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Abstract 13 

Sublithospheric (ultra-deep) diamonds provide a unique window into the deepest parts of 14 

Earth’s mantle, which otherwise remain inaccessible. Here, we report the first combined C- and 15 

N- isotopic data for diamonds from the Monastery and Jagersfontein kimberlites that sample the 16 

deep asthenosphere and transition zone beneath the Kaapvaal Craton, in the mid Cretaceous, to 17 

investigate the nature of mantle fluids at these depths and the constraints they provide on the deep 18 

volatile cycle. 19 

Both diamond suites exhibit very light δ13C values (down to -26‰) and heavy δ15N (up to 20 

+10.3‰), with nitrogen abundances generally below 70 at.ppm but varying up to very high 21 

concentrations (2520 at.ppm) in rare cases. Combined, these signatures are consistent with 22 

derivation from subducted crustal materials. Both suites exhibit variable nitrogen aggregation 23 

states from 25 to 100 % B defects. Internal growth structures, revealed in cathodoluminescence 24 
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(CL) images, vary from faintly layered, through distinct cores to concentric growth patterns with 25 

intermittent evidence for dissolution and regular octahedral growth layers in places. 26 

Modelling the internal co-variations in δ13C-δ15N-N revealed that diamonds grew from 27 

diverse C-H-O-N fluids involving both oxidised and reduced carbon species. The diversity of the 28 

modelled diamond-forming fluids highlights the complexity of the volatile sources and the likely 29 

heterogeneity of the deep asthenosphere and transition zone. We propose that the Monastery and 30 

Jagersfontein diamonds form in subducted slabs, where carbon is converted into either oxidised 31 

or reduced species during fluid-aided dissolution of subducted carbon before being re-32 

precipitated as diamond. The common occurrence of recycled C and N isotopic signatures in 33 

super-deep diamonds world-wide indicates that a significant amount of carbon and nitrogen is 34 

recycled back to the deep asthenosphere and transition zone via subducting slabs, and that the 35 

transition zone may be dominated by recycled C and N.  36 

 37 

Keywords 38 

Monastery and Jagersfontein diamonds, ultra-deep diamonds, transition zone, carbon and 39 

nitrogen, subduction, oxidised and reduced fluids.  40 

 41 

1. Introduction 42 

Exchange of volatiles such as carbon and nitrogen between the Earth’s interior and the 43 

surface is key to understanding mantle-surface interactions over geological time (Dasgupta and 44 

Hirschmann, 2010, Cartigny and Marty, 2013, Barry and Hilton, 2016). Carbon and nitrogen are 45 

ubiquitous amongst Earth’s volatile components and their distinct isotopic compositions in 46 

different major reservoirs make them powerful tracers of volatile recycling in the deep solid 47 

Earth (Walter et al., 2011, Cartigny and Marty, 2013, Busigny and Bebout, 2013). Numerous 48 
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studies provide clear evidence for recycling of crustal carbon and nitrogen into the lithospheric 49 

mantle (Dasgupta et al., 2004, Halama et al., 2010, Busigny and Bebout, 2013, Mikhail et al., 50 

2013, Smart et al., 2016), but little is known about the transport of C and N and their storage in 51 

the deeper, sublithospheric mantle due to the scarcity of direct samples from below 250 km 52 

depth. Diamond is a direct probe of this deeper segment of the Earth owing to its physical 53 

robustness and chemical inertness (Stachel et al., 2002, Stachel et al., 2005, 2009; Tappert et al., 54 

2005a, Bulanova et al., 2010, Walter et al., 2011, Palot et al., 2012, 2014, 2016, Harte and 55 

Hudson, 2013, Kaminsky and Wirth, 2013, Burnham et al., 2015, 2016, Thomson et al., 2016a 56 

and b). Mineral inclusions in diamond indicate that the majority of diamonds formed in the 57 

lithospheric mantle, at depths of 150-200 km (see Stachel and Harris 2008, Shirey et al., 2013 for 58 

reviews). Very rare inclusions, in so-called ultra-deep diamonds, derive from greater depths 59 

within the transition zone (410-660 km) and the lower mantle (>660 km; see Stachel et al., 2005, 60 

Kaminsky, 2012 and Harte and Hudson, 2013 for reviews). Diamond, therefore, represents a 61 

unique opportunity to examine volatile migration within the deep asthenosphere and mantle 62 

transition zone that are otherwise inaccessible for geological sampling. 63 

It is now well established that the vast majority of diamonds form by metasomatic fluid 64 

infiltration processes (Schrauder and Navon, 1993, Klein-BenDavid et al., 1994, Schulze et al. 65 

1996, Taylor et al., 1996, Sobolev et al., 1998, Stachel et al., 2004), through redox reactions 66 

involving C-H-O-N-S fluids (Haggerty, 1986). This process is best reflected by core-to-rim 67 

variations of the C and N-isotopic composition within single diamonds because the progress of 68 

isotopic fractionation is a function of carbon and nitrogen speciation of the fluid. Spatially 69 

resolved accurate and precise in-situ analysis of both C and N isotopes in diamonds has only 70 

recently become accessible by secondary ion mass spectrometry (SIMS; Bulanova et al., 2002, 71 

Zedgenizov et al., 2014, Stern et al., 2014, Petts et al., 2016). This approach provides new 72 
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constraints on the origin and nature of diamond-forming fluids. So far, only “ultra-deep” 73 

diamonds from Kankan have been investigated in this way (Palot et al., 2014). There is hence a 74 

pressing need for additional studies on ultra-deep diamonds from other localities to better 75 

understand what these special samples have to offer in constraining the nature of C and N fluxing 76 

into the Earth’s transition zone and lower mantle. 77 

In this study, we present the first combined C and N-isotopic data for Monastery and 78 

Jagersfontein sublithospheric diamonds. We conducted infrared spectroscopy (FTIR), 79 

cathodoluminescence (CL) and in situ δ13C-δ15N-N analysis using SIMS on 15 ultra-deep 80 

diamonds from these two localities. All the samples contained majoritic garnet inclusions that 81 

allow their depth of origin to be constrained (Tappert et al., 2005a, b, Moore and Gurney, 1985; 82 

Moore et al., 1991). For our set of Jagersfontein diamonds, Tappert et al. (2005a, 2005b) 83 

analysed bulk δ13C and Ickert et al. (2015) measured the oxygen isotope composition of some of 84 

the majorite inclusions.   85 

 86 

2. Sample description 87 

2.1 Monastery 88 

The Monastery kimberlite erupted through the SE margin of the Kaapvaal Craton at ~ 90 89 

Ma (Davis et al., 1980). Monastery diamonds are renowned for providing the first majoritic 90 

garnet inclusions, recognized by an excess of Si over the 3 available tetrahedral sites per formula 91 

unit (on the basis of 12 oxygens) (Moore and Gurney, 1985; Moore et al., 1991). Assuming 92 

inclusions are syngenetic, the majorites place diamond formation within the 93 

asthenosphere/transition zone at depths greater than 250 km (Moore & Gurney, 1985; Deines et 94 

al., 1991; Tappert et al., 2005a, 2005b), where pyroxene dissolution in garnet becomes significant 95 

(Irifune, 1987). Major and trace element analyses (Moore et al., 1991) show that these samples 96 
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are all eclogitic in composition. Using the majorite barometer for eclogitic compositions of 97 

Wijbrans et al. (2016) which is based on Si, Na and Ca content of the inclusion, led to estimates 98 

from 360 and 370 km depth for the four Monastery diamonds studied here (A4-03, B9-07, B9-15, 99 

B9-17) (Table 1; Fig. 1).  100 

Diamond samples are ~600µm to ~1.4mm fragments of the original stones. Internal 101 

growth structures, revealed in CL (Fig. 2 and Appendix A), vary from faintly layered (A4-03, B9-102 

17), through distinct core (B9-15) (Appendix A) to concentric growth patterns with intermittent 103 

evidence for dissolution and regular octahedral growth layers in places (B9-07; Fig. 2). 104 

 105 

2.2 Jagersfontein 106 

The 86 Ma old Jagersfontein kimberlite also erupted through the southern margin of the 107 

Kaapvaal Craton and is another kimberlite renowned for the presence of rare diamonds 108 

containing majoritic garnet inclusions (Deines et al., 1991; Stachel et al., 2005). The suite of 109 

majoritic garnet -bearing diamonds (11 samples) studied here was previously analysed for the 110 

major and trace element composition of their inclusions and bulk δ13C of the host diamonds 111 

(Tappert et al., 2005a, 2005b). The sample suite contains garnets with an excess of Si cations 112 

ranging from 3.05 to 3.54 (Tappert et al., 2005a, 2005b). The depth of trapping of these 113 

inclusions through their host diamonds is estimated to have occurred between 240 and 410 km 114 

(Table 1; Fig. 1). As with the Monastery suite, all majorite inclusions in the diamonds studied 115 

here belong to the eclogitic paragenesis, with <1 wt% Cr2O3 (Schulze, 2003), with the exception 116 

of sample JF43, whose garnet composition is websteritic (i.e. transitional between the eclogitic 117 

and peridotitic parageneses; Gurney et al., 1984).  118 

All samples are < 1mm fragments of previously octahedral, dodecahedral or irregular 119 

diamonds (Tappert et al., 2005b). Despite the loss of their original shape, cathodoluminescence 120 
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images (Fig. 2 and Appendices B1-B3) exhibit internal growth/dissolution features that help 121 

constrain diamond structure and growth direction. Samples JF01, JF09, JF22, JF37, JF39, JF43, 122 

JF55 and JF58 exhibit faintly layered structures, while JF42, JF44 and JF50 present concentric 123 

growth patterns with intermittent evidence for dissolution (Appendices B1-B3). 124 

  125 

 126 

3. Analytical methods 127 

Diamonds were analysed for nitrogen content and nitrogen aggregation state in the De 128 

Beers Laboratory for Diamond Research at the University of Alberta, using a Thermo Nicolet 129 

Nexus 470 FT-IR Spectrometer fitted with a Continuum infrared microscope. The system was 130 

continuously purged with a dry nitrogen-oxygen mix. Spectra were acquired from 650-4000cm−1 131 

in transmission mode for 200 s with a resolution of 4 cm−1 and an aperture size of 100 μm. 132 

Nitrogen concentrations and aggregation states were calculated after spectral decomposition 133 

using the Excel program CAXBD97, developed by David Fisher (De Beers Technologies UK). 134 

The absorption coefficients used for the A- and B-centers at 1282cm−1 were 16.5 and 79.4 135 

at.ppm/cm (Boyd et al., 1994, 1995), respectively. Detection limits and uncertainties typically 136 

range from 5 to 15 at. ppm and about 10% respectively. The uncertainty of the aggregation state 137 

of nitrogen is estimated to be better than ±5% (2σ).   138 

Isotope data were determined by multicollector-secondary ion mass spectrometry (MC-139 

SIMS, Cameca IMS 1280) at the Canadian Centre for Isotopic Microanalysis (CCIM), using 140 

methods and reference materials described by Stern et al. (2014). A tightly packed array of 16 141 

diamonds was cast in epoxy, then ground and polished to reveal partial sections in random 142 

crystallographic orientation. Scanning electron microscopy (SEM) was conducted at 15 kV with a 143 
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Zeiss EVO MA15 equipped with a high sensitivity broadband cathodoluminescence detector 144 

(ETP Semra Pty Ltd). Subsequently, the epoxy mount was trimmed to create a 5 x 5 mm block. 145 

The diamond block was pressed into indium along with reference materials (RMs) S0011Cd 146 

diamond and a vitreous carbon RM to form mount M1148 used for C-isotope analyses.  A second 147 

mount (M1192) containing the diamond block and RMs S0011Cd diamond and S0270 diamond 148 

was prepared for the purpose of N-isotope analysis.  Mounts were initially coated with 7 nm of 149 

Au for cathodoluminescence imaging by SEM, and increased to 30 nm for SIMS analysis.  150 

Diamonds were sputtered with a ~15 x 20 μm probe of Cs+ primary ions of operating at 151 

3.0 – 5.5 nA and 20 keV. Analyses of C-isotopes was followed by N abundance measurements in 152 

the same spot location, and then followed by N-isotopes from a closely-adjacent location in the 153 

same CL zone. Analyses involved simultaneous detection of pairs of negative secondary ions 154 

(13C/12C-, 26[14N12N]-/24[12C12C]-, 27[15N12C]-/26[14N12C]-) at high mass resolution to resolve 155 

spectral interferences. C-isotope analyses utilized dual Faraday cups, N-isotopes utilized an 156 

electron multiplier–Faraday combination, and N-abundances utilized both depending on 157 

concentration. C-isotopic analyses of unknowns were referenced to interspersed analyses of 158 

S0011Cd diamond (δ13CVPDB = -22.58 ±0.10‰) and N-isotopes referenced to S0270 diamond 159 

(δ15NAIR = -0.4 ±0.5‰; Stern et al., 2014). Reported uncertainties in δ13CVPDB and δ15NAir 160 

include those related to instrumental mass fractionation and repeatability of reference materials; 161 

the absolute uncertainties in the reference materials listed above are not included. N-abundances 162 

(atomic fractions, parts per million) are referenced to diamond RMs analyzed by infrared 163 

spectroscopy and have an overall uncertainty of ±10%.   164 

 165 

4. Results 166 
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4.1 Nitrogen abundance and aggregation state by FTIR  167 

All Monastery diamonds are of the N-bearing Type I variety, with widely varying 168 

nitrogen contents and aggregation states. Mon B9-07 is a fully aggregated Type IaB diamond 169 

with 700 at.ppm N (Fig. 3), one of the highest N-abundances recorded in ultra-deep diamonds 170 

worldwide. Mon B9-15 is also a Type IaB diamond (91%), but with nitrogen contents as low as 171 

20 at.ppm across the sample (Fig. 3). The other two specimens, Mon B9-17 and Mon A4-03 are 172 

Type IaAB (65% of B defects) and IaB (92%) with moderate nitrogen abundances of 50 and 40 173 

at.ppm, respectively (Fig. 3).  174 

The Jagersfontein sublithospheric diamonds exhibit much lower N abundances, <60 175 

at.ppm (Tappert al., 2005a), compared to the Monastery diamonds. Only six of the eleven 176 

diamonds in this suite have detectable nitrogen (Fig. 3) and they exhibit variable nitrogen 177 

aggregation states (35-100 % B defect) (Fig. 3). 178 

Average mantle residence temperatures (TN-aggregation) have been calculated using a second 179 

order kinetic law linking the nitrogen concentration, the aggregation state of nitrogen in diamond 180 

and its residence time in the mantle (Chrenko et al., 1977). We assumed a short residence time of 181 

about 100 Ma (Tappert et al., 2005b) based on the occurrence of unexsolved majorite inclusions. 182 

Long-time storage and re-equilibration in the sub-continental lithospheric mantle would result in 183 

the exsolution of the pyroxene component in the majorite inclusion (Harte and Cayzer, 2007). 184 

Tappert et al. (2005) linked the genesis of these diamonds to the formation of the Cape Fold Belt 185 

~200 Ma ago. Diamond exhumation occurs at the time of the kimberlite emplacement (86 Ma for 186 

Jagersfontein), leaving a ~100 Ma window for mantle residence.Calculated TN-aggregation range 187 

from 1280 to 1480°C, which is systematically lower than the majorite component-derived 188 

pressure and projected temperatures (Tinclusion) (Table 1).  189 

 190 
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4.2 Carbon isotopes composition and nitrogen abundances by SIMS 191 

One to three profiles were analysed across each diamond in order to study the spatial 192 

variation of δ13C and N-abundance in individual samples (Fig. 2; Appendices A, B1-B3, C and 193 

D1-D3; Tables 2 and 3). 194 

4.2.1 Monastery diamonds 195 

Monastery diamonds exhibit strongly negative δ13C compositions from -14.3‰ to -18.7‰ 196 

(Table 2, Appendix C). Most Monastery diamonds show only minor variability in δ13C along 197 

profiles (<2‰ internal variation), except for Mon A4-03, which varies by 3.8‰ (Table 2, 198 

Appendix C). SIMS nitrogen abundances of Monastery diamonds are <70 at.ppm, except for 199 

Mon B9-07, which has exceptionally high N-abundances up to 2520 at.ppm (Table 2, Appendix 200 

C). This sample exhibits a weak zonation in δ13C from -15.8 to -15.0‰, with a general increase 201 

of δ13C values from core to rim (Fig. 4, Appendixes A and C). Nitrogen contents decrease from 202 

core to rim and are negatively correlated with the δ13C values (Fig. 4). Mon B9-15 is isotopically 203 

homogeneous (δ13C = -18.2 to -18.7‰) with Mon B9-17 being relatively so (-15.6 to -17.4) with 204 

no obvious core to rim zonations (Appendixes A and C). Both samples have N contents < 40 205 

at.ppm with slight variation along profiles (Appendixes A and C). The δ13C values of Mon A4-03 206 

decrease from -14.3‰ (core) to -18.1‰ (rim) together with increasing N-abundance (2 to 65 207 

at.ppm ; Fig. 6, Appendixes A and C).  208 

 209 

4.2.2 Jagersfontein diamonds 210 

The δ13C values of Jagersfontein diamonds range from -15.9‰ to -25.7‰ (Table 3), 211 

which despite the vast difference in sampling scale is in close agreement with the bulk analyses 212 

of Tappert et al. (2005a, b; δ13C = -17.0‰ to –24.0‰). While some of the diamonds are 213 

relatively homogeneous in δ13C (JF22, JF44, JF55), others show significant (>2‰) internal 214 
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variations (JF01, JF09, JF37, JF39, JF42, JF43, JF50, JF58), with a maximum variation of 5.9‰ 215 

(JF42) (Table 3, Appendixes D1-D3). Nitrogen concentrations also vary, although most of the 216 

values are below 70 at.ppm, with a few exceptions (JF39, JF50, JF55) (Table 3). Nitrogen 217 

abundances display a maximum of 308 at. ppm for JF39 (Table 3). Diamonds JF01, JF37 and 218 

JF43 present distinct core (δ13C ~ -17‰, -22‰ and -23‰, respectively) and rim carbon 219 

isotope compositions (~ -21‰, -20‰ and -21‰, respectively) without any apparent 220 

correlation with nitrogen abundances (Appendices B1, B2, C1 and C2). Diamonds JF09, JF44 221 

and JF50 exhibit core to rim trends with increasing δ13C values and decreasing N-contents (Fig. 5 222 

and 7, Appendixes B1, B2,D1-D3). Diamond JF58 shows clear variations from inner to outer 223 

zones with a decrease of δ13C together with an increase in N concentration (Fig. 6, Appendices 224 

B3 and D3). All other samples exhibit either very slight or no clear δ13C and N-abundance 225 

variations along transects (Appendixes B1-B3, D1-D3). 226 

The carbon isotopic compositions of both suites of diamonds are significantly more 227 

negative than the typical current convective mantle (Cartigny et al., 2014, their Fig. 8). 228 

 229 

4.3 Nitrogen isotopes 230 

The spatial variability in nitrogen isotope composition (δ15N) was determined only for the 231 

diamonds with the highest nitrogen abundances (>80 at.ppm; Mon B9-07, JF39, JF50 and JF55, 232 

Appendix Tables 2 and 3).  233 

 234 

4.3.1 Monastery diamonds 235 

High nitrogen concentrations in Mon B9-07 allowed multiple analyses of δ15N across this 236 

diamond (Table 1). Three detailed profiles were obtained (Appendix E). The δ15N values are all 237 

positive, varying significantly in all transects from, +3.8‰ to +10.3‰ (total variation of 6.5‰). 238 
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There is a negative correlation between increasing δ15N and decreasing [N], which approximately 239 

corresponds to a core-rim trend (Fig. 4, Appendixes A and E). Because of the limited variations 240 

in δ13C (~ 1‰), no clear trends with δ15N could be determined outside of analytical uncertainty 241 

(Fig. 4). The precision of the nitrogen isotope measurements (typically < 1.5 ‰) allows us to 242 

clearly resolve that these compositions are significantly more positive than the current estimate 243 

for the convective mantle compositional range (Cartigny et al., 2014, Fig. 8). 244 

 245 

4.3.2 Jagersfontein diamonds 246 

The low N abundances in the Jagersfontein samples made precise determination of their N 247 

isotopic compositions challenging and only few determinations were performed. Four N isotope 248 

analyses were obtained on diamond JF50 (Table 3). The variations in δ15N are small, with 249 

relatively large uncertainties that are dictated by counting statistics due to the low [N] (-250 

0.8±2.8‰ to +1.1±3.1‰). Nonetheless, the measurements are sufficiently precise to conclude 251 

that the N isotopic compositions are slightly 15N-enriched, at the upper end of the “mantle range” 252 

(Fig. 8). Because of the limited precision and apparent variations in δ15N, no clear trends with [N] 253 

and δ13C could be determined outside of analytical uncertainty (Fig. 7). Only one analysis of δ15N 254 

has been performed for JF55 (δ15N = +7.1 ±1.6‰) and two for JF39 (δ15N = +6.7 ±1.7‰ and 255 

+6.2 ±2.4‰; Table 3). The positive δ15N values for both diamonds are significantly higher than 256 

typical mantle values (Fig. 8). 257 

 258 

5. Discussion 259 

5.1 Diamond growth associated with pulses of fluids 260 

Solid state growth resulting from a direct conversion of graphite into diamond in a 261 

subduction environment setting was suggested as the main diamond genesis mechanism for the 262 
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Jagersfontein ultra-deep diamonds (Tappert et al., 2005a). This hypothesis is not supported by the 263 

observations detailed below. Instead, the precipitation of ultra-deep diamonds associated with the 264 

percolation/pulses of fluid(s) (i.e. metasomatism) is preferred (Stachel et al., 2002, Palot et al., 265 

2014, 2016 Pearson et al., 2014, Thomson et al., 2014, 2016, Zedgenizov et al. 2014, Burnham et 266 

al., 2015, 2016). 267 

Although the study of only fragments makes the interpretation of the diamond growth 268 

histories difficult, the CL images still permit some inferences to be made. Amongst the 269 

Monastery diamonds, the CL images of Mon B9-15 and B9-17 do not reveal any clear growth 270 

history, whereas Mon A4-03 possibly exhibits multiple growth episodes (Appendix A). Mon B9-271 

07 displays regular growth layers (Fig. 2) and the growth of this diamond is interrupted by 272 

several dissolution episodes. Amongst the Jagersfontein diamonds, all but JF22 and JF58 show a 273 

clear separation into core and rim zones (Appendixes B1-B3).  274 

From the textural evidence noted above, most of the studied diamonds document episodic 275 

growth, identified by sharp boundaries between CL “layers” (Appendixes A, B1-B2), sometimes 276 

with intermittent periods of resorption (visible truncations of growth layers). These features are 277 

characteristic of diamond growth from intermittent fluid/melt pulses. The distinct dark to bright 278 

CL responses may thus be interpreted in terms of diamond growth from fluid pulses with varying 279 

composition or under variable pressure-temperature conditions; episodes of dissolution 280 

correspond to the intermittent passage of fluids that are undersaturated in carbon or relatively 281 

oxidizing. In diamonds JF39, JF42 and JF43, these CL features are associated with sharp changes 282 

in isotopic composition and nitrogen abundance (Appendix D2), suggesting that each zone 283 

represents a discrete phase of diamond growth during distinct pulses of fluids. In contrast, smooth 284 

co-variations are often interpreted as diamond growth from an evolving fluid (Cartigny et al., 285 

2014 for review, see section 5.3 below).  286 
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 287 

5.2 The source of fluids forming ultra-deep diamonds 288 

The very negative δ13C values and positive δ15N values for the ultra-deep diamonds 289 

studied here depart significantly from typical mantle values (Fig. 8). In diamonds where core-rim 290 

relationships can be established from growth textures, growth already begins from fluids with 291 

such distinctive isotopic compositions. The consistency of this observation can only be explained 292 

by diamond formation from fluids that ultimately derive from surficial material subducted into 293 

the deep asthenosphere or transition zone. While alternative origins, such as diamond growth 294 

from mantle-derived fluids undergoing isotopic fractionation towards “crustal-like” values are 295 

possible (Palot et al., 2012, Cartigny et al., 2014), there is increasing evidence that already initial 296 

growth in ultra-deep diamonds occurred from fluids with crustal signatures. This evidence 297 

includes diamonds from Brazil (Walter et al., 2011, Palot et al., 2012, Burnham et al., 2015, 298 

2016, Thomson et al., 2016a and b), West Africa (Palot et al., 2012, 2014), Australia (Tappert et 299 

al., 2009) and southern Africa (Deines et al., 1991, Tappert et al., 2005a and b, and Ickert et al., 300 

2015; this study), which collectively indicate that fractionation has a minor effect on the fluid 301 

composition and that the isotopic signatures reflect original crustal sources. The clear inference is 302 

that crustal carbon and nitrogen are commonly subducted to deep asthenosphere and transition 303 

zone depths.   304 

The formation of superdeep diamonds has been related to slab-derived carbonatitic melts 305 

reacting with peridotitic wall rock (Walter et al., 2008, Burnham et al., 2015, 2016, Thomson et 306 

al., 2016a and b). In this model, partial melting of former oceanic crust in the transition zone 307 

produces carbonatitic melts (the carbon filter model of Thomson et al., 2016a) and the subsequent 308 

interaction of these melts with ambient mantle is responsible for the formation of transition zone 309 

diamonds. Although such a model works well for ultra-deep diamonds from Juina, it is unlikely 310 
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for the Monastery and Jagersfontein diamonds based on trace elements (Moore et al., 1991, 311 

Tappert et al., 1995b) and oxygen isotopic compositions (Ickert et al., 2015) of the majorite 312 

inclusions. The REEN patterns of Monastery and Jagersfontein majoritic garnets (Fig. 9) overlap 313 

closely with eclogitic garnets from lithospheric diamonds and xenoliths. A positive slope across 314 

the REEN in Monastery and particularly pronounced, in Jagersfontein samples is not a feature of 315 

Juina majorite inclusions, for which the Walter et al. (2008) model and subsequent variants are 316 

valid. As a consequence, the REEN patterns of Monastery and Jagersfontein majorites cannot be 317 

readily explained through reaction of a slab derived carbonatitic melt with peridotitic mantle. The 318 

majoritic garnets here likely originate from broadly N-MORB-like precursors that have lost some 319 

LREE and possibly experienced some HREE enrichment during partial melting in the garnet 320 

stability field (Rapp and Watson, 1995; Rapp and Shimizu, 1998). The high δ18O values of the 321 

Jagersfontein majorite inclusions are also consistent with an eclogitic slab model and more 322 

specifically with a hydrothermally weathered basaltic rock as a protolith (Ickert et al., 2015). 323 

Hence, the preferred mechanism to form the Monastery and Jagersfontein super-deep diamonds is 324 

by dissolution and re-precipitation, where subducted metastable graphite would be converted into 325 

an oxidised or reduced species during fluid-aided dissolution, before being re-precipitated as 326 

diamond (Ickert et al., 2015). This interpretation implies that, in this situation, carbon remains in 327 

the subducting slab and is locally re-distributed to form sub-lithospheric diamonds beneath the 328 

Kaapvaal Craton. 329 

Taking into account the anomalous oxygen isotopic signatures of majorite garnets 330 

reported from Juina (Burnham et al., 2015) and Jagersfontein (Ickert et al., 2015), we concur with 331 

the numerous studies that document growth of ultra-deep diamonds from fluids derived from 332 

mixtures of subducted organic matter and either surficial carbonate or mantle carbon. The δ13C 333 

values of the Monastery and Jagersfontein ultra-deep diamonds are clearly more negative than 334 
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those from Juina and Kankan (Fig. 8) suggesting that their carbon source has a higher ratio of 335 

organic matter (δ13C < -25‰) to either carbonate (δ13C = 0‰) or mantle-derived carbon (δ13C = -336 

5‰). Using formation depth estimates constrained by garnet inclusion chemistry, there is also no 337 

apparent relationship between the depth of diamond formation and their isotopic composition, 338 

making the existence of a common, homogenous parent melt generating all ultra-deep diamonds 339 

during a single event for a given locality unlikely. 340 

The positive δ15N signatures of the southern African diamonds studied here are consistent 341 

with derivation from subducted nitrogen (Cartigny et al., 2014). The relatively low nitrogen 342 

content for the majority of the samples may reflect prior devolatilization of nitrogen during 343 

subduction (Busigny and Bebout, 2013) or perhaps nitrogen partitioning into a phase such as 344 

metal (Smith and Kopylova, 2014), which appears to play a role in the formation of some 345 

transition zone diamonds (Smith et al., 2016). Low N contents may also reflect a relatively 346 

nitrogen-poor protolith such as basaltic/gabbroic oceanic crust.  347 

This study illustrates that both carbon and nitrogen are cycled from the surface deep into 348 

the asthenosphere and transition zone, underpinning other evidence for deep recycling of surficial 349 

volatile elements within the transition zone, documented in studies of diamonds from Brazil 350 

(Hutchison et al., 1999, Walter et al., 2011, Palot et al., 2012, Pearson et al., 2014 Burnham et al., 351 

2015, Thomson et al., 2016), Guinea (Stachel et al., 2002, Palot et al., 2014), Jagersfontein 352 

(Tappert et al., 2005a, b, Ickert et al., 2015). The preponderance of recycled crustal materials in 353 

the transition zone may reflect a tendency of some subducted oceanic slabs to “pond” at this 354 

depth, depending on their thermal history (e.g., Ringwood, 1982; van der Hilst et al., 1997).  355 

 356 

5.3 A diversity of diamond-forming fluids 357 

 358 
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Despite the fact that the ultra-deep Monastery and Jagersfontein diamonds point clearly to 359 

a subducted source for the carbon and nitrogen in their parental fluids, there is also evidence of 360 

variability among these fluids. Intra-diamond variability in δ13C-N-δ15N provides information 361 

about the nature of the diamond-forming fluids. In order to address this question we focus our 362 

attention on samples, which show smooth correlations of δ13C-N-δ15N and, based on CL-patterns, 363 

most likely represent coherent growth zones formed from single pulses of fluid. In contrast, the 364 

samples that exhibit complex growth layering in CL and have no apparent correlation of δ13C-N-365 

δ15N will not be discussed in this section as they may result from a variety of processes (e.g. 366 

locally changing P-T-fO2 or multiple episodes of growth from numerous fluid pulses).  367 

The core-to-rim variations of the selected diamonds (see below) are best explained by 368 

equilibrium diamond growth from an evolving fluid, which underwent isotopic and elemental 369 

fractionation while diamond formed (Deines, 1980, Thomassot et al., 2007, Palot et al. 2014). 370 

The growth of diamond via either reduction of oxidized C-H-O-N fluid or oxidation of a reduced 371 

fluid phase leads to distinct systematic trends in C- and N-isotopic composition and N-372 

abundance. The progress of isotopic fractionation is mainly a function of fluid speciation and 373 

temperature. Diamond is depleted in 13C by a few per mill compared to oxidised carbon at the 374 

temperatures of diamond formation (CO2 and carbonate, Bottinga, 1969, Richet et al., 1977, 375 

Chacko et al., 1991, Polyakov and Kharlashina, 1995), leading to a core-to-rim increase in 13C as 376 

residual fluids progressively become relatively enriched in 13C. In contrast, diamond is enriched 377 

in 13C by a few per mill relative to reduced carbon species (carbide and CH4, Richet, 1977, 378 

Satish-Kumar et al., 2011), leading to the opposite trend. Petts et al. (2015) suggested that the 379 

CN- molecule may be the best analogue for nitrogen speciation in diamond based on similar 380 

vibrational frequencies. At 1100°C, they estimated empirically that the nitrogen in diamond (CN-381 
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) is depleted in 15N by -3.6‰, -1.4‰ and -2.1‰ relative to NH4
+, NH3 and N2, respectively, 382 

leading to a core-to-rim increase in 15N. 383 

Rayleigh fractionation best describes the co-variations between C-isotope composition 384 

and other tracers such as N-isotope composition or [N] (Smart et al., 2011, Wiggers de Vries, 385 

2013, Cartigny et al., 2014, Mikhail et al., 2014). The effects of this process on δ13C, δ15N and 386 

[N] can be described by the following equation (see Cartigny et al., 2014 and Petts et al., 2015 for 387 

details) 388 

 (δX) = (δX)0 + ΔX
diam-fluid × ln fX 389 

where fX is the remaining fraction of carbon/nitrogen in the diamond forming medium (in 390 

the scenario where diamond crystallizes from a fluid entirely made up of carbon species fC = 391 

fraction of fluid consumed), δX
0 is the initial carbon/nitrogen isotopic composition of the fluid, 392 

and ΔX is the fractionation factor of carbon/nitrogen between diamond and the fluid growth 393 

medium. 394 

The carbon isotopic composition of the fluid is related to N-abundance (i.e. N/C) by the 395 

following equation: 396 
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where (N/C)0 is the initial nitrogen abundance in the fluid. KN is a measure of the 398 

compatibility of nitrogen during diamond growth (with KN < 1 for incompatible and KN > 1 for 399 

compatible behaviour).  KC is the partition coefficient for carbon (in the case of diamond growth 400 

Kc = 1). δ13C0 is the initial carbon isotopic composition of the fluid. 401 

Modelled geochemical parameters (δ13C0, δ15N0, N/C0, KN and ΔC) have been 402 

determined to fit the variations in δ13C-δ15N-[N] (Figs. 4-7). Comparison of the estimated 403 
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magnitude of isotopic fractionation of carbon and nitrogen with theoretical calculations, 404 

experimental data and observation in natural diamonds therefore help us to constrain the nature of 405 

the diamond-forming fluids.  406 

 407 

5.3.1 Diamond growth from an oxidised carbon phase 408 

Diamonds Mon B9-07, JF09, JF44 and JF50 exhibit progressive 13C enrichment from core 409 

to rim (Figs. 4, 5 and 7). Modelling of the δ13C-δ15N-[N] co-variations in these diamonds yields 410 

negative fractionation factors for ΔCdiamond-fluid = -2.8 to -1.0‰ (i.e. diamond is 13C depleted 411 

relative to fluid; Table 4). We illustrate in Fig. 10 the ΔC of these studied diamonds together with 412 

the theoretical/expected values for diamond in equilibrium with both oxidised and reduced 413 

carbon species (Bottinga, 1969, Richet et al., 1977, Chacko et al., 1991, Polyakov and 414 

Kharlashina, 1995). The temperatures of isotopic equilibrium have been estimated using the 415 

pressure estimates of majorite formation/equilibration extrapolated to a typical mantle geotherm 416 

(Katsura et al., 2010; Table 1). The exact magnitude of such fractionation factors may be 417 

inaccurate if these diamonds formed in a “young”, non-thermally equilibrated subducted slab that 418 

foundered in the transition zone. In this case the fractionation factors would move towards more 419 

negative values for oxidised carbon species and more positive values for reduced carbon forms.  420 

Although it is not possible to constrain the exact nature of the diamond-forming fluid 421 

(pure end-member vs multi-component fluid) from the current data, it is clear that at least some 422 

diamonds from Monastery and Jagersfontein formed from oxidised fluids. The formation of ultra-423 

deep diamonds from oxidised source fluids has been suggested based on the observation of 424 

carbonate inclusions within ultra-deep diamonds from Brazil (Wirth et al., 2009, Bulanova et al., 425 

2010) and Kankan (Brenker et al., 2005), and the growing geochemical and experimental 426 
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evidence for the percolation of carbonatitic melts in the deep mantle (Walter et al., 2008, 427 

Burnham et al., 2015, 2016, Thomson et al. 2016a and b).  428 

 Modelling the behaviour of nitrogen for these diamonds during their formation yields KN 429 

= 6.0-10.0, with strong partitioning of nitrogen into diamond for all samples (Table 4). The 430 

magnitude of KN appears to be independent of pressure and likely relates to fluid compositions. 431 

An exclusively compatible behaviour of nitrogen (KN = 4-16) was also observed for ultra-deep 432 

diamonds from Kankan, which formed from both oxidised and reduced fluids (Palot et al., 2014). 433 

 434 

5.3.2 Diamond growth from reduced carbon species 435 

Diamonds Mon A4-03 and JF58 exhibit progressive 13C depletion from core to rim (Fig. 436 

6), leading to positive fractionation factors ΔCdiamond-fluid = +1.2 and +1.5‰ (i.e. diamond is 13C 437 

enriched compared to fluid; Table 4, Fig. 10). Such values are consistent with equilibrium 438 

between diamond and reduced carbon species (Richet, 1977, Satish-Kumar et al., 2011). Again 439 

we cannot resolve whether the fluid is a pure end-member or a mix between several reduced 440 

carbon fluid species (e.g., C2H6 & CH4).  441 

Methane and diamond are predicted to be the dominant carbon species in the deep 442 

asthenosphere (Frost and McCammon, 2008). The observation of micro-inclusions of CH4 in 443 

Marange diamonds demonstrates that CH4-rich fluids exist even at lithospheric depths (Smit et 444 

al., 2016). The discovery of carbide and native iron as inclusions in ultra-deep diamonds 445 

(Kaminsky and Wirth, 2011, Kaminsky, 2012; Smith et al., 2016), including those from 446 

Jagersfontein (Mikhail et al., 2014), document reducing conditions in parts of the deep mantle – 447 

from the deep asthenosphere to the uppermost lower mantle. Models predict metal saturation at 448 

250-300 km depth in the mantle, where carbon forms carbide in metal (e.g. Frost and 449 

McCammon, 2008). The formation of diamond from carbon-iron melt may thus not be restricted 450 
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to the lower mantle (Kaminsky and Wirth, 2011) but may also occur (locally?) within the 451 

asthenosphere/transition zone, as documented by metal-dominated mineral assemblages in large 452 

ultra-deep diamonds (Smith et al., 2016). Owing to the scarcity of these assemblages in natural 453 

samples, we can, however, not exclude that they may reflect extremely localised environments. 454 

The estimated nitrogen partition coefficient between these 2 samples and their parental C-455 

H-O-N fluids is restricted to KN = 0.3-0.7. This contrasts with estimates of other diamonds 456 

supposedly in equilibrium with CH4 fluid (KN = 2 and 8 in Thomassot et al., 2007 and Palot et 457 

al., 2013 respectively).  458 

Ultra-deep diamonds from Jagersfontein and Monastery add to the evidence provided by 459 

ultra-deep diamonds from Juina and Kankan in showing that diamonds within the deep 460 

asthenosphere and transition zone can form from both oxidised and reduced fluids, suggesting 461 

that diamond could be one of the dominant carbon species in this part of the Earth. 462 

 463 

5.3.3 Diamond-forming fluids involving reduced nitrogen species  464 

Diamond Mon B9-07, which formed from oxidised fluids, also shows core-to-rim 15N 465 

enrichment (Fig. 4). Modelling of the δ15N-[N] variations of this diamond yields nitrogen 466 

fractionation factor ΔNdiamond-fluid of -3.0‰ (Table 4, Fig. 11). Such a preferential incorporation 467 

of 15N in diamond over the diamond-forming fluid (i.e. negative ΔNdiamond-fluid) has been 468 

previously observed in lithospheric diamonds from Jericho (Petts et al., 2015) and ultra-deep 469 

diamonds from Kankan (Palot et al., 2014). The isotopic equilibrium between CN- (as an 470 

analogue for nitrogen in diamond – see discussion in Petts et al., 2015) and reduced nitrogen 471 

species (N2, NH3 and NH4
+) has been used here in order make a self-consistent comparison. 472 
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At Tinclusion of 1550°C (majorite-derived barometry projected onto the mantle adiabat), the 473 

empirical ΔNdiamond-fluid of -3.0‰ is in closer agreement to the theoretical fractionation factor of 474 

CN- - NH4
+ (ΔCN-NH4 = -2.5‰, Petts et al., 2015) than with the theoretical fractionation factor for 475 

CN- - N2 (ΔCN-N2 = -1.4‰, Petts et al., 2015). If our samples formed within a colder environment 476 

than convecting mantle such as a subducting slab, the Mon B9-07 point would be shifted toward 477 

the CN- - NH4
+ curve. The magnitude of ΔMon B9-07-fluid is close to estimates for diamonds from 478 

Jericho (Petts et al., 2015), where the source of nitrogen has been proposed to be NH4
+ 479 

molecules. However, due to the relative large uncertainty in estimating the nitrogen fractionation 480 

factor here (which is not quantifiable at the present time), we cannot exclude the possibility that 481 

both diamond forming-fluids contain significant amounts of NH3 (see discussion in Petts et al., 482 

2015).  483 

Thermodynamic calculations (Mikhail and Sverjensky, 2014) predict nitrogen 484 

predominantly in the form of N2 in fluids existing under oxidized conditions (e.g., mantle wedges 485 

at convergent plate margins, or in the carbonate melts emanating from deeply subducted slabs, 486 

e.g., Thomson et al., 2016a), or as NH4
+ in aqueous fluids in equilibrium with more reducing 487 

conditions (e.g. Mikhail and Howell, 2016). In a recent study, Mikhail et al., (2017) have shown 488 

the relationship between pH (in addition to temperature, pressure, oxygen fugacity and chemical 489 

activity) and nitrogen speciation in the mantle, illustrating the complexity of parameters that 490 

control speciation. Such calculations may not be applicable to our ultra-deep samples as 491 

temperatures for the Mikhail et al., (2017) calculations did not exceed 1000°C but further 492 

investigation with extended temperatures and pressure would help to resolve this issue. NH4
+ is 493 

also a dominant nitrogen species in the crust because of its common substitution for K+ in clays, 494 

micas, feldspars, clinopyroxenes and amphiboles (e.g. Watenphul et al., 2010, Busigny and 495 

Bebout, 2013). This substitution of nitrogen into minerals with a large stability range establishes 496 
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a mechanism for transporting nitrogen into the deep mantle during subduction and strengthens 497 

our interpretation of a subduction origin of the studied sample suite.  498 

Estimates of KN ranging from 6.5 to 6 for JF50 and Mon B9-07, respectively, indicate that 499 

nitrogen is strongly concentrated in diamond, making it an important carrier for nitrogen in the 500 

asthenosphere/transition zone. 501 

 502 

5.2 Implication for the deep carbon and nitrogen cycle 503 

The carbon and nitrogen isotopic signatures of the Monastery and Jagersfontein super-504 

deep diamonds indicate the recycling of these elements in the asthenosphere/transition zone. 505 

Systematic higher temperatures of ultra-deep diamond formation (Tinclusion) compared to time 506 

averaged mantle residence temperatures (TN-aggregation) (Table 1), suggest that the studied 507 

diamonds have experienced short residence in the “hot” asthenosphere/transition zone. Such a 508 

short mantle residence time is fully consistent with the fact that most of these diamonds are not 509 

100% aggregated. Using the N systematics (35%B and 20 at.ppm N) of the least aggregated 510 

diamond (Mon B9-07) and assuming a residence temperature of 1480°C (for the appropriate 511 

depth in the convective mantle transition zone) this sample resided for <1Ma before exhumation 512 

either to Earth’s surface or to intermediate storage in a relatively “cool” lithospheric 513 

environment. If these diamonds formed in a cooler slab environment, this would be a minimum 514 

estimate. However, it would still require that the diamonds were picked up from the slab and 515 

transported upwards fairly rapidly, before the subducted slab could thermally equilibrate with the 516 

surrounding mantle. These estimates contrast with the Proterozoic Re-Os sulphide ages for 517 

lithospheric eclogitic diamonds from the Jagersfontein mine (Aulbach et al., 2009), suggesting 518 

that ultra-deep diamonds form in a different way than lithospheric diamonds.  519 
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Rapid vertical movement to shallower mantle conditions is consistent with the 520 

observation of i) un-retrogressed hydrous ringwoodite in a Juina diamond (Pearson et al., 2014; 521 

ii) only partially unmixed inclusions in diamonds coming from the transition zone in Kankan and 522 

Juina (e.g. Harte and Cayzer, 2007) and iii) modeling of the diffusive relaxation of carbon isotope 523 

heterogeneity in ultra-deep diamonds from Kankan (Palot et al., 2014). The unexsolved nature of 524 

the majorite inclusions in our sample suite is consistent with these observations. Combined, these 525 

observations lend strong support to the notion that some component of the transporting 526 

kimberlitic magmas originates in, or below, the transition zone. It can, however, not be ruled out 527 

that ultra-deep diamonds may also be transported by exceptionally vigorous convective mantle 528 

flow (Palot et al., 2012, Tappe et al., 2013). The observation of ubiquitous crustal signatures in 529 

the mantle transition zone raises the question of the importance of this region in terms of the 530 

global carbon budget. Kelemen and Manning (2015) emphasise the efficiency of the subduction 531 

zone “filter” in preventing carbon to go into the deeper convecting mantle. The ultra-deep 532 

diamonds studied here and from other localities clearly indicate a provenance from crustal 533 

protolith-derived fluids within the deep upper mantle and transition zone, but it is likely that this 534 

inventory of crustal carbon is relatively small.  Kelemen and Manning (2015) estimate the total 535 

amount of carbon in the mantle sampled by all kimberlites as ~3 x 105 Mt and make the broad 536 

assumption that this inventory reflects only recycled carbon. Nonetheless, this provides a first 537 

order estimate and translates to a mass fraction of ~ 3.3 x 10-6 of the subducted crustal carbon 538 

reservoir. Even this may be an over-estimate for the carbon in the transition zone, but it is 539 

difficult to improve on the estimate without some additional gross assumptions. If we assume 540 

either that only 2% of kimberlites sample super-deep diamonds, or, that all Type II diamonds, 541 

that represent ~2% of all diamonds, are of super-deep origin (Smith et al., 2016) then only ~ 6 x 542 

103 Mt of carbon (0.66 billionth of the crustal reservoir mass) might exist within transition zone-543 



 24 

hosted diamonds. This estimate is highly uncertain but places a lower bound on the flux of 544 

recycled carbon into the deep mantle. A further complicating issue is the fact that metallic Fe in 545 

the transition zone appears to form C alloys such as cohenite (Smith et al., 2016) and some of the 546 

diamonds analysed here may have equilibrated with such alloys. In a highly reduced and 547 

moderately hydrous environment, carbon would preferentially partition into silicate melt relative 548 

to metal alloy (Li et al., 2015). Despite these complications, it seems likely that the transition 549 

zone is a carbon and nitrogen reservoir dominated by recycled crustal components. 550 

 551 

6. Conclusions 552 

The systematically 13C depleted and 15N enriched signatures in ultra-deep Monastery and 553 

Jagersfontein diamonds indicate that they crystallised from fluids derived from subducted 554 

material. These findings illustrate deep cycling of surficial carbon and nitrogen into the 555 

asthenosphere and transition zone. Combined C- and N- isotopic data across growth sections of 556 

the diamonds support repeated diamond growth via metasomatic processes. Modelling of the 557 

internal co-variations in δ13C-δ15N-N reveals that the diamonds grew from a variety of C-H-O-N 558 

fluids, involving both oxidised and reduced species. Our data support the idea that subducted 559 

oceanic slabs tend to pond at transition zones depths, where carbon mobilized both as oxidised 560 

and reduced species is re-precipitated locally as diamond. Recycled volatiles may dominate the 561 

Earth’s transition zone.  562 
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 1 

Figure 1: Depth of formation of Monastery and Jagersfontein diamonds based on the Si-excess in 2 

majorite garnets based on experimental data from Wijbrands et al. (2016). The chemical 3 

composition data of majorites for Jagersfontein and Monastery diamonds are from Tappert et al. 4 

(2005a) and Moore et al. (1991) respectively.  5 

 6 

Figure 2: Cathodoluminescence images of diamonds JF50 and Mon B9-07. Transects represent 7 

the SIMS analyses of carbon isotopes and nitrogen abundances (dotted lines). The nitrogen 8 

isotopes analyses were right beside those points, but not on the same spot as the δ13C analyses. 9 

 10 

Figure 3: Aggregation states (%B) and nitrogen abundances (at.ppm) by Fourier Transform 11 

infrared (FTIR) analysis of Monastery (this study) and Jagersfontein diamonds (Tappert et al., 12 

2005a). Isotherms are based on second order kinetics for nitrogen diffusion in diamond (Chrenko 13 

et al., 1977, Taylor et al., 1990), and have been calculated for a mantle residence time of 100Ma 14 

(Tappert et al., 2005b). Accuracy for both nitrogen aggregation state and N content is generally 15 

better than ±5% and 15%, respectively (2σ). 16 

 17 

Figure 4: Modelling of the variation between δ13C-δ15N-N for Mon B9-07 following a Rayleigh 18 

distillation process. Free parameters such as initial δ13C, δ15N, nitrogen content N/C of the fluid, 19 

the partitioning coefficient KN and the fractionation factors Δ for C and N between diamond and 20 

diamond-forming fluid are varied for calculations to best fit to data points. The core and rim parts 21 

of the diamond are indicated. Error bars are 2σ. 22 

 23 



 2 

Figure 5: Modelling of the variation between δ13C-N for JF09 and JF44 following a Rayleigh 24 

distillation process. The parameters and methodology are identical to those reported in the Fig. 4. 25 

 26 

Figure 6: Modelling of the variation between δ13C-N for Mon A4-03 and JF58 following a 27 

Rayleigh distillation process. The parameters and methodology are identical to those reported in 28 

the Fig. 4. 29 

 30 

Figure 7: Modelling of the variation between δ13C-δ15N-N for JF50 following a Rayleigh 31 

distillation process. The parameters and methodology are identical to those reported in the Fig. 4. 32 

 33 

Figure 8: δ13C-δ15N values of Monastery and Jagersfontein diamonds. For comparison the 34 

following reservoirs are reported: carbon in carbonates and organic matter (Schidlowski, 1987), 35 

carbon and nitrogen in subducted material (i.e. subducted sediments, oceanic crust and 36 

lithosphere) (Thomazo et al., 2009, Busigny and Bebout, 2013) and mantle-related material 37 

(Cartigny and Marty, 2013). Also shown are the carbon and nitrogen isotopic composition of 38 

diamonds from the lithosphere, the asthenosphere/transition zone and the lower mantle from Sao 39 

Luiz (Hutchinson et al., 1999; Palot et al., 2012) and Kankan (Palot et al., 2012, 2014), the two 40 

main localities providing ultra-deep diamonds. Error bars are 2 σ.  41 

 42 

 43 

Figure 9 Chondrite-normalized (McDonough and Sun, 1995) rare earth element compositions of 44 

majoritic garnet inclusions in diamond from Monastery (Moore et al., 1991) and Jagersfontein 45 

(Tappert et al., 2005a, b). 46 

 47 



 3 

Figure 10 Carbon isotope fractionation factors derived for the studied diamonds and for possible 48 

C-species in the fluid, where ΔCdiamond-fluid = 1000 ln αdiamond-species. Shown are diamond-Fe3C, 49 

diamond-CH4, diamond-CaCO3 and diamond-CO2 fractionation curves which represent the main 50 

possible C-bearing phases involved in the formation diamonds. The curves are derived from 51 

theoretical calculations or laboratory and empirical measurements (Bottinga, 1969, Richet et al., 52 

1977, Chacko et al., 1991, 2001, Polyakov and Kharlashina, 1995, Satish-Kumar et al., 2011), but 53 

data are mostly lacking at high temperatures (>1000°C) and are extrapolated here.  54 

 55 

Figure 11 Nitrogen isotope fractionation factors for diamond Mon B9-07 and possible N-species 56 

in the fluid. Fractionation curves of CN−–N2, CN−–NH3 and CN−–NH4
+ are reported as the best 57 

possible analogue for the diamond-fluid system. This figure has been modified from Fig. 6 in 58 

Petts et al., 2015 and the reader is referred to this study and references therein for detailed 59 

discussion and data sources. Also included is the empirical fractionation factor (calculated from 60 

C- and N-isotope analyses) for lithospheric diamond JDE-25 from Jericho, Canada (Petts et al., 61 

2015), lithospheric diamonds from Premier, RSA (Thomassot et al., 2007) and sublithospheric 62 

diamonds KK-200 and KK-204 from Kankan, Guinea (Palot et al., 2014). 63 

 64 

 65 

























Table 1: Paragenesis of the Jagersfontein and Monastery diamonds and depth of formation (Moore and 
Gurney, 1985; Moore et al., 1991; Tappert et al., 2005a, 2005b). Tinclusion are estimates based on majorite 
inclusion barometry (see Fig. 1) projected on the mantle adiabat of Katsura et al., (2010). TN-aggregation 
represent the average nitrogen aggregation temperatures in diamonds, calculated for a mantle residence 
time of 100Ma (Tappert et al., 2005). N.d. = non determined because of the lack of accuracy either for very 
low nitrogen level samples or fully aggregated diamonds. Estimated accuracy ±20°C (1σ).  
 

Sample name Locality Inclusions Paragenese Approximative  
Depth (km)a 

Tinclusion 
(°C) 

TN-agg. 
(°C) 

ΔT inclusion-TN-agg 
(°C) 

JF01 Jagersfontein Maj Garnet Eclogitic 260 1490 n.d.  
JF09 Jagersfontein Maj Garnet Eclogitic 256 1480 n.d.  
JF22 Jagersfontein Maj Garnet Eclogitic 413 1580 1480 100 
JF37 Jagersfontein Maj Garnet Eclogitic 256 1480 1280 200 
JF39 Jagersfontein Maj Garnet Eclogitic 330 1530 1315 215 
JF42 Jagersfontein Maj Garnet Eclogitic 358 1550 n.d.  
JF43 Jagersfontein Maj Garnet Websteritic 325?    
JF44 Jagersfontein Maj Garnet Eclogitic 308 1520 n.d.  
JF50 Jagersfontein Maj Garnet Eclogitic 244 1480 1300 280 
JF55 Jagersfontein Maj Garnet Eclogitic 405 1580 n.d.  
JF58 Jagersfontein Maj Garnet Eclogitic 269 1490 n.d.  
Mon A4-03 Monastery Maj Garnet Eclogitic 363 1550 1360 190 
Mon B9-07 Monastery Maj Garnet Eclogitic 357 1550 n.d.  
Mon B9-15 Monastery Maj Garnet Eclogitic 371 1560 1375 185 
Mon B9-17 Monastery Maj Garnet Eclogitic 371 1560 1300 260 

a Estimated from the majorite barometer of Wijbrans et al. (2016). 
 



Table 2: Carbon and nitrogen isotope and nitrogen abundance data of Monastery diamonds 
 
Diamond Reference 

number on 
CL images 

δ13C 
(VDP) 

2σ 
(‰) 

[N] 
at.ppma 

2σ δ15N (air) 2σ (‰) [N] 
at.ppmb 

2σ 

Transect 1 
Mon A4-03 1 -17.4 0.1 44 5     
Mon A4-03 2 -17.5 0.1 64 7     
Mon A4-03 3 -16.7 0.1 51 5     
Mon A4-03 4 -18.1 0.1 60 6     
Mon A4-03 5 -16.6 0.1 49 5     
Mon A4-03 6 -15.3 0.1 42 4     
Mon A4-03 7 -14.5 0.1 2 0     

Transect 2 
Mon A4-03 12 -17.3 0.1 53 5     
Mon A4-03 13 -17.9 0.1 59 6     
Mon A4-03 14 -18.1 0.1 57 6     
Mon A4-03 15 -18.1 0.1 65 7     

Others 
Mon A4-03 8 -14.3 0.1 7 1     
Mon A4-03 9 -16.2 0.1 12 1     
Mon A4-03 10 -14.9 0.1 5.7 1     

Transect 1 
Mon B9-07 1 -14.9 0.1 143 15 7.2 1.5 319 32 
Mon B9-07 2 -15.3 0.1 42 4     
Mon B9-07 3 -15.5 0.1 387 40 10.3 1.2 488 49 
Mon B9-07 4 -15.7 0.1 2528 259 4.2 0.6 2451 245 
Mon B9-07 5 -15.5 0.1 1237 128 5.5 0.7 1485 148 
Mon B9-07 6 -15.5 0.1 1276 131 7.0 0.7 1631 163 
Mon B9-07 7 -15.3 0.1 1119 116 4.5 0.6 2391 239 
Mon B9-07 8 -15.7 0.1 2011 207 4.5 0.6 1909 191 
Mon B9-07 9 -15.4 0.1 153 16 7.7 1.8 220 22 
Mon B9-07 10 -15.5 0.1 1364 143 6.1 0.6 1902 190 

Transect 2 
Mon B9-07 16 -15.7 0.1 806 82 8.6 1.1 658 66 
Mon B9-07 15 -15.8 0.1 683 77 9.6 0.9 851 85 
Mon B9-07 14 -15.6 0.1 1438 145 4.6 0.6 1904 190 
Mon B9-07 13 -15.6 0.1 1070 108 8.4 0.9 1100 110 
Mon B9-07 12 -15.6 0.1 1353 137 5.9 0.7 1649 165 
Mon B9-07 11 -15.7 0.1 2190 221 3.8 0.6 2229 223 

Transect 3 
Mon B9-07 18 -15.3 0.1 644 66 7.7 

 
3.1 74 7 

Mon B9-07 19 -15.2 0.1 581 59 6.9 0.9 1027 103 
Mon B9-07 20 -15.6 0.1 807 82 8.2 1.0 915 91 
Mon B9-07 21 -15.3 0.1 583 60 9.3 2.1 162 16 
Mon B9-07 22 -14.9 0.1 70 8 9.7 2.4 123 12 

Others 
Mon B9-07 17 -15.6 0.1 463 47 9.5 1.9 281 28 
Mon B9-07 23 -16.3 0.1 30 3     

Transect 1 
Mon B9-15 1 -18.4 0.1 27 3     
Mon B9-15 2 -18.2 0.1 16 2     
Mon B9-15 3 -18.3 0.1 17 2     
Mon B9-15 4 -18.4 0.1 22 2     
Mon B9-15 5 -18.2 0.1 6 1     

Others 
Mon B9-15 8 -18.7 0.1 34 4     



Mon B9-15 7 -18.4 0.1 33 3     
Mon B9-15 6 -18.2 0.1 31 3     

Transect 1 
Mon B9-17 1 -17.4 0.1 40 4     
Mon B9-17 2 -17.3 0.1 18 2     
Mon B9-17 4 -16.5 0.1 36 4     
Mon B9-17 6 -16.3 0.1 8 1     
Mon B9-17 7 -16.8 0.1 27 3     
Mon B9-17 8 -15.7 0.1 28 3     
Mon B9-17 9 -15.6 0.1 27 3     
Mon B9-17 10 -15.6 0.1 28 3     

Others 
Mon B9-17 3 -16.8 0.1 21 2     
Mon B9-17 5 -15.7 0.1 2 0     
Mon B9-17 11 -15.7 0.1 26 3     
a Measured with carbon isotopic analyses. 
b Measured with nitrogen isotopic analyses. 



Table 3: Carbon and nitrogen isotope and nitrogen abundance data of Jagersfontein diamonds 
 

Diamond 
Reference 
number on 
CL images 

δ13C 
(VDP) 2σ (‰) [N] at.ppma 2σ δ15N (air) 2σ (‰) [N] at.ppmb 2σ 

Transect 1 
JF01 1 -21.6 0.2 6 1     
JF01 2 -21.9 0.1 16 2     
JF01 3 -21.6 0.1 13 1     JF01 4 -21.1 0.1 17 2     JF01 5 -25.3 0.1 5 1     JF01 6 -23.3 0.1 2 0     JF01 7 -23.2 0.1 2 0     JF01 8 -23.4 0.1       JF01 9 -23.4 0.1 1 0     Transect 2 
JF01 10 -23.6 0.1 4 0     JF01 11 -23.3 0.1 4 0     JF01 12 -23.3 0.1 2 0     JF01 7 -23.2 0.1 2 0     JF01 13 -23.3 0.1 2 0     JF01 14 -21.4 0.1 7 1     JF01 15 -25.7 0.1       JF01 16 -21.3 0.1 29 3     Others 
JF01 19 -25.4 0.1 4 0     JF01 18 -21.5 0.1 2 0     
JF01 17 -21.3 0.1 7 1     

Transect 1 
JF09 5 -20.6 0.1 1 0     
JF09 10 -20.6 0.1 0 0     
JF09 11 -20.3 0.1 1 0     
JF09 12 -22.9 0.1 18 2     
JF09 13 -23.1 0.1 32 3     

Transect 2        
JF09 9 -22.0 0.1 1 0     
JF09 8 -21.4 0.1 1 0     
JF09 7 -20.9 0.1 1 0     
JF09 6 -20.6 0.1 1 0     
JF09 5 -20.5 0.1 1 0     
JF09 4 -20.1 0.1 1 0     
JF09 3 -20.0 0.1 1 0     
JF09 2 -19.8 0.1 1 0     
JF09 1 -19.7 0.1 1 0     

Others          

JF09 14 -23.1 
 

0.1 
 22 2     

No CL image 
JF22 1 -18.0 0.1 32 3     JF22 2 -17.6 0.1 31 3     JF22 3 -17.5 0.1 11 1     JF22 4 -17.4 0.1 10 1     JF22 5 -17.4 0.2 45 5     JF22 6 -17.5 0.1 46 5     JF22 7 -17.6 0.1 50 5     JF22 8 -17.4 0.2 18 2     



Transect 1 
JF37 1 -21.9 0.1 60 6     JF37 2 -19.7 0.1 7 1     JF37 3 -22.9 0.1 11 1     JF37 4 -22.7 0.1 16 2     JF37 5 -22.6 0.1 16 2     JF37 6 -22.7 0.1 19 2     JF37 7 -22.5 0.1 30 3     JF37 8 -22.7 0.1 15 2      
JF37 14 -22.6 0.1 17 2     JF37 13 -22.6 0.1 17 2     JF37 12 -22.7 0.1 16 2     JF37 6 -22.7 0.1 19 2     JF37 11 -22.8 0.1 18 2     JF37 10 -22.9 0.1 9 1     JF37 9 -22.8 0.1 5 1      
JF37 15 -22.6 0.1 6 1     JF37 16 -22.7 0.1 3 0     JF37 17 -22.8 0.1 6 1     JF37 18 -22.7 0.1 13 1     JF37 19 -23.0 0.1 5 0     JF37 20 -20.7 0.1 47 5     JF37 21 -19.6 0.1 6 1     JF37 22 -22.2 0.1 31 3     

Transect 1          
JF39 10 -18.2 0.1 125 13 6.8 1.7 330 33 
JF39 9 -18.6 0.1 52 5    JF39 8 -18.6 0.1 43 5    JF39 7 -18.8 0.1 66 7    JF39 6 -18.5 0.2 32 3    JF39 5 -18.3 0.1 16 2    JF39 4 -18.4 0.1 18 2    JF39 3 -18.4 0.1 17 2    JF39 2 -16.4 0.1 4 0    JF39 1 -18.8 0.1 52 5    Transect 2 
JF39 16 -18.8 0.1       JF39 11 -18.7 0.1 17 2     
JF39 12 -18.6 0.1 14 1     JF39 13 -18.5 0.1 13 1     JF39 14 -18.4 0.1 20 2     JF39 5 -18.3 0.1 16 2     JF39 15 -18.3 0.1 13 1     Transect 3 
JF39 20 -18.7 0.1 43 5     JF39 19 -18.6 0.1 39 4     JF39 8 -18.6 0.1 43 5     JF39 18 -18.5 0.1 44 5     JF39 17 -18.5 0.1 62 6     Others 
JF39 23 -16.5 0.1 4 0    JF39 21 -17.8 0.1 308 33 7.1 1.6 300 30 
JF39 22 -19.0 0.1 55 6    

Transect 1 
JF42 11 -15.9 0.2 23 2     JF42 10 -16.9 0.1 49 5     



JF42 9 -17.1 0.1 18 2     JF42 8 -17.4 0.1 3 0     JF42 7 -16.8 0.1 52 5     JF42 6 -17.3 0.1 4 0     JF42 5 -17.4 0.1 4 0     JF42 4 -17.5 0.1 7 1     JF42 3 -17.3 0.1 3 0     JF42 2 -17.4 0.1 3 0     JF42 1 -17.5 0.1 11 1     Transect 2 
JF42 12 -17.4 0.1 8 1     JF42 13 -17.3 0.1 6 1     JF42 5 -17.4 0.1 4 0     JF42 14 -17.4 0.1 7 1     JF42 15 -17.3 0.1 8 1     Others 
JF42 19 -21.8 0.1 58 6     JF42 16 -16.6 0.1 51 5     JF42 20 -21.8 0.1 54 5     JF42 17 -17.2 0.1 3 0     JF42 18 -16.4 0.1 21 2     

Transect 1 
JF43 6 -21.2 0.1 23 2     JF43 5 -21.6 0.1 4 0     JF43 4 -21.5 0.1 3 0     JF43 3 -17.3 0.1 1 0     JF43 2 -17.1 0.1 1 0     JF43 1 -17.4 0.1 2 0     Transect 2 
JF43 7 -17.2 0.1 2 3     JF43 8 -17.1 0.1 2 3     JF43 2 -17.1 0.1 1 1     JF43 9 -17.2 0.1 2 1     JF43 10 -17.1 0.1 2 5     JF43 11 -17.2 0.1 2 5     Others 
JF43 15 -21.7 0.1 31 2     JF43 14 -20.8 0.1 2      JF43 13 -21.4 0.1 12 6     JF43 12 -21.5 0.1 3 1     

Transect 1 
JF44 1 -17.8 0.1 1 0     JF44 2 -17.7 0.1 3 0     JF44 3 -17.8 0.1 2 0     JF44 4 -17.6 0.1 2 0     JF44 5 -18.1 0.1 2 0     JF44 6 -17.7 0.1 1 0     JF44 7 -17.9 0.1 5 1     JF44 8 -18.0 0.1 7 1     JF44 16 -18.0 0.1 9 1     JF44 9 -18.2 0.1 10 1     JF44 10 -18.3 0.1 9 1     JF44 11 -18.3 0.2 9 1     Transect 2 
JF44 14 -18.3 0.1 9 1     JF44 15 -18.1 0.1 8 1     JF44 16 -18.0 0.1 9 1     JF44 17 -18.3 0.1 6 1     



JF44 18 -18.2 0.1 8 1     Others 
JF44 12 -18.3 0.1 4 0     JF44 13 -18.4 0.2 22 3     

Transect 1 
JF50 1 -23.2 0.1 152 16 -0.2 2.2 149 15 
JF50 2 -22.7 0.1 69 8     JF50 3 -22.9 0.1 65 8     JF50 4 -22.8 0.1 83 9 1.1 3.1 82 8 
JF50 5 -23.3 0.1 135 15 0.3 2.6 105 10 
JF50 6 -22.4 0.1 24 2     JF50 7 -20.9 0.1 4 0     JF50 8 -20.3 0.1 2 0     Transect 2 
JF50 15 -22.4 0.1 20 2     JF50 14 -22.4 0.1 9 1     JF50 13 -22.7 0.1 

      JF50 12 -22.8 0.1 88 10 -0.8 2.8 91 9 
JF50 11 -22.5 0.1 62 7     JF50 3 -22.7 0.1 69 8     JF50 10 -22.6 0.1 59 6     JF50 9 -22.9 0.1 68 7     Others 
JF50 16 -22.5 0.1 12 1     JF50 17 -20.5 0.1 2 0     

Transect 1 
JF55 1 -18.0 0.2 8 1     JF55 2 -17.7 0.1 3 0     JF55 3 -18.7 0.1 5 1     JF55 4 -18.1 0.1 3 0     JF55 5 -17.8 0.1 6 1     JF55 8 -17.7 0.1 5 1     Transect 2 
JF55 11 -17.9 0.1 11 1     JF55 12 -18.0 0.1 32 3     JF55 5 -17.8 0.1 6 1     JF55 13 -17.8 0.1 10 1     JF55 14 -18.6 0.1 6 1     Others 
JF55 6 -17.8 0.1 19 2     JF55 7 -17.7 0.1 3 0     JF55 9 -17.9 0.1 3 0     JF55 10 -17.9 0.2 37 4     JF55 15 -17.8 0.1 238 25 7.1 1.6 300 30 
JF55 16 -17.8 0.1 

      JF55 17 -18.0 0.1 29 3     
Transect 1 

JF58 1 -21.6 0.1 74 8     JF58 2 -20.5 0.1 53 5     JF58 3 -16.0 0.3 47 5     JF58 4 -19.3 0.1 44 5     JF58 5 -19.4 0.1 46 5     JF58 6 -19.3 0.1 41 4     JF58 7 -19.8 0.1 49 5     JF58 8 -20.3 0.1 61 7     Others 
JF58 9 -21.8 0.1 77 8     JF58 10 -19.3 0.1 49 5     



a Measured with carbon isotopic analyses. 
b Measured with nitrogen isotopic analyses. 
 

JF58 11 -19.3 0.1 54 6     JF58 12 -19.5 0.1 51 6     



Table 4 Output parameters of the Rayleigh fractionation modelling of the Monastery and Jagersfontein 
diamonds. ∆C and ∆N = isotopic fractionation factor of carbon and nitrogen between diamond and 
diamond forming-fluid, KN = nitrogen partition coefficient between diamond and the fluid, δ13C0 and 
δ15N0= initial carbon and nitrogen isotopic composition of the fluid and N0= initial nitrogen content of the 
fluid. Temperatures are estimates based on majorite inclusion barometry (see Fig. 1) projected on the 
mantle adiabat of Katsura et al. (2010).  
 

Diamond Temperature (°C) ΔC KN δ13Co δ15No No ΔN 
  Oxidized fluids  

Mon B9-07 1550 -1.0 6.0 -14.7 6.8 420 -3.0 
JF09 1480 -2.5 7.0 -20.7  5  
JF44 1520 -2.0 10.0 -16.4  2  
JF50 1480 -2.8 6.5 -20.5  24  
        

  Reduced fluids  
Mon A4-03 1550 1.2 0.3 -15.5  27  
JF58  1490 1.5 0.7 -20.7  65  
 
 



Supplementary material 

 

Appendix A: Cathodoluminescence images of all the studied Monastery diamonds. Transects 

are indicated on the CL images. 

 



 

Appendix B1: Cathodoluminescence images of Jagersfontein diamonds. Transects are 

indicated on the CL images. 



 

Appendix B2: Cathodoluminescence images of Jagersfontein diamonds. Transects are 

indicated on the CL images. 

 

 

Appendix B3: Cathodoluminescence images of Jagersfontein diamonds. Transects are 

indicated on the CL images. 



 

Appendix C: δ 13C -N-spot profiles of the Monastery diamonds. Error bars are 2 σ. 



 

Appendix D1: δ 13C -N-spot profiles of the Jagersfontein diamonds. Error bars are 2 σ. 



 

Appendix D2: δ 13C -N-spot profiles of the Jagersfontein diamonds. Error bars are 2 σ. 



 

Appendix D3: δ 13C -N-spot profiles of the Jagersfontein diamonds. Error bars are 2 σ. 



 

Appendix E: δ15N -N-spot profiles of Mon B9-07 diamond. Error bars are 2 σ. 
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