 1 indicates that on average

bidders placed between 3 and 10 bids. Figure 1 shows that although placing a single

bid is the most frequently chosen option, a majority of bidders prefers placing more

than one bid. A few bidders place a large number of bids (the Þgure only shows

numbers of bids up to 100).

In the AuctionAir LUPAs bidders were restricted to a maximum number of bids

(typically 5, 10, or 20). Indeed, many bidders submitted the maximal number of

bids. For example, in 26 consecutive auctions of a 20GB iPod worth £248 which

took place between November 2004 and August 2005 and in which a maximum of Þve

bids was allowed, a total number of 1033 bidders took part of whom 47.24% placed

one bid, 17.52% two bids, 8.71% three bids, 2.8% four bids, and 23.71% placed the

maximum allowed number of Þve bids. This observation stands in stark contrast to the

monotonically declining number of bids per person observed in unconstrained LUPAs,

as in Figure 1. This suggests that the upper limit on the number of bids is binding.

Players who may have wished to place more than Þve bids, seem to have exhausted

their limit with one identiÞer or may have logged in with a di!erent identiÞer to

continue bidding. Using several cards or building coalitions of bidders was a possibility

7
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Figure 1. Fraction of players (% of the total sample of bidders, !-axis) in German
LUPAs placing various numbers of bids ("-axis).

to bypass the restriction on the number of bids per person. Such behavior, however,

cannot be easily identiÞed in the data. In cases where the restriction on the number of

bids per person is softer, bidders place more bids, up to the maximum allowed. Figure

2 shows fractions of bidders that placed multiple bids in an auction for a digital sound

system worth £1,600 where a maximum of 10 bids per bidder was allowed. 6 Again,

there is a noticeable increase at the upper end, suggesting that some bidders would

have liked to go beyond the maximum of ten bids if the constraint were relaxed.

We summarize these observations as a stylized fact about LUPAs:

Stylized fact 1. Most players place more than one bid.

Most existing models of LUPAs cannot explain this fact as they usually allow

only a single bid per person. In our model, there is no constraint on the number of

bids which a participant can place. In Proposition 3 below, we will show that an

equilibrium in mixed strategies can accommodate this stylized fact.

6 It should be noted that it took almost two and half years for this auction to close, with
Þrst bid placed on 20.08.2011 and last bid on 28.02.2014.

8
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Figure 2. Fraction of players (% of the total sample of bidders, !-axis) in an AuctionAir
LUPA placing various numbers of bids ("-axis).

2.2 Frequencies of bids and an upper bound on bids

Some typical distributions of the frequencies of bids for LUPAs from Table 1 are

shown in Figure 3. The Þgure reveals that the frequency of bids declines with the size

of bids and that the shape of the distribution depends on the value of the prize. There

is no substantial di!erence in the pattern of these frequencies between the LUPAs with

a monetary prize and LUPAs with a commodity prize of comparable values. Note that

in the newspaper LUPA the lowest bid was 1!, whereas in the other auctions it was

0,01!.

Figure 4 presents frequencies of bids from three typical AuctionAir auctions for

the same item as given in Table 2. Three diagrams show the bidding frequencies of

three separate LUPAs while the forth diagram presents the distribution of bidding

frequencies aggregated over 26 consecutive auctions. The declining pattern is not

always clearly recognizable in the individual auctions, but is clearly visible in the

aggregates.

From these observations we deduce a second stylized fact of LUPAs.

Stylized fact 2 Lower bids are placed more frequently than higher bids.

This monotonicity has been observed also for LUPAs where participants were

constrained to a single bid. We remove the singleton bidding constraint and, in Propo-

sition 6 below, we provide estimates for the probabilities of bids in a mixed strategy

9
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Figure 3. Frequencies of bids in four LUPAs with comparable prizes, costs and number
of participants.

Figure 4. AuctionAir Lot: R005 - 20GB Apple iPOD (with docking station).

10
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equilibrium. Using these probabilities as a proxy for the observed frequencies of bids

conÞrms this stylized fact.

Figure 4 also indicates that players do place extremely high bids, e.g., over £100

for an item worth £209). Figure 3 only presents bids up to !20.00, yet individual

bidders place bids well above !200 and, for high value items like a car or a house,

even bids above !2 000 and !20 000 were observed (see Section 6 for more details).

This suggests a third stylized fact about LUPAs.

Stylized fact 3 Some bidders place high bids relative to the value of the object.

While it seems natural that bidders bid higher for high-value prizes, it remains

puzzling that in AuctionAir bidders go beyond 50% of the prize value, whereas in

German LUPAs the upper bound as a fraction of the prize value is noticeably lower.

This raises a question about whether there is a reasonable upper bound for bids.

Proposition 5 below will suggest a theoretical upper bound for bids that is consistent

with the behavior of about 95% of bidders.

3 The model

Denote by # = {1$ %%$ &} the set of potential bidders (the number of active bidders

is uncertain and will be endogenously determined by the mixed equilibrium below).

We will assume that players are risk-neutral with respect to monetary prizes. Bids are

natural numbers N% For example, a bid of !12.34 corresponds to the number 1234$

or, if bids in fractions of the basic currency unit are not allowed, a bid of £3 would

correspond to the number 3.

During the bidding phase, each player ' can place an arbitrary number of bids.

There exists a bidding fee of ( per bid, measured in bidding increments (e.g. cents,

dollars, or pounds). If player ' wins with some bid, he obtains the prize ) ! R+

and pays his winning bid. Obviously, a player cannot achieve a payo! greater than

()" 1) " ( and thus bidding above this value would make a player strictly worse

o! compared to the option of not bidding. Hence, without loss of generality, we

11
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can restrict the set of bids to the interval [1$ *] of natural numbers between 1 and

*:= ()" 1) " (. A strategy +! is a simultaneous choice7 of the set of multiple bids,

which we will represent with a binary vector

+! =

µ
1
1
$ 0
2
$ %%%%$ 0

"!1
$ 1
"
$ 0
"+1
$ %%%$ 0

"

¶
%

Here the strategy of player ' corresponds to "placing the bid *" if there is a ”1”

at position * and "not placing the bid *" if there is a ”0” at position *. In the

above example, strategy +! corresponds to player ' placing bids 1 and *% We denote

+0 = (0$ %%%$ 0) the decision to place no bids. There are in total 2" pure strategies. All

players have the same set of strategies ,! = , = {+#}
2!!1
#=0 . For any +# ! ,$ we will

denote by +# (*) the component * of vector +#, i.e. +# (*) equals either one or zero,

depending on whether, according to strategy +#$ bid * is placed or not. For notational

convenience, we will associate each +# with a reversed binary notation for number -,

e.g. +4 = (0$ 0$ 1), which is a reversal of "100", the binary representation of number

"4".

Denote by ,$ the set of all possible strategy combinations and by s = (+1$ +2$ %%+$)

a combination of pure strategies +! ! , for players ' = 1$ %%%$ & . Given a strategy com-

bination s$ we deÞne the set of unmatched bids . (s) =

(
* :

$P
%=1

+% (*) = 1

)
and the

function / : ,$ # N selecting the smallest unmatched bid,

/ (s) =

½
min. (s) if . (s) 6= !

0 if . (s) = !
% (1)

If / (s) 0 0 then bid * = / (s) is the lowest unmatched bid (winning bid). By

construction, for any s such that / (s) 0 0$ there exists a unique player ' ! # for whom

+! (/ (s)) = 1 holds. We will adopt the convention, +!(0) = 0. Note that a player can

guarantee himself a payo! of zero by not participating in the game, i.e., by choosing

+! = +
0.

The set of mixed strategies on , is !(,) := {1 ! R2
!

+ |
2!!1P
#=0

1# = 1}. For player

'$ we will denote by 1#! = 1! (+
#) the probability of strategy +# in his mixed strategy

1!. We will write 1 (s) for the probability of the pure strategy combination s ! ,$

7 In most LUPAs a participant can make bids sequentially. Since no information about other
participants’ bidding behavior is released during the bidding phase, however, one can treat sequentially placed
bids of a player as a simultaneous choice of a set of bids.

12
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according to the mixed strategy combination ! = (11$ %%$ 1$) ! !(,)$ . Similarly

1!! (s!!) denotes the probabilities of the pure strategies s!! ! ,
$!1 according to the

mixed strategies played by player '’s rivals, 1!! ! !(,)$!1.

With this notation, we can deÞne the probability 2" (+!$ 1!!) that * is the winning

bid if player ' plays some pure strategy +! and all his rivals follow mixed strategy 1:8

2" (+!$ 1!!) =
X

s!""{&#!1:'((")s!")="}

1!! (s!!) % (2)

Now one can represent the expected payo! function of player ' as the weighted sum

of the expected gains obtained from placing individual bids.

For a given proÞle 1 = (1!$ 1!!) of mixed strategies, the expected payo! of player

' is

3! (1) =
2!!1X

#=1

1#!

"X

"=1

+# (*)
£
()" *)2"

¡
+#$ 1!!

¢
" (
¤
% (3)

For the special case when player ' chooses a pure strategy +!, we obtain his

expected payo! of

3! (+!$ 1!!) =
"X

"=1

+! (*) [()" *)2" (+!$ 1!!)" (] % (4)

A Nash equilibrium in mixed strategies is a combination of mixed strategies !# =
¡
1#! $ 1

#
!!

¢
such that

3!
¡
1#! $ 1

#
!!

¢
$ 3!

¡
1!$ 1

#
!!

¢
for all 1! ! !(,) and all ' ! #%

Since the strategy set , is Þnite, existence of a Nash equilibrium in mixed strate-

gies follows immediately from Nash’s theorem (Nash, 1950).

It is not di"cult to show9 that, for su"ciently high prizes ) and low bidding

fees (, there are no Nash equilibria in pure strategies.

Proposition 1 A LUPA with & $ 3 and ( 4 *
2
" 1 has no Nash equilibrium in pure

strategies.

In most real life LUPAs, the number of players & and the value ) are large,

while the bidding cost ( is low. Moreover, we can treat players symmetrically, since

8 A more detailed discussion of "! (#"$ %!") can be found in Appendix A.
9 Eichberger and Vinogradov (2008).
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there are no distinguishing features of players in our model. Consequently, we will

focus on symmetric mixed strategy equilibria.

In order to simplify notation, we will omit individual players’ indices and, in

a slight abuse of notation, denote by 1 both the common mixed strategy of players

1 :=
³
10$ 11$ %%1#$ %%12

!!1
´
and the mixed strategy combination ! := (1$ %%$ 1| {z }

$ times

).

Note that, for a given symmetric mixed strategy 1, the probabilities with which

individual bids are placed, are determined by

5" =
X

("&

1 (+) · + (*) % (5)

4 The structure of symmetric mixed strategy

equilibrium

In this section we will characterize the symmetric mixed strategy equilibrium 1%

Since the strategy space is very large, one cannot hope for a complete characterization.

We can, however, deduce certain features of the symmetric equilibrium mixed strategy

which will allow us to draw conclusions on the observed stylized facts.

The basic idea is to construct an increasing sequence of special LUPAs which

will include the actual LUPA. In this sequence we can show by induction that some

structural features observed in simple cases carry over to the general case. We will

study the special case of a LUPA where only bids up to the level 6 are allowed, i.e.,

with the additional constraint * % 6% Since there is a Þnite upper bound * to the

undominated bids in every LUPA, the sequence of LUPAs with 6 = 1$ 2$ %%% includes

the actual LUPA under consideration.

Consider a LUPA with parameters ) and ( in which players can place only bids

* up to 6$ for some 6 % *. Denote by "+ =
¡
#$ ,+$ {7!}!",

¢
a LUPA with a constrained

strategy set

,+ = {+ ! , : + (*) = 0$ for all * 0 6} $

and payo!s

7! (s) := ()" / (s)) +! (/ (s))" (
+X

"=1

+! (*) %

14
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For the induction argument, we need to establish the link between equilibria in

"+ and "++1. Denote the symmetric equilibrium mixed strategy of any game "+ by

1+ := (10+$ 1
1
+$ %%%$ 1

+
+) with 6 := 2+ " 1%

First, we Þnd equilibria in "1 and "2. Straightforward computation10 yields the

equilibrium for "1%

Lemma 1 "1 has a unique symmetric equilibrium in mixed strategies:

101 = #!1
p

-
*!1 $ 111 = 1" #!1

p
-

*!1 %

Depending on parameters )$ ( and & , there are four possible equilibrium constel-

lations for "2. We will show that pure strategies +0 and +1 will always be played with

positive probabilities, while strategies +2 and/or +3 may be played with probability

zero. The following expressions help characterize the equilibrium. Let

8(&) =
(& " 1)$!1

&$!1 " (& " 1)$!1
$

and denote by

91 ()$ ($&) := 2!.($)
1!.($) ")$

92 ()$ ($&) := (*!1)(*!2)
2*!3 " ($

93 ()$ ($&) := 1" -
*!1 "

-
*!2 " (& " 1)

¡
-

*!1

¢#!2
#!1 +& -

*!1 $

94 ()$ ($&) := ("
³

#!1

q
1

*!1 +
1

$!1
#!1

q
8(&) · 1

*!2

´1!$
%

10 One only needs to note that bid 1 in strategy #1 wins with probability
!
%01
"#!1

, and that
the expected payo! is zero since #0 is played with positive probability.
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Lemma 2 "2 has a unique symmetric equilibrium inmixed strategies 12 = (102$ 1
1
2$ 1

2
2$ 1

3
2):

(i)

!
""""""#
""""""$

102 = #!1

q
8 (&) -

*!2 $

112 = 1
$!1

#!1

q
8 (&) -

*!2 $

122 = #!1
p

-
*!1 "

#!1

q
8 (&) -

*!2 $

132 = 1"
³

#!1
p

-
*!1 +

1
$!1

#!1

q
8 (&) -

*!2

´
%

%
""""""&
""""""'

i!
91()$ ($&) % 0 and
94()$ ($&) % 0%

(ii)

!
""#
""$

102 = #!1
p

-
*!1 $

112 = #!1
p

-
*!1 +

-
*!2 "

#!1
p

-
*!1 $

122 = 0$
132 = 1" #!1

p
-

*!1 +
-

*!2 %

%
""&
""'

i!
91()$ ($&) $ 0 and
92()$ ($&) $ 0%

(iii)

!
""#
""$

102 = b10()$ ($&)$
112 = 1" #!1

p
-

*!1 $

122 = #!1
p

-
*!1 " b1

0()$ ($&)$
132 = 0%

%
""&
""'

i!
93()$ ($&) $ 0 and
94()$ ($&) $ 0%

with b10()$ ($&) implicitly deÞned by³
b10()$ ($&) + 1" #!1

p
-

*!1

´$!1
" (& " 1)

³
1" #!1

p
-

*!1

´ ¡
b10()$ ($&)

¢$!2
= -

(*!2) %

(iv)

!
""#
""$

102 = #!1
p

-
*!1 $

112 = 1" #!1
p

-
*!1 $

122 = 0$
132 = 0%

%
""&
""'

i!
92()$ ($&) % 0 and
93()$ ($&) % 0

For a given number of players & , it depends on the values of the prize ) and

the bidding fee ( which of the four types of equilibria in "2 will obtain. For a high

bidding fee ( and low values of ) no player will choose strategies +22 or +32% In these

cases, no player will place the bid * = 2 and the same mixed strategy will be played as

in "1% For high prizes ) and low bidding costs ($ however, all pure strategies will be

played in equilibrium with positive probabilities. There are intermediate parameter

constellations where either +22 or +
3
2 will be played with probability zero. The parameter

regions are depicted in Figure 5.

Lemmata 1 and 2 reveal a relationship between equilibria in "1 and "2:

Observation 1 The equilibrium probability of bid 1$ 51 = 1" #!1
p

-
*!1 remains the

same in both "1 and "2%

Observation 2 Strategies +0 and +1 belong to the support of the equilibrium mixed
strategy both in "1 and "2.
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Figure 5. Equilibria in "2

Observation 3 Equilibria 11 from "1 and 12 from "2 are related to each other by

• 101 = 1
0
2 + 1

2
2 and

• 111 = 1
1
2 + 1

3
2%

(6)

We will prove that these observations hold in general. Observation 1 suggests that

equilibrium frequencies of bids 5" in game "+ do not change if one considers a "larger"

game "++1. Generalizing Observation 2, the supports of equilibria in two "consecutive"

games "+ and "++1 have a subset of pure strategies in common. Observation 3 points

to a relationship that links equilibria in two consecutive games.

We will Þrst show by induction over the Þnite sequence 6 = 1$ %%%$ *, that the link

between equilibria in "+ and "++1 suggested by Observation 3 holds in general. For

any strategy + ! ,++1 and any :$ 1 % : % 6 + 1$ denote by ; (+$ :) the pure strategy

with elements

; (*|+$ :) =

½
+(*) for * 6= :
1" + (*) for * = :

for all * = 1$ %%%$ 6 + 1% (7)

Strategy ; (+$ :) di!ers from strategy + only in bid :. For example, for strategy

+2$ one obtains ; (+2$ 1) = +3 and ; (+2$ 2) = +0. For an arbitrary + ! ,+ & ,++1$ one

has ; (+$ 6 + 1) ! ,++1 \ ,+, because bid 6 + 1 is not placed in + but placed according

17
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to strategy ; (+$ 6 + 1) %

Given an equilibrium strategy 1++1$ deÞne the mixed strategy e1+ (1++1) with

support in ,+ by the following probabilities e1+ (+|1++1) of pure strategies + ! ,++1:

e1+ (+|1++1) :=
½
1++1 (+) + 1++1 (; (+$ 6 + 1)) if + ! ,+,
0 if + ! ,++1 \ ,+.

(8)

Equation (8) generalizes the link in Observation 3: for + = +0 and 6 = 1 one has

e11
¡
+0
¢
= 1++1 (+) + 1++1 (; (+$ 6 + 1)) = 12

¡
+0
¢
+ 12

¡
+2
¢
%

Similarly, for + = +1 one deduces e11 (+1) = 12 (+
1) + 12 (+

3) $ and for +2 and +3 one

obtains e11 (+2) = e11 (+3) = 0% Hence e11 is a mixed strategy in "1. We only need to

show that it is also an equilibrium mixed strategy. The following proposition shows

that e1+ (+|1++1) maps the equilibrium mixed strategy 1++1 to an equilibrium mixed

strategy in "+%

Proposition 2 If 1++1 is an equilibrium mixed strategy of "++1$ then e1+ is an equi-
librium mixed strategy of "+.

Proposition 2 generalizes Observation 3. It immediately follows that any bid * %

6 which is placed in "++1 with probability 5" will be placed with the same probability

in an equilibrium of "+ :

5" (1++1) =
X

("&$+1

1++1 (+) · + (*) =
X

("&$

1++1 (+) · + (*) +
X

("&$+1\&$

1++1 (+) · + (*)

=
X

("&$

1++1 (+) · + (*) +
X

("&$

1++1 (; (+$ 6 + 1)) · ; (*|+$ 6 + 1)| {z }
=((")

=
X

("&$

(1++1 (+) + 1++1 (; (+$ 6 + 1))) · + (*) = 5" (e1+) %

This generalizes Observation 1. It follows that if the equilibrium in "+ is unique, and

hence probabilities 5" of bids * % 6 are uniquely determined, they are also uniquely

determined and have the same values in any equilibrium in "++1 (and, by induction,

in any equilibrium "++/, 1 % < % *" 6).

Proposition 2 also generalizes Observation 2. First, the support of the equi-

librium in "++1 contains strategies from ,+. i.e. supp1++1 ' ,+ 6= !.11 Second,

11 This is because if %$+1 (#) = 0 for any # ! &$, then all players place bid ' + 1 with certainty, hence bid
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1++1 (+) 0 0 for some + ! ,+ in equilibrium in "++1 implies e1+ (+|1++1) 0 0, hence the

strategy + is also in the support of the equilibrium mixed strategy of "+.

In combination with Lemmata 1 and 2, Proposition 2 delivers an important

result about the bidding pattern. In equilibrium, bidders place on average more than

one bid (this rules out equilibria in singletons) and do not necessarily bid in blocks

where a higher bid is placed jointly with all lower bids, i.e. where + (*) = 1 implies

+ (*" 1) = 1.

Proposition 3 Let 1 be a symmetric equilibrium in mixed strategies in " = "". If

( 4 min
h
*
2
" 1$ ()" 1) .($)

1+.($)

i
then

1. There exists + ! supp1 such that
"X

"=1

+ (*) 0 1 and

2. There exists +0 ! supp1 such that +0 (*) = 1 but +0 (*" 1) = 0 for some * % *.

For ) $ 10 condition ( 4 *
2
" 1 is always satisÞed12. The second requirement

( 4 ()" 1) .($)
1+.($)

is also met in most real life LUPAs13.

5 Bidding behavior and probability of winning

The symmetric equilibrium mixed strategy studied in the previous section de-

pends on the number of players & , the potential bidders, which is an unobservable

variable. In the data one observes only the number of actual bidders, which is de-

termined endogenously in a mixed strategy equilibrium. For comparing theoretical

predictions with actual data, it is useful to derive results that do not depend on the

number of players. In this section, we will show that the win probability of a bid *

introduced in Equation (2) has this property. Moreover, bids’ winning probabilities de-

termine an upper bound on bids that does not depend on the number of players either.

Finally, we will also provide an estimate of the probabilities with which individual bids

'+1 wins with probability zero and all players are better o! by dropping bid '+1, a contradiction to %$+1 being
an equilibrium.
12 Condition ( ) (*" 1) %(#)

1+%(#)
implies ( ) &

2
" 1 for * # 10, see proof of Proposition 3 in Appendix B.

13 Note that %(#)
1+%(#)

= (#!1)!!1

#!!1
+ 1

'
with , = 2!71. Hence, it su"ces to require ( ) &!1

'

to satisfy ( ) (*" 1) %(#)
1+%(#)

, a condition met in all LUPAs considered in this paper.

19



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

are placed in equilibrium, dependent on & .

Proposition 4 If 1 is an equilibrium mixed strategy, then for any *

2" (+$ 1) =
-

*!" $ for all + ! supp1 such that + (*) = 1% (9)

The proof of the proposition uses the fact that the expected marginal contribu-

tions of bids, ()" *)2" " (, must be equal to zero in equilibrium, since players have

the option not to bid at all, which yields a payo! of zero. In "1 the strategy of not

bidding, +0, is in the support of the equilibrium mixed strategy and yields an expected

payo! of zero, which for bid 1 translates into ()" 1)21 (+
1$ 1) " ( = 0. In "2 one

considers marginal contribution of bid 2 depending on whether +2 or +3 or both are

played in equilibrium. In all cases, if ()" 2)22"( was strictly positive, players would

be strictly better o! by not playing +1 in equilibrium; if it was strictly negative, they

would not play +2 or/and +3. Both are contradictions and imply ()" 2)22 " ( = 0.

By induction, this argument can be shown to hold in general.

We have shown before that bids over )"( are strictly dominated by not bidding.

In fact, the upper bound on bids in a symmetric mixed strategy equilibrium is lower

since the cumulative probability of winning with a bid below * cannot exceed unity.

It is easy to prove that bids above b* := inf
n
*0 :
P"0

"=12" $ 1
o

are never placed in

equilibrium because some bid less or equal to b* wins with certainty. E!ectively, b* is
the highest bid that can optimally be placed in a LUPA. By deÞnition it does not

depend on & , since it is given by the winning probabilities of bids, independent of &

by proposition 4. Proposition 5 derives a convenient approximation of the value b*.

Proposition 5 For ) large enough, the upper bound on bids b* is given by
b* ( ()" 1) ·

³
1" =!

1
(

´
%

By choosing the optimal mixed strategy 1, players decide on probabilities with

which individual bids are placed, 5" =
X

("&

1 (+) · + (*). If all players follow the equi-

librium mixed strategy 1, in a realization of an equilibrium with a large number of

players we would expect strategy +$ and correspondingly the bids that + contains, to
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occur with the frequency reßecting the equilibrium probability 1 (+).

Proposition 6 If 1 is a symmetric equilibrium then for any bid * % b* its probability
5" satisÞes

1" #!1

r
(

)" *
$ 5" $ 1" #!1

vuut
"X

+=1

(

)" 6
% (10)

For * % b*$
"P
+=1

-
*!+ % 1 holds for the right-hand side. For * = 1 the left-hand side

and the right-hand side in (10) coincide, yielding 51 = 1 " #!1
p

-
*!1 . For larger bids

the left inequality is strict, reßecting the observation that the probability of winning

with bid * is strictly smaller than the probability that bid * is unmatched.

6 Empirical observations

In this section we extend Section 2 by providing more empirical observations from

LUPAs. The main purpose of this section is to illustrate main variables observable

in LUPAs and to enable a better understanding of players’ behavior in this sort of

games. We do not consider these examples to be comprehensive formal tests of our

theoretical predictions, although some comparisons of the data against the theory

prove useful and informative. The data from eight German LUPAs were provided by

Legion Telekommunikation GmbH. Bidders can place bids either by making a phone

call or by sending a text message. Bidders are identiÞed with their phone numbers.

Theoretically, it is possible that one bidder uses several phones to bid, or several

bidders form a coalition and bid from di!erent telephone numbers. In the Þrst case,

the data would identify one player as two distinct bidders. In the second case the data

would record one coalition as several distinct bidders. Bosch-Domènech et al.

(2002) also note that in experiments through mass media coalition forming is possible.

In some cases, it is possible to identify or to suspect coalitions in a LUPA14 but they

are rare.

14 For example, two di!erent players are suspected to build a coalition, if bidding from two
di!erent phone numbers represents two complementing parts of one "block" strategy. Say, if bidder A places all
bids from 1 to 1000, and bidder B places all bids from 1001 to 2000, we might suspect the two are in a coalition.
The winner of one LUPA admitted in an interview after the game that she played in a coalition with a friend.

21



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 6. Realized pure strategies (Auction RB, 10000!).

6.1 Observed strategies

In this section we illustrate the actual bidding strategies in a diagram. To rep-

resent strategies which were actually played we identify bidders ' with their unique

identiÞcation number on a vertical axis and bids * with natural numbers on the hori-

zontal axis. Whenever bidder ' placed bid * we mark the corresponding combination

(*$ ') with a dot. Each horizontal sequence of dots thus represents pure strategy +!

actually played by player '. To improve the readability of the Þgures, we only show

strategies that contain 20 bids and more. For the same reason, we only show bids from

1 cent to 20!. Solid lines in the strategy space correspond to "sequential" strategies,

in which a bidder covers a whole range of bids. We present here a selection of typical

strategy plots, to illustrate a typical bidding pattern. As in Proposition 3, bidders do

not limit themselves to singleton or sequential strategies, although some sequences are

clearly identiÞable in the Þgures. Figure 6 shows examples of sequential bidding (solid

lines) as well as an example of a coalition (complementing segments of solid lines in

the upper part, marked with an oval).15

15 We actually know from the auction organizer that the winner was a couple who used two
mobile phones to bid by text messages.
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Figure 7. Realized pure strategies (Auction AD1, 1000!).

Figures 7, 8 and 9 show strategies played in the LUPAs run by the same broad-

caster in a sequence, one after another. Two observations stand out from these LUPAs:

(1) The number of bidders who place more than 20 bids is low in Figure 7, but sub-

stantially higher in the two other games, and (2) the number of "block" strategies

played in Figure 7 is lower than in the two other games. This may indicate a learning

e!ect: players play more sophisticated strategies once they are more familiar with the

game. Yet, at the same time, the e!ect of an increase in the value of the prize from

AD1 to AD3 is not ruled out.

6.2 Winning bids

From a large enough number of identical auctions with the same prize and the

same bidding fee, one can compute the probability that a bid wins by observing the

number of times this bid wins relative to the number of times this bid has been placed,

< (* wins)

< (* placed)
= e2"%

Note that we only observe that bid * wins if it is placed and it is the winning bid. We

expect e2" = 2" = -
*!" .

The AuctionAir data o!er an opportunity to estimate e2", although the number

of long enough series of perfectly identical auctions is not large. We use data from
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Figure 8. Realized pure strategies (Auction AD2, 3000!).

Figure 9. Realized pure strategies (Auction AD3, 5000!).
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Figure 10. Empirically derived win probabilities for bids 1-25 in 26 identical LUPAs,
with a trend line, compared with the theoretical prediction (left panel) and their
respective cumulative values (right panel).

26 identical auctions for 20Gb iPods shown in Figure 4, to construct e2" as described
above, see Figure 10. The theoretically predicted win probability matches the one

empirically observed relatively well for this number of observations. Note that both

the theoretical and the estimated win probabilities imply that the overall chance of

winning with some bid between 1 and 25 in this auction is 37-38%, leaving 62-63%

chance to win with one of the higher bids. Proposition 5 suggests that it might be

optimal for bidders in this auction to go up to bid 73, however in our sample of 26

auctions (and hence 26 winners) these higher bids did not win, although many of them

were actually placed, see Figure 4 (some bidders went as high as to place bids 100, 101

and 125, yet 99% of them did not bid above 55). This underlines the di"culty with the

empirical estimation of the win probability: since it is only one bid per auction that

actually wins, to actually observe some of bids up to 73 winning, one would require at

least hundreds of identical auctions, which is hardly feasible in reality.

6.3 Highest bids

Based on equilibrium values of win probabilities 2", Proposition 5 predicts the

upper bound (UB) on bids as a fraction > = "
*!1 of the prize: > = 1" =!

1
( . Although

this value may be fairly small (it is about 2% of the prize value in German LUPAs
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considered in this paper16), it captures over 90% of bids placed (only one auction falls

below the 90% threshold, with 88.93% bids placed below UB; in Þve auctions over

95% bids are below UB), see Table 3. The table lists absolute upper bounds (UB)

for auctions with di!erent prizes, the percentage of bids above UB, as well as the

distribution of bids above the upper bound in percentiles of the space between the

upper bound and the monetary value of the prize.17

ID Prize, ! !"#$%& UB, ! above UB 0-10% 10-50% 50-90% 90-99% 99-100%
RB 10 000 47 872 202.01 9.04% 6.22% 2.48% 0.22% 0.03% 0.08%
AMV 10 000a 52 847 202.01 4.16% 4.16% 0.00% 0.00% 0.00% 0.00%
AD1 1 000 1 798 20.20 11.07% 7.56% 2.39% 0.94% 0.06% 0.11%
AD2 3 000 6 732 60.60 2.73% 2.38% 0.29% 0.04% 0.01% 0.00%
AD3 5 000 6 201 101.01 0.97% 0.71% 0.26% 0.00% 0.00% 0.00%
LSR 1 099 1 272 22.20 6.13% 5.35% 0.79% 0.00% 0.00% 0.00%
BB 20 000b 266 824 404.02 2.22% 1.97% 0.20% 0.02% 0.00% 0.00%
RTL 350 000 610 104 7 070.46 1.63% 1.38% 0.21% 0.03% 0.00% 0.00%

Table 3. Theoretical upper bound (UB) on bids in German LUPAs, and the actual
bidding above the UB.

Importantly, the upper bound depends on the bidding fee as measured in bidding

"units" (bidding increments). The reason for this is that we represent bids, fees and

the prize value on the grid of natural numbers, without gaps. This makes a bid of

1 cent in a LUPA where bids in fractions of the basic monetary unit are allowed,

numerically equivalent to a bid of £1 in a LUPA where only bids in basic units are

accepted. As a result, a fee of £3 yields an upper bound of >(3) = 28%35%, whilst a

lower (in nominal terms) fee of !0.49 yields a lower upper bound of >(49) = 2%02%.

This explains why bidders in the LUPAs from Table 3 bid relatively low (bids in cents

allowed), whilst bidders in AuctionAir auctions (only bids in whole pounds accepted)

place bids relatively high compared to the value of the prize. Within the same bidding

system, an increase in the fee would be associated with a decrease in the upper bound.

16 For comparison, upper bounds reported by Costa-Gomes and Shimoji (2014) are in the range 20-90% of the
value of the prize, depending on the prize value and the number of participants, seemingly increasing in both
(Table 1 in Costa-Gomes and Shimoji, 2014). Yet the authors do not report their estimates for the
upper bound for prizes and numbers of participants above 1000, which is the case in the auctions reported here.
17 For the AMV auction, the description provided by the organizers indicates the prize of !10
000, yet the highest bid placed is !1000. As in all other aspects this auction resembles RB,
which has the same prize, it is likely that bids above !1000 were not allowed in AMV. For
the BB auction, the auction description estimates the value of the prize at !20 000, however the
data show 44 participants with bids above 20 000, 38 of which have placed bid !49 999,99 and 6 placed !50 000.
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6.4 Observed frequencies of bids

Our analysis suggests an upper bound

5" = 1" #!1

r
(

)" 1
(11)

and a lower bound

5
"
= 1" #!1

vuut
"X

+=1

(

)" 6
% (12)

for the probability 5" with which bids * % b* are placed in equilibrium, see (10).

Östling et al (2011) derived a closed form solution for LUPAs in which

players are only allowed to play single bids. Their solution is reproduced here in our

notation for the sake of comparability18:

5" = 5"!1 "
1

& " 1
ln
¡
1" (& " 1) 5"!1=

!($!1)0!!1
¢
% (13)

The above equation deÞnes the probability of placing bid * iteratively and needs

an initial condition. Proposition 6 provides 51 = 1" #!1
p

-
*!1 as the solution for * = 1

and, thus, serves as an exact initial condition. Solution (13) incorporates the bidding

fee through the initial condition. As the actual number of players & is unknown and

we only observe the number of active bidders &"!1 = & (1" 10) 4 &) we substitute

the number of bidders for the number of players.19

In Fig. 11-14 we plot the upper limit (Equation 11) as a dotted line, the lower

limit (Equation 12) as a solid line, and the (exact) Östling et al (2011) solution

(Equation 13) as a dashed line against the actual frequencies of bids for four selected

games. These Þgures show the frequencies of bids only up to the bid level of 20! (2000

cent). For smaller prizes )$ Figures 11 and 12, this covers almost the full range of

bids observed, while for large prizes )$ Figures 13 and 14, the diagrams show only the

lower range of bids observed. Hence, the levelling o! of frequencies as bids get higher

18 To do this we also use the Environmental Equivalence they apply in their Poisson game:
any player sees the total number of players in the game equal to the number of his rivals.
19 Some broadcasters report total estimated audience, ranging from 94 000 to 281 000. For the
newspaper (LSR) the number of printed copies was 94 000 and the estimated number of readers reported at 280
000. Using these numbers as the number of players, and the actual number of bidders we
are able to estimate %0 for some of the auctions (96.65% for RB, 88.67% for AMV, over 99% for the newspaper).
Using these numbers for the number of players resulted only in scaling e!ects on the range
of bids presented in Þgures. We also tried a range of possible values of- up to 1000 times the number of bidders
for auctions with unknown audience, with the same e!ect.
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Figure 11. Frequencies of bids (Auction LRS, 1099!: ) = 109900, bidding fee ( = 49,
number of players substituted with &"!1 = 437).

is less pronounced in these Þgures.

Figures 11 and 12 reveal that the observed decrease in bidding frequencies as

bids get higher is approximated quite well by the convex shape of the lower bounds.

The decreasing rate of the fall in frequencies is also visible in the data of LUPAs with

high prizes in Figures 13 and 14, though less pronounced because the range of bids

displayed represents only a small fraction of the full range of bids observed.

The Östling et al (2011) solution predicts an accelerating decrease in the

frequency of bids, resulting in reaching the upper bound on bids much faster than

observed in the data. This pattern in bidding frequencies appears to be a consequence

of the restriction to place only single bids. Placing a lower bid jointly with a higher

one is a "defensive" strategy as it prevents others from winning with the lower bid.

Without this "defensive" option, players place lower bids more frequently than they

would have done in the unconstrained case, and do not go high in their bidding. With

multiple bids, players can place higher bids by combining them with defensive lower

ones. This allows players to place relatively high bids, yet this comes at the cost of

reducing the winning probability of lower bids. Due to this, players play lower bids
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Figure 12. Frequencies of bids (Auction AD3, 5000!: ) = 500000$ ( = 49$ number of
players substituted with &"!1 = 631).

Figure 13. Frequencies of bids (Auction RB, 10 000!: ) = 1000000, ( = 49, number
of players substituted with &"!1 = 9400).
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Figure 14. Frequencies of bids (Auction RTL, 350 000!: ) = 35000000, ( = 49,
number of players substituted with &"!1 = 72588).

less frequently than in the singleton bidding.

The theoretically observed upper bound of bidding frequencies 5", on the other

hand, seems to be too low, in particular for the LUPAs with high prizes in Figures 13

and 14. This upward bias in frequencies at low levels of bids deserves further study.

7 Conclusion

Our paper begins with three stylized facts about Lowest-Unmatched Price Auc-

tions (LUPAs): (1) bidders place on average more than one bid, (2) lower bids are

placed more frequently than higher ones, and (3) bidders tend to place rather high

bids. The theoretical model proposed in the paper views LUPAs as strategic games

where bidders can place several bids. In contrast to existing approaches which re-

strict strategies to singleton bids or block bidding, the more general bidding strategies

allowed for in this paper suggests a rational explanation for these stylized facts.

On the whole our model captures the main features of bidders’ behavior in actual

LUPAs quite well. Comparing our data with the model reveals however some other
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interesting features. There appears to be overbidding both in the sense of too many

players placing the same bid and of some players placing bids which are much higher

than predicted by the model. Incorporating these e!ects in the model and further

testing them, in particular experimentally, are promising directions of further research.

Appendix A. Probability of winning and expected

payo!: auxiliary results

In Section 3 the expected payo! (3) was deÞned with the help of win probabilities

(2). Here we will show that this deÞnition is equivalent to the standard deÞnition of

expected payo!s in games in strategic form. We will also derive properties of the

probability of winning that are later used in the proofs of the main propositions.

Consider player '. For strategy combination s ! ,$ , player '’s payo! is

7! (s) := ()" / (s)) +! (/ (s))" (
"X

+=1

+! (6) % (A-1)

If player ' plays +! = +0 then 7!(+
0$ s!!) = 0 for any strategy combination of

his rivals s!!. This notation assumes the usual convention of splitting the strat-

egy combination s into strategy +! ! ,! of player ', and the opponents’ strategy

combination, s!! ! ,
$!1. Denote ! (s) :=

$Q
!=1

1! (+!) the probability of pure strat-

egy combination s = (+1$ %%%$ +$) ! ,
$ according to the mixed strategy combination

! := (11$ %%$ 1$) ! !(,)$ % The probability of the combination of pure strategies played

by player '’s rivals, 1!! (s!!), is deÞned similarly. The expected payo! of player ' is

3! (!) =
X

s"&#

! (s) 7! (s) =
X

(""&

1! (+!)

(
) X

s!""&#!1

1!! (s!!) 7! (+!$ s!!)

*
+ % (A-2)

On the set of all strategy combinations deÞne the indicator function 1" : ,
$ #

{0; 1} which returns unity if bid * is unmatched in a particular strategy combination

s = (+!$ s!!):

1" (+!$ s!!) =

½
1 if * ! .(s)$
0 otherwise.

(A-3)

We can characterize whether bid * is the lowest unmatched bid in a strategy combi-
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nation s = (+!$ s!!) as follows:
"!1Y

2=1

(1" 12 (+!$ s!!)) · 1" (+!$ s!!) = 1) * = / (+!$ s!!) % (A-4)

To see this it su"ces to notice that the set . (+!$ s!!) contains bid * if and only if

1" (+!$ s!!) = 1, and it contains no lower bids if and only if 12 (+!$ s!!) = 0 for all : 4 *.

Given a pure strategy +! of player ' and a mixed strategy 1 played by his rivals, the

probability that bid * is the lowest unmatched bid, deÞned in (2), can be equivalently

written as:

2" (+!$ 1) :=
X

s!""&#!1

1!! (s!!) ·
"!1Y

2=1

(1" 12 (+!$ s!!)) · 1" (+!$ s!!) % (A-5)

The following lemma establishes the equivalence between the deÞnitions of ex-

pected payo! functions (3) and (A-2).

Lemma A.1

X

s"&#

! (s) 7! (s) =
X

(""&

1! (+!)
"X

"=1

+! (*) [()" *)2" (+!$ 1!!)" (] % (A-6)

Proof. From (A-1) and (A-2) obtain

3! (1!$ 1!!) =
X

(""&

1! (+!)
X

(!""&#!1

1!! (+!!)

"
()" / (+!$ +!!)) +! (/ (+!$ +!!))" (

bX

"=1

+! (*)

#

(A-7)

Player ' wins if only if +! (/ (+!$ +!!)) = 1. By using the indicator function ?" (+!$ +!!) =½
1 if * = / (+!$ +!!)
0 if * 6= / (+!$ +!!)

, we can write: ()" / (+!$ +!!)) +! (/ (+!$ +!!)) *
bP
"=1

()" *) ·

+! (*) · ?" (+!$ +!!). Rearrange terms in (A-7):

3! (1!$ 1!!) =
X

(""&

1! (+!)
bX

"=1

+! (*)

,
-()" *)

X

(!""&#!1

1!! (+!!) · ?" (+!$ +!!)" (
X

(!""&#!1

1!! (+!!)

.
/ %

(A-8)

The last summand in the square brackets turns to ( because
P

(!""&#!1
1!! (+!!) = 1.
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Recall from (A-4) that * = / (+!$ +!!) )
"!1Y

2=1

(1" 12 (+!$ +!!)) · 1" (+!$ +!!) = 1%and thus

X

(!""&#!1

1!! (+!!)·?" (+!$ +!!) =
X

(!""&#!1

1!! (+!!)·
"!1Y

2=1

(1" 12 (+!$ +!!))·1" (+!$ +!!) = 2" (+!$ 1) %

Substituting this to (A-8) delivers the result.

The following two properties of the win probability are useful for the proofs of

main results. First, win probability of bid * is invariant to any changes in the bidder’s

strategic choice with regards to bids above *, as long as the choice with regards to

bids below * is unchanged. Intuitively this is because these changes do not a!ect

the likelihood that any of the lower bids wins. Second, if players are not allowed to

play any bid above * and adjust their mixed strategies by merging probabilities of

strategies that only di!ered in that one forbidden bid (and therefore are identical now

that this bid is forbidden), win probability of bid * does not change. Both properties

are formalized in the following lemmata.

Lemma A.2 (Invariance I)

2" (+!$ 1) = 2" (+
0
!$ 1) ++!$ +

0
! ! , : +! (:) = +

0
! (:) $+: % *% (A-9)

Proof. To prove the lemma we will show that
"!1Y

2=1

(1" 12 (+!$ s!!)) · 1" (+!$ s!!) =

"!1Y

2=1

(1" 12 (+
0
!$ s!!)) · 1" (+

0
!$ s!!) for any strategy combination s!!. This is obvious

if 1" (+!$ s!!) = 1" (+
0
!$ s!!) = 0. The equality 1" (+!$ s!!) = 1" (+

0
!$ s!!) is due to

+! (*) = +0! (*). Now assume 1" (+!$ s!!) = 1" (+
0
!$ s!!) = 1. Since

"!1Y

2=1

(1" 12 (+!$ s!!)) ·

1" (+!$ s!!) = 1 if and only if * = / (+!$ s!!) (see A-4) we only need to establish

that / (+!$ s!!) = / (+0!$ s!!) for any strategy combination s!!. For the given +! and

+0! and an arbitrary s!! consider sets . (+!$ s!!) =

!
"#
"$
* :

$P
%=1)
% 6=!

+% (*) + +! (*) = 1

%
"&
"'

and

. (+0!$ s!!) =

!
"#
"$
* :

$P
%=1)
% 6=!

+% (*) + +
0
! (*) = 1

%
"&
"'

which contain all unmatched bids in respec-
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tive strategy combinations. Since by assumption +! (:) = +0! (:) for all : % *, we ob-

tain . (+!$ s!!) ' {1$ %%$ *} = . (+0!$ s!!) ' {1$ %%$ *}. Since by assumption 1" (+!$ s!!) =

1" (+
0
!$ s!!) = 1, both intersections are non-empty (at least bid * is unmatched) and have

a well-deÞned minimum: min. (+!$ s!!) = min. (+0!$ s!!). This yields tautologically

/ (+!$ s!!) = / (+
0
!$ s!!).

Lemma A.3 (Invariance II) For an arbitrary 1 4 6 % * and mixed strategy proÞles
1 and e1 such that

e1 (+) =
½
1 (+) + 1 (; (+$ 6 + 1)) if + (6 + 1) = 0

0 if + (6 + 1) = 1
(A-10)

the following holds:
2" (+!$ 1) = 2" (+!$ e1) $+* % 6% (A-11)

Proof. First, we are interested in winning probabilities of bids below or equal

to 6, which by Lemma A.2 are invariant to higher bids. We therefore disregard

higher bids and without loss of generality restrict consideration to strategy sets ,+ =

{+ ! , : + (*) = 0$+* 0 6} and ,++1 = {+ ! , : + (*) = 0$+* 0 6 + 1}. Strategies in

the former do not contain bid 6 + 1, and are a subset of the latter. To shorten nota-

tion denote ?" (+!$ s!!) =
"!1Y

2=1

(1" 12 (+!$ s!!)) · 1" (+!$ s!!). By deÞnition (A-5) and by

restricting the set of strategies to , = ,++1,

2" (+!$ 1) =
X

s!""&#!1

1 (s!!) · ?" (+!$ s!!) =
X

s!""&#!1$+1

1 (s!!) · ?" (+!$ s!!)

=
X

s!""&#!1$

1 (s!!) · ?" (+!$ s!!) +
X

s!""&#!1$+1 \&
#!1
$

1 (s!!) · ?" (+!$ s!!) %(A-12)

For any s!! ! ,
$!1
+ let ;$!1 (s!!$ 6 + 1) be the set of all strategy combinations s0!!

identical to s!! except for bid 6 + 1:

;$!1 (s!!$ 6 + 1) =
n
+0!! = {+%}% 6=! ! ,

$!1
++1 \ ,$!1+

¯̄
+0% = ;

¡
+0%$ 6 + 1

¢
for some @ 6= '

o
%

By construction, any strategy combination s0!! ! ,
$!1
++1 \,

$!1
+ belongs to exactly one set

;$!1 (s!!$ 6 + 1) formed by a particular matching strategy combination s!! ! ,
$!1
+ .

Since for any player @ 6= ' the above strategies +% and +
0
% are identical in bids * 6= 6+1 it

follows that ?" (+!$ +!!) = ?"
¡
+!$ +

0
!!

¢
$+* % 6 for any +0!! ! ;

$!1 (s!!$ 6 + 1). Equation
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(A-12) therefore transforms into

2" (+!$ 1) =
X

s!""&#!1$

(
)1 (s!!) +

X

s0
!""3#!1(s!")++1)

1
¡
s
0
!!

¢
*
+ · ?" (+!$ s!!) $+* % 6% (A-13)

It remains to show that 1 (s!!) +
P

s0
!""3#!1(s!")++1)

1
¡
s
0
!!

¢
= e1 (s!!) for any s!! !

,$!1+ . For a given combination of pure strategies s!! = {+%}% 6=! one obtains

e1 (s!!) =
Y

()"s!"

e1 (+%) =
Y

()"s!"

£
1 (+%) + 1

¡
+0%
¢¤
%

The product of all 1 (+%) above results in the probability of the strategy combination

s!! such that no player @ 6= ' places bid 6 + 1, which is 1 (s!!). The remainder of

the product on the right-hand side represents probabilities of strategy combinations in

which at least one player @ plays +0% such that +0% (6) = 1 and +0% (:) = +% (:) $+: 6= 6. By

construction all these strategy combinations constitute the set ,$!1+ (s!!). Formally,

if we denote A0% := 1 (+%) and A1% := 1
¡
+0%
¢
and without loss of generality renumber

players so that ' = & then the following decomposition can be used to see the result:
$!1Y

%=1

[A0% + A1%] =
$!1Y

%=1

1X

/=0

A/% =
1X

/1=0

1X

/2=0

%%

1X

/#!1=0

$!1Y

%=1

A/)%%

Now consider an arbitrary s!! ! ,$!1+ and related set of strategy combinations

;$!1 (s!!$ 6 + 1). In the above formula the term that corresponds to all <% = 0 is
$!1Q
%=1

A0% =
$!1Q
%=1

1 (+%) = 1 (s!!) % For any s0!! ! ;
$!1 (s!!$ 6 + 1) assign <% := 0 if for

player’s @ strategy holds +0% (6 + 1) = 0 and <% := 1 if +0% (6 + 1) = 1. The resulting ar-

ray (<1$ <2%%<$!1) produces the term
$!1Q
%=1

A/)% =
Q

%:/)=0

A0%
Q

%:/)=1

A1% =
Q

%:/)=0

1 (+%)
Q

%:/)=1

1
¡
+0%
¢
=

1
¡
s
0
!!

¢
. It follows that

e1 (s!!) = 1 (s!!) +
X

s0
!""3#!1(s!")++1)

1
¡
s
0
!!

¢
%

Combined with (A-13) this delivers the result.

The last lemma of this appendix extends the above result to show that if player '

does not place bids above 6, his expected payo! is invariant to whether his opponents

play mixed strategy proÞle 1 or e1.

Lemma A.4 Consider + ! , such that + (*) = 0 for any * $ 6. For a mixed strategy
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1 and e1 as deÞned in (8), one has
3! (+$ e1) = 3! (+$ 1) for all + ! ,%

Proof. From Lemma A.1, using condition + (*) = 0 for all * $ 6, obtain 3! (+$ 1) =
+X

2=1

+ (:) [()" *)22 (+$ 1)" (]. By lemma A.3 22 (+$ 1) = 22 (+$ e1) $++ ! ,$+: % 6. It

follows that 3! (+$ 1) = 3! (+$ e1).

Appendix B. Proofs

Proof of Proposition 1

Proof. First, note that +#1 = %% = +
#
, = +

0 is not an equilibrium as soon as ( 4 )" 1

since each player has incentives to deviate to strategy +1 with a strictly positive payo!

of )" 1" (.

Assume s# = (+#1$ %%+
#
,) is an equilibrium, and player ' wins. This implies that all his

rivals play +#% = +
0, +@ ! # : @ 6= ' (otherwise rivals of ' obtain negative payo!). If all

rivals of ' play +0, player ' maximizes his payo! by playing +#! = +
1, which is his best

response. If player ' plays +1 and other players play +0 then some player @ 6= ' can

win with * = 2 by playing strategy +% = +
3, which yields a payo! of 7% = )" 2" 2(.

If ( 4 *
2
" 1 then player @ proÞtably deviates from +0 to +3 in which case the best

response of ' is to play +#! = +0. Now all rivals of @ play +0, and hence the best

response of @ is +#% = +
1 but as just has been shown for player ', strategy combination

¡
+#% $ s

#
!%

¢
= (+1$ +0%%+0) is not an equilibrium. Therefore no Nash equilibrium in pure

strategies exists if ( 4 *
2
" 1. If ( $ *

2
" 1, no player @ has incentives to deviate from

+0, and hence strategy combination (+#! $ s!!) = (+1$ +0%%+0) is an equilibrium.

Proof of Lemma 2

Proof. In "2 the strategy set is ,2 = {+0$ +1$ +2$ +3} = {(00) $ (10) $ (01) $ (11)}. Let
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12 = (102$ 1
1
2$ 1

2
2$ 1

3
2) be a symmetric mixed strategy equilibrium in "2. For an arbitrary

player ' expected payo!s are

3!
¡
+0$ 12

¢
= 0$

3!
¡
+1$ 12

¢
= ()" 1)21

¡
+1$ 12

¢
" ($

3!
¡
+2$ 12

¢
= ()" 2)22

¡
+2$ 12

¢
" ($

3!
¡
+3$ 12

¢
= ()" 1)21

¡
+3$ 12

¢
" (+ ()" 2)22

¡
+3$ 12

¢
" (

= 3!
¡
+1$ 12

¢
+ ()" 2)22

¡
+3$ 12

¢
" (%

The latter is due to Lemma A.2. For easy reference, we repeat the list of all relevant

win probabilities:

21
¡
+1$ 12

¢
= 21

¡
+3$ 12

¢
=
¡
102 + 1

2
2

¢$!1
$

22
¡
+2$ 12

¢
=

¡
102 + 1

1
2

¢$!1
" (& " 1)112

¡
102
¢$!2

$

22
¡
+3$ 12

¢
=

¡
102 + 1

1
2

¢$!1
"
¡
102
¢$!1

%

First, we establish that 102 0 0 and 112 0 0. Next we check whether 122 0 0 or 132 0 0,

or both, and determine the equilibrium mixed strategy.

CLAIM 1. 102 0 0.

PROOF OF CLAIM 1: Assume 102 = 0. For any + ! supp12 holds 3! (+$ 12) 0

3! (+
0$ 12) = 0. There are four cases to consider:

1) 112 0 0$ 122 0 0 implies 3! (+
1$ 12) = 3! (+

2$ 12) 0 0. Assumption 102 = 0

implies 22 (+
2$ 12) = 22 (+

3$ 12) and thus 3! (+
3$ 12) = 3! (+

1$ 12)+3! (+
2$ 12). It follows

that 3! (+
3$ 12) 0 3! (+

1$ 12) and 3! (+
3$ 12) 0 3! (+

2$ 12), thus yielding 132 = 1, a

contradiction.

2) 112 = 0$ 122 0 0 implies 22 (+
2$ 12) = 0, and therefore 3! (+

2$ 12) 4 0, a contra-

diction.

3) 112 0 0$ 122 = 0 implies 21 (+
1$ 12) = 0$ and therefore 3! (+

1$ 12) 4 0, a contra-

diction.

4) 112 = 0$ 122 = 0 implies 131 = 1, a contradiction.¤

CLAIM 2. 112 0 0.

PROOF OF CLAIM 2: If 112 = 0 then 22 (+
3$ 12) = 0 and thus 3! (+

3$ 12) 4
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3! (+
1$ 12) % 0, which implies 132 = 0. Moreover, 22 (+

2$ 12) = 21 (+
1$ 12) and thus

3! (+
2$ 12) 4 3! (+

1$ 1) % 0, which implies 122 = 0. As a result 102 = 1, a contradiction.¤

Claim 1 guarantees that 102 0 0$ and hence 3! (+$ 12) = 3! (+
0$ 12) = 0 for all

+ ! supp12. Claim 2 implies that 112 0 0 and, hence, 3! (+
1$ 12) = 0% The latter

condition yields

102 + 1
2
2 =

#!1

r
(

)" 1
% (B-1)

We will consider the following four exhaustive cases:

(i) 3!(+
2$ 12) = 0$ 3!(+

3$ 12) = 0 and 122 $ 0$ 132 $ 0%
(ii) 3!(+

2$ 12) % 0$ 3!(+
3$ 12) = 0 and 122 = 0$ 132 $ 0%

(iii) 3!(+
2$ 12) = 0$ 3!(+

3$ 12) % 0 and 122 $ 0$ 132 = 0%
(iv) 3!(+

2$ 12) % 0$ 3!(+
3$ 12) % 0 and 122 = 0$ 132 = 0%

(i) From 3!(+
2$ 12) = 3!(+

3$ 12) = 0 one obtains 22 (+
2$ 12) = 22 (+

3$ 12) and

(& " 1) · 112 = 1
0
2. Moreover, from 3!(+

3$ 12) = 0$ we have 22(+
3$ 12) =

-
*!2 and, sub-

stituting 102 = (& " 1)·112, (& · 112)
$!1

"(& " 1)$!1 (112)
$!1

= -
*!2 % Solving the latter

equation for 112 and denoting 8(&) := ($!1)#!1

$#!1!($!1)#!1
yields 112 =

1
$!1

#!1

q
8 (&) -

*!2

and 102 =
#!1

q
8 (&) -

*!2 % From21(+
1$ 12) =

-
*!1 we obtain 1

2
2 = #!1

p
-

*!1"
#!1

q
8 (&) -

*!2 .

Finally, 132 = 1" 102 " 1
1
2 " 1

2
2 = 1"

³
#!1
p

-
*!1 +

1
$!1

#!1

q
8 (&) -

*!2

´
.

Condition 122 $ 0 holds i! 91()$ ($&) := 2!.($)
1!.($) ") % 0 :

#!1

r
(

)" 1
" #!1

r
8 (&)

(

)" 2
$ 0

)" 2

)" 1
$ 8 (&)

)" 2 $ ) ·8 (&)"8 (&) $

{Note that 8 (&) 4 1 for any & $ 3}

) (1"8 (&)) $ 2"8 (&)

0 $
2"8 (&)

1"8(&)
") =: 91()$ ($&)%

Condition 132 $ 0 is equivalent to 1 $ #!1
p

-
*!1 +

1
$!1

#!1

q
8 (&) -

*!2 )

1 $ #!1
,
(

µ
#!1

r
(

)" 1
+

1

& " 1
#!1

r
8 (&)

(

)" 2

¶

( %

µ
#!1

r
(

)" 1
+

1

& " 1
#!1

r
8 (&)

(

)" 2

¶(1!$)
%
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Hence, 132 $ 0 i! 94()$ ($&) := ("
³

#!1
p

-
*!1 +

1
$!1

#!1

q
8 (&) -

*!2

´(1!$)
% 0%

(ii) FromEquation (B-1) and 122 = 0 one obtains 102 = #!1
p

-
*!1 % From 3!(+

3$ 12) =

()" 2)22 (+
3$ 12)" ( = 0 one deduces (1" 132)

$!1
" (102)

$!1
= -

*!2and, hence, 1
3
2 =

1" #!1
p

-
*!1 +

-
*!2 . Finally, 1

0
2+1

1
2+1

3
2 = 1 implies 112 = #!1

p
-

*!1 +
-

*!2"
#!1
p

-
*!1 $

0%

Note that 132 = 1" #!1
p

-
*!1 +

-
*!2 $ 0 i! -

*!1 +
-

*!2 % 1 or

92()$ ($&) :=
()" 1) ()" 2)

2)" 3
" ( $ 0%

Condition 3!(+
2$ 12) % 3!(+

3$ 12) is equivalent to (& " 1)112 $ 1
0
2 or (& " 1) #!1

p
-

*!1 +
-

*!2

$ & #!1
p

-
*!1 % The last inequality yields 1

*!1 + 1
*!2 $

¡
$
$!1

¢$!1 1
*!1 or 2*!3

*!2 $
¡

$
$!1

¢$!1
= .($)+1

.($)
. Hence,

91()$ ($&) :=
2"8 (&)

1"8(&)
") $ 0%

In the latter derivation recall that 8 (&) 4 1 for any & $ 3.

(iii) From 132 = 0, we obtain 112 = 1 " (102 + 1
2
2). Substituting from Equation

(B-1) 102 + 122 = #!1
p

-
*!1 yields 112 = 1 " #!1

p
-

*!1 0 0. Condition 3!(+
2$ 12) =

()" 2)22 (+
2$ 12)" ( = 0 yields (102 + 1

1
2)
$!1

" (& " 1)112 (1
0
2)
$!2

= -
*!2 . Substitut-

ing for 112 results in the equation
µ
102 + 1" #!1

r
(

)" 1

¶$!1
" (& " 1)

µ
1" #!1

r
(

)" 1

¶¡
102
¢$!2

=
(

)" 2
(B-2)

which implicitly deÞnes b10()$ ($&). The left-hand side positively depends on b10()$ ($&).

To see this, substitute the binomial expansion of (102 + 1
1
2)
$!1

=
$!1P
+=0

µ
& " 1
6

¶
(102)

$!1!+
(112)

+
=

(102)
$!1

+ (& " 1) (102)
$!2

(112) + %%%%%% into the left-hand side of Equation (B-2),

B(102$ 1
1
2) : =

¡
102 + 1

1
2

¢$!1
" (& " 1)112

¡
102
¢$!2

=
¡
102
¢$!1

+
$!1X

+=2

µ
& " 1
6

¶¡
102
¢$!1!+ ¡

112
¢+
$

which shows that B(102$ 1
1
2) is a strictly increasing function of 102%

From (B-1), 122 = #!1
p

-
*!1 " b1

0()$ ($&). Condition 122 $ 0 is satisÞed i!

#!1
p

-
*!1 $ b10()$ ($&). Using monotonicity of the left-hand side in (B-2), we can
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write

(

)" 2
=

µ
b10()$ ($&) + 1" #!1

r
(

)" 1

¶$!1
" (& " 1)

µ
1" #!1

r
(

)" 1

¶¡
b10()$ ($&)

¢$!2

= B

µ
b10()$ ($&)$ 1" #!1

r
(

)" 1

¶
% B

µ
#!1

r
(

)" 1
)$ 1" #!1

r
(

)" 1

¶

=

µ
#!1

r
(

)" 1
+ 1" #!1

r
(

)" 1

¶$!1
" (& " 1)

µ
1" #!1

r
(

)" 1

¶µ
#!1

r
(

)" 1

¶$!2

= 1" (& " 1)

µ
1" #!1

r
(

)" 1

¶µ
#!1

r
(

)" 1

¶$!2

or, equivalently,

93 ()$ ($&) := 1"
(

)" 2
" (& " 1)

µ
(

)" 1

¶#!2
#!1

+ (& " 1)
(

)" 1
$ 0

Condition 3!(+
3$ 12) % 3!(+

2$ 12) is equivalent to 22 (+
3$ 12) % 22 (+

2$ 12) or

(& " 1)
³
1" #!1

p
-

*!1

´
% b10()$ ($&). Hence,

(

)" 2
=

µ
b10()$ ($&) + 1" #!1

r
(

)" 1

¶$!1
" (& " 1)

µ
1" #!1

r
(

)" 1

¶¡
b10()$ ($&)

¢$!2

= B

µ
b10()$ ($&)$ 1" #!1

r
(

)" 1

¶
$ B

µ
(& " 1)

µ
1" #!1

r
(

)" 1

¶
$ 1" #!1

r
(

)" 1

¶

=

µ
(& " 1)

µ
1" #!1

r
(

)" 1

¶
+

µ
1" #!1

r
(

)" 1

¶¶$!1

" (& " 1)

µ
1" #!1

r
(

)" 1

¶µ
(& " 1)

µ
1" #!1

r
(

)" 1

¶¶$!2

=

µ
&

µ
1" #!1

r
(

)" 1

¶¶$!1
"

µ
(& " 1)

µ
1" #!1

r
(

)" 1

¶¶$!1

=

µ
1" #!1

r
(

)" 1

¶$!1 h
&$!1 " (& " 1)$!1

i
%
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The inequality -
*!2 $

³
1" #!1

p
-

*!1

´$!1 h
&$!1 " (& " 1)$!1

i
is equivalent to

(

)" 2
8 (&)

1

(& " 1)$!1
$

µ
1" #!1

r
(

)" 1

¶$!1

1

& " 1
#!1

r
8 (&)

(

)" 2
$ 1" #!1

r
(

)" 1

#!1
,
(

Ã
#!1

r
1

)" 1
+

1

& " 1
#!1

r
8 (&)

1

)" 2

!
$ 1

( $

Ã
#!1

r
1

)" 1
+

1

& " 1
#!1

r
8 (&)

1

)" 2

!!($!1)
, i.e.

94()$ ($&) := ("

Ã
#!1

r
1

)" 1
+

1

& " 1
#!1

r
8 (&)

1

)" 2

!(1!$)
$ 0$

(iv) From Equation (B-1) and 122 = 0 we have 102 = #!1
p

-
*!1 and from 132 = 0

follows 112 = 1" #!1
p

-
*!1 %

Condition 3! (+
2$ 12) = ()" 2)22 (+

2$ 12)" ( % 0 implies

0 $ 22
¡
+2$ 12

¢
"

(

)" 2

=
¡
102 + 1

1
2

¢$!1
" (& " 1)112

¡
102
¢$!2

"
(

)" 2

= 1" (& " 1)

µ
1" #!1

r
(

)" 1

¶µ
#!1

r
(

)" 1

¶$!2
"

(

)" 2

= 1" (& " 1)

µ
#!1

r
(

)" 1

¶$!2
+ (& " 1)

(

)" 1
"

(

)" 2

= 1"
(

)" 1
"

(

)" 2
" (& " 1)

µ
(

)" 1

¶#!2
#!1

+&
(

)" 1

= : 93 ()$ ($&) %
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Condition 3!(+
3$ 12) = ()" 2)22 (+

3$ 12)" ( % 0 yields

0 $ 22
¡
+3$ 12

¢
"

(

)" 2

=
¡
102 + 1

1
2

¢$!1
"
¡
102
¢$!1

"
(

)" 2

= 1"

µ
#!1

r
(

)" 1

¶$!1
"

(

)" 2

= 1"
(

)" 1
"

(

)" 2

)

(
2)" 3

()" 1) ()" 2)
$ 1) ( $

()" 1) ()" 2)

2)" 3

) 0 $
()" 1) ()" 2)

2)" 3
" ( =: 92 ()$ ($&) %

Implicit functions (()) given by conditions 91 ()$ ($&) = 0, 92 ()$ ($&) = 0,

93 ()$ ($&) = 0 and 94 ()$ ($&) = 0 for any Þxed & $ 3 have a remarkable property:

they all intersect at one point )# = 2!.($)
1!.($) , (

# = (*"!1)(*"!2)
2*"!3 = .($)

1!.2($)
. Obviously,

91 ()
#$ (#$ &) = 92 ()

#$ (#$ &) = 0. For 93 ()
#$ (#$ &) we obtain

93 ()
#$ (#$ &) = 1" (#

µ
1

)# " 2
+

1

)# " 1

¶
" (& " 1)

Ãµ
(#

)# " 1

¶#!2
#!1

"
&

& " 1

(#

)# " 1

!
=

= 1" (# ·
2)# " 3

()# " 1) ()# " 2)| {z }
=0

" (& " 1)

µ
(#

)# " 1

¶#!2
#!1

Ã
1"

&

& " 1
#!1

r
(#

)# " 1

!
=

= " (& " 1)

µ
(#

)# " 1

¶#!2
#!1

Ã
1"

&

& " 1
#!1

r
)# " 2

2)# " 3

!
= 0$

with the latter due to

)# " 2

2)# " 3
=

µ
& " 1

&

¶$!1
=

8 (&)

8 (&) + 1
)

)#8 (&) +)# " 28 (&)" 2 = 2)#8 (&)" 38 (&)) )# =
2"8 (&)

1"8 (&)
%
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For 94 ()
#$ (#$ &) substitute for )# " 1 = 1

1!.($) and )
# " 2 = .($)

1!.($)

(# "

Ã
#!1

r
1

)# " 1
+

1

& " 1
#!1

r
8(&) ·

1

)# " 2

!1!$
=

(# "

µ
#!1
p

1"8 (&) +
1

& " 1
#!1
p

1"8(&)

¶1!$
=

(# "
1

1"8 (&)
·

µ
& " 1

&

¶$!1
=

(# " ()# " 1) ·
)# " 2

2)# " 3
= 0%

Proof of Proposition 2

Proof. Let 1++1 be equilibrium in "++1 =
¡
#$ ,++1$ {7!}!",

¢
: 3! (1++1$ 1++1) $

3!
¡
10++1$ 1++1

¢
$+10++1. Consider e1+ with elements

e1+ (+) :=
½
1++1 (+) + 1++1 (; (+$ 6 + 1)) if + (6 + 1) = 0$
0 if + (6 + 1) = 1%

(B-3)

Note that
X

("&$

e1+ (+) =
X

("&$

1++1 (+) +
X

("&$

1++1 (; (+$ 6 + 1)) =
X

("&$+1

1++1 (+) = 1,

hence e1+ is a well deÞned probability distribution with support on ,+. We will show

that e1+ is equilibrium in "+ =
¡
#$ ,+$ {7!}!",

¢
. Assume player ' plays some 10++1 in

"++1 and his expected payo! is therefore 3!
¡
10++1$ 1++1

¢
:

3!
¡
10++1$ 1++1

¢
=

X

("&$+1

10++1 (+)
++1X

2=1

+ (:) [()" *)22 (+$ 1++1)" (] =

=
X

("&$

10++1 (+)
++1X

2=1

+ (:) [()" :)22 (+$ 1++1)" (] +

+
X

("&$+1\&$

10++1 (+)
++1X

2=1

+ (:) [()" :)22 (+$ 1++1)" (] %
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For any + ! ,+ there exists a unique strategy ; (+$ 6 + 1) ! ,++1 \ ,+. Therefore

3!
¡
10++1$ 1++1

¢
=

X

("&$

10++1 (+)
++1X

2=1

+ (:) [()" :)22 (+$ 1++1)" (]

+
X

("&$

10++1 (; (+$ 6 + 1))
++1X

2=1

; ( :| +$ 6 + 1) [()" :)22 (; (+$ 6 + 1) $ 1++1)" (] %

By lemma A.2 22 (+$ 1++1) = 22 (; (+$ 6 + 1) $ 1++1) $+: % 6, thus yielding

3!
¡
10++1$ 1++1

¢
=

X

("&$

¡
10++1 (+) + 1

0
++1 (; (+$ 6 + 1))

¢ +X

2=1

+ (:) [()" :)22 (+$ 1++1)" (]

+
X

("&$

10++1 (; (+$ 6 + 1)) [()" (6 + 1))2++1 (; (+$ 6 + 1) $ 1++1)" (] %

By lemmaA.322 (+$ 1++1) = 22 (+$ e1+) $+: % 6 and2++1 (; (+$ 6 + 1) $ 1++1)$ 2++1 (; (+$ 6 + 1) $ e1+)
since ; (6 + 1| +$ 6 + 1) = 1. As a result, we obtain

3!
¡
10++1$ 1++1

¢
$

X

("&$

¡
10++1 (+) + 1

0
++1 (; (+$ 6 + 1))

¢ +X

2=1

+ (:) [()" :)22 (+$ e1+)" (]

+
X

("&$

10++1 (; (+$ 6 + 1)) [()" (6 + 1))2++1 (; (+$ 6 + 1) $ e1+)" (]

= 3!
¡
10++1$ e1+

¢
% (B-4)

If 1++1 is equilibrium then for any strategy + ! supp1++1 holds 3! (+$ 1++1) $

3! (+
0$ 1++1) $++

0 ! ,++1. Denote 3 # (1++1) the equilibrium payo! of any pure strat-

egy in equilibrium 1++1: 3! (+$ 1++1) = 3! (+
00$ 1++1) = 3 # (1++1) $++$ +

00 ! supp1++1%

Equilibrium payo! of player ' is

3! (1++1$ 1++1) = 3
# (1++1) ·

X

("&$

(1++1 (+) + 1++1 (; (+$ 6 + 1))) %

By lemma A.4, 3 # (1++1) = 3
# (e1+). It follows that

3! (1++1$ 1++1) = 3
# (e1+) ·

X

("&$

e1+ (+) = 3! (e1+$ e1+) % (B-5)

By combining condition 3! (1++1$ 1++1) $ 3!
¡
10++1$ 1++1

¢
$+10++1 with (B-4) and (B-5)

we obtain

3! (e1+$ e1+) = 3! (1++1$ 1++1) $ 3!
¡
10++1$ 1++1

¢
$ 3!

¡
10++1$ e1+

¢
$+10++1 ! !(,++1) %

It only remains to note that any 10+ ! !(,+) is a special case of probability distribution

from!(,++1), as it assigns probability of zero to all strategies + such that + (6 + 1) = 1.
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It follows that 3! (e1+$ e1+) $ 3! (10+$ e1+), for any 10+ ! !(,+) and thus e1+ is equilibrium
in "+.

Proof of Proposition 3

Proof. Consider three types of equilibrium in "2 in Lemma 2. From the proof of the

lemma, equilibrium (iii) requires 3!(+
3$ 12) % 3!(+

2$ 12), or, equivalently, 22 (+
3$ 12) %

22 (+
2$ 12), which holds if and only if 102 $ (& " 1)112, i.e 1

0
2+1

1
2 $ &1

1
2. At the same

time, 132 = 0 implies 122 = 1 " (102 + 1
1
2). Combining the two yields 122 % 1 "&112 =

1"&
³
1" #!1

q
1

*!1

´
. From 122 $ 0 we obtain the necessary condition for equilibrium

(iii):

1"&

µ
1" #!1

r
(

)" 1

¶
$ 0) #!1

r
(

)" 1
$ 1"

1

&
)

( ·

µ
&

& " 1

¶$!1
$ )" 1) ) % 1 + ( ·

1 +8 (&)

8 (&)
%

Assumption ( 4 ()" 1) .($)
1+.($)

violates this necessary condition and rules out

equilibrium (iii).

A necessary condition for equilibrium (ii) is 91 $ 0, i.e. ) % 2!.($)
1!.($) , which,

combined with the above, implies 2!.($)
1!.($) 0 1 + ( · 1+.($)

.($)
, equivalent to 1

1!.($) 0

( · 1+.($)
.($)

, or 8 (&) 0 ( · (1"82 (&)). From here 8 (&) 0 1+
$
1+4-2

2-
0 1 for any

( 0 0, which contradicts to 8 (&) = 1

( #
#!1)

#!1
!1
4 1 for any & $ 3. It follows that

) 0 1 + ( · 1+.($)
.($)

implies ) 0 2!.($)
1!.($) and thus rules out equilibrium (ii).

Equilibrium (iv) requires 92 % 0, i.e. ( $ (*!1)(*!2)
2*!3 =

¡
1

*!1 +
1

*!2

¢!1
$

¡
1

*!2 +
1

*!2

¢!1
= *

2
" 1, which is a contradiction to ( 4 *

2
" 1.

Note that if ) 0 10 then ( 4 *
2
" 1 is implied by ) 0 1 + ( · 1+.($)

.($)
. This is

because .($)
1+.($)

= ($!1)#!1

$#!1 = 1

(1+ 1
#!1)

#!1 equals 1
4
= 1

2571
in the limit & # -, and

has an upper bound of 4
9
with & = 3. For this reason, ) 0 1 + ( · 1+.($)

.($)
implies

( 4 4
9
()" 1) % *

2
" 1 as soon as ) $ 10.

We are left with equilibrium (i) in which both +2 and +3 are played with positive

probabilities. Thus the proposition holds for "2.
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Now assume that an equilibrium in " contains only singletons. By Proposition

2 and by construction of e1+, there exists an equilibrium in "+ that contains only

singletons in the support, for any 6 $ 1. This contradicts the fact that +3 is played

with positive probability in "2. Similarly for sequential bidding: assume that for any

+0 ! supp1 holds that +0 (*" 1) = 1 if +0 (*) = 1. Proposition 2 implies that this

also holds in "2, which is a contradiction: +2 is played in equilibrium with positive

probability.

Proof of Proposition 4

Proof. The proof is by induction. The Þrst step follows from lemma 1 which

guarantees that + (*) [()" *)2" (+$ 11)" (] = 0$++ ! supp11 in "1. Now assume

that the proposition holds for "+ and consider equilibrium 1++1 in "++1. Construct

e1+ as in (8): e1+ (+) = 1++1 (+)+ 1++1 (; (+$ 6 + 1)) $ ++ ! ,+% Proposition 2 ensures

that e1+ is equilibrium in "+. By inductive hypothesis, for any + ! supp e1+ holds

+ (*) [()" *)2" (+$ e1+)" (] = 0, for any * % 6, and hence 3! (+$ e1+) = 0.

Now let + ! supp1++1. If + (6 + 1) = 0 then from 1++1 (+) 0 0 straightforwardly

follows e1+ (+) 0 0 and thus + ! supp e1+, and the proposition holds.

Now assume + (6 + 1) = 1. From 1++1 (+) 0 0 follows e1+ (; (+$ 6 + 1)) 0 0 and

therefore proposition holds in "+ for ; (+$ 6 + 1). The latter strategy coincides with

+ in all bids below 6 + 1. Invariance 2" (+$ 1++1) = 2" (+$ e1+) for * % 6 guarantees

+ (*) [()" *)2" (+$ 1++1)" (] = 0 in "++1.

It only remains to show that the proposition holds for bid 6 + 1. The expected

payo! of player ' can be written as

3! (+$ 1++1) =
+X

"=1

+ (*) [()" *)2" (+$ 1++1)" (] + ()" (6 + 1))2++1 (+$ 1++1)" (%

(B-6)

By Lemma A.4, 3! (+$ 1++1) = 3! (+$ e1+) = 0.

Assume ()" (6 + 1))2++1 (+$ 1++1)" ( 4 0 and consider strategy ; (+$ 6 + 1) !

,+. By LemmaA.2 holds2" (+$ 1++1) = 2" (; (+$ 6 + 1) $ 1++1) and hence 3! (; (+$ 6 + 1) $ 1++1) =
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+X

"=1

+ (*) [()" *)2" (+$ 1++1)" (] 03! (+$ 1++1) $which is a contradiction to + ! supp1++1:

player ' is better o! by dropping bid 6 + 1 from his optimal strategy.

Assume now that ()" (6 + 1))2++1 (+$ 1++1) " ( 0 0, which implies
+X

"=1

+ (*) [()" *)2" (+$ 1++1)" (] 4 0 due to 3! (+$ 1++1) = 0. Since + ! supp1++1,

for strategy ; (+$ 6 + 1) ! ,+ we obtain e1+ (;) = 1++1 (;)+ 1++1 (+) 0 0 and thus

; ! supp e1+, which contradicts to
+X

"=1

; (*) [()" *)2" (;$ e1+)" (] =
+X

"=1

+ (*) [()" *)2" (+$ 1++1)" (] 4 0%

The equality above is due to2" (;$ e1+) = 2" (+$ e1+) by LemmaA.2 and2" (+$ e1+) =
2" (+$ 1++1) by lemma A.3.

We therefore obtain that ()" (6 + 1))2++1 (+$ 1++1)"( = 0% This completes the

induction and the proof.

Proof of Proposition 5

Proof. By proposition 4, 2" =
-

*!" holds for A<! 7CD= +-DA-=E! + played in equilib-

rium 1 with positive probability, i.e. for any + ! supp1, such that + (*) = 1. There are

no gaps in the set of bids * placed in equilibrium, i.e. if * is placed in some strategy

+ ! supp1, then there exists strategy +0 ! supp1 such that +0 (*" 1) = 1 (otherwise

one is strictly better o! by replacing bid * in strategy + with bid *"1). It follows that

2" =
-

*!" holds for A<! *'F placed in equilibrium.

Bids above * = inf
n
*0 :
P"0

"=12" $ 1
o

are never placed in equilibrium because with

probability 1 some bid below or equal to * wins. Assume that strict equality holds
P"

"=12" = 1 (we will relax this later) and solve
P"

"=1
-

*!" = 1 for *. To do this

re-arrange:
"X

"=1

(

)" *
= (

*!1X

+=*!"

1

6
= (

(
)
*!1X

+=1

1

6
"
*!"!1X

+=1

1

6

*
+ %

For the two harmonic series in the brackets employ the Euler equation for the sum

G/ =
P/

+=1
1
+
of the Þrst < summands of a harmonic series, G/ ( ln<+ H+ I/, where
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H = %577 is the Euler-Mascheroni constant, and I/ is the error term converging to zero

with large <. With this in mind obtain20

"X

"=1

(

)" *
= (

¡
ln ()" 1) + I*!1 " ln

¡
)" *" 1

¢
" I*!"!1

¢
= 1 +

¡
I*!1 " I*!"!1

¢
$

where I*!1 " I*!"!1 converges to zero (as a sum of two converging to zero terms) for

large ) and ) " *, which yields "
*!1 ( 1 " =!

1
( % From here, * is at most 63.21% of

) " 1 (the value of 1 " =!
1
( with ( = 1, strictly decreasing in (), hence for large )

the di!erence )" * is also large indeed. If there is no such * that the strict equality
P"

"=12" = 1 holds, one needs to consider
P"

"=12" % 1 and
P"+1

"=12" $ 1, which

by the same reasoning as above yields "
*!1 . 1 " =!

1
( and "+1

*!1 & 1 " =!
1
( , yielding

1" =!
1
( & "

*!1 & 1" =!
1
( " 1

*!1 . With large ) the last summand is negligible, leading

to the same expression as above.

Proof of Proposition 6

Proof. For any strategy + such that + (*) = 1, win probability of bid * is

2" (+$ 1) =
X

s!""&#!1

1 (s!!)
"!1Y

2=1

(1" 12 (+$ s!!)) 1" (+$ s!!) =

=
X

s!""&#!1

1 (s!!) 1" (+$ s!!)"
X

s!""&#!1

1 (s!!)

Ã
1"

"!1Y

2=1

(1" 12 (+$ s!!))

!
1" (+$ s!!) %

By induction we can show that 1"
"!1Y

2=1

(1" 12) =
"!1P
+=1

+!1Y

2=1

(1" 12) 1+. This is ob-

vious for * = 2. Assume it holds for * = < and show for * = <+ 1 : 1"
/Y

2=1

(1" 12) =

1" (1" 1/)
/!1Y

2=1

(1" 12) = 1"
/!1Y

2=1

(1" 12) +
/!1Y

2=1

(1" 12) 1/ and the rest is straightfor-

ward.

Moreover, + (*) = 1 implies
P

s!""&#!1
1 (s!!) 1" (+$ s!!) = (1" 5")

$!1 as it is the

probability that no rival of ' plays any strategy containing bid *.

20 The same can be obtained by approximating the series with an integral
# !+1
1

(
&!!

./ = ( ln &!1

&!!!1
,

again, valid only for large enough / so that ./ = 1 can be regarded as a small enough increment.
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We can thus write

2" (+$ 1) = (1" 5")
$!1 "

"!1X

+=1

X

s!""&#!1

1 (s!!)
+!1Y

2=1

(1" 12 (+$ s!!)) 1+ (+$ s!!) 1" (+$ s!!) %

Note that 1" (+$ s!!) % 1 in any strategy combination (+$ s!!) and hence21

2" (+$ 1) $ (1" 5")
$!1 "

"!1X

+=1

X

s!""&#!1

1 (s!!)
+!1Y

2=1

(1" 12 (+$ s!!)) 1+ (+$ s!!)

= (1" 5")
$!1 "

"!1X

+=1

2+ (+$ 1) $

which implies
P"

+=12+ (+$ 1) $ (1" 5")
$!1. The right-hand side does not depend on

+, and the inequality holds for any + ! ,. By proposition 4, if 1 is equilibrium and

+ ! supp1 then + (6) = 1 implies 2+ (+$ 1) =
-

*!+ . Now consider a "block" strategy +0,

in which +0 (6) = 1, for all 6 % *. Note that only player ' can win with bids 6 % * (if

any of them wins). One cannot guarantee that +0 ! supp1, therefore 2+ (+
0$ 1) % -

*!+

for any 6 % *: a suboptimal strategy cannot deliver a higher probability of winning

than an optimal one. As a result,
"X

+=1

(

)" 6
$

"X

+=1

2+ (+
0$ 1) $ (1" 5")

$!1
$

yielding 5" $
#!1

qP"
+=1

-
*!+ .

By using 2" (+$ 1) % (1" 5")
$!1 one straightforwardly obtains 5" % #!1

p
-

*!" .
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Highlights: 

1. In LUPAs only the lowest bid placed by only one participant wins.  The paper characterizes 

equilibrium in a LUPA in terms of bidding behavior of players. 

2. In equilibrium bidders place on average more than one bid. 

3. About 5% of bidders place bids above the theoretical upper bound. 

4. Players seem to place lower bids more frequently than theoretically predicted.  


