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Abstract: Microendoscope imaging systems suffer from high levels of aberrations, a narrow
Field of View and short Depth of Field. We present a technique for enhanced imaging through
a microendoscope using a novel computational imaging approach.

OCIS codes: 100.0100, 180.0180.

1. Introduction

1.1. Background

The past fifty years has seen rapid change take place in the biomedical imaging fields, with a push towards minimally
invasive, lower toxicity techniques. A surge in active research, relating to this domain, has been taking place within
the discipline of microendoscopic imaging. Using techniques such as Optical Biopsy [1], these miniature devices -
primarily comprised of Gradient Index (GRIN) optics - have great potential to overcome many of the pitfalls of more
invasive characterisation processes (such as Biopsy and the Frozen Section Method.) However, the benefits introduced
by using miniaturised optical devices are often hampered by an inherently narrow Field of View (FOV), short Depth
of Field (DOF), high levels of intrinsic aberrations and difficulties in navigating the imaging plane through turbid,
biological media to the volume of interest. For example, a typical microendoscope with an NA = 0.5 has a DOF of
less than 1pm making navigation a particular problem for sub-cellular imaging.

1.2.  Computational Imaging

Computational Imaging techniques have already proven disruptive for the biomedical imaging field [2] and provide a
possible route for improved imaging in microendoscopy. In their pivotal paper, Dowski and Cathey [3] demonstrated
that Wavefront Coding (WC) can be used to digitally recover images with an extended Depth of Field without com-
promising resolution. The resultant images, however, are clearly degraded by artefacts arising from variations in the
encoded point Spread Function (PSF) with defocus. A recent technique, developed by P Zammit et al [4—6], has been
shown to overcome such degradations to recover artefact free images with enhanced DOF and 3D ranging.

1.3.  Complementary Kernel Matching

Complementary Kernel Matching (CKM) characterises the spatially variant translation of image components as a
function of defocus which, in turn, enables the determination of the spatially variant defocus of the scene. Using this
defocus map, artefact-free images with an extended DOF can be recovered, along with a two-dimensional defocus
and range map of the imaged scene. This has the potential to improve navigation within an in-vivo imaging scenario
and overcome some of the limitations mentioned above. For example, considering the same microendoscope as above
(with NA = 0.5), the application of CKM has the potential to increase the DOF from 1um to 10um (a factor of ten
improvement). This allows for improved navigation and functional sub-cellular imaging.

2. Preliminary Results

Adding a cubic phase distortion to an optical system changes the PSF in a predictable manner. the composite image
shown in Figure 1d demonstrates the characteristic cubic PSF with side lobes. This image shows the cubic PSF of
a system at three different points along the direction of propagation (z axis). Using the CKM technique, the stan-
dard PSFs were recovered (Figure 1b). Figures lc and 1d show the cubic PSF of the imaging system through the
microendoscope device at different points along the z axis.
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Fig. 1: (a) an image of an in-focus particle (PSF) through the microendoscope system. (b) an image of the same particle
(PSF) at an out of focus z position. (¢) a composite image of a particle (PSF) z-stack taken without the microendoscope
in place. (d) the PSFs from (c) recovered using the CKM technique.
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Fig. 2: A. Paraxial model of a simple 4f system with a microendoscope (highlighted in red). B. A zoomed view of the
microendoscope model used.

Simulations of a paraxial microendoscope system (Figure 2) were carried out using Zemax Optics Studio to inves-
tigate how the introduction of a cubic phase distortion affected the PSFs. Figure 3 demonstrates, as expected, that the
PSF varies in xy as a function of z when no phase mask is in place. Adding the phase distortion, however, demonstrates
that the resultant cubic PSFs should display the characteristic ’L-shaped’ lobes (as demonstrated in Figure 4) in the
absence of aberrations.

3. Future Work

Our preliminary results show that there is potential to apply the CKM technique to a microendoscope imaging system.
We have demonstrated that the experimental cubic PSFs are significantly degraded compared to the simulated results.
It is thought that this may be due to manufacturing processes — or difficulties with aligning the system — which result
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Fig. 3: A series of simulated spot diagrams (through the focal plane) of a microendoscope imaging system. It can
clearly be seen that the PSF is a function of system defocus.
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Fig. 4: The same series of simulated spot size diagrams as Figure 3 with a cubic phase mask in place. The series
demonstrates that the PSF is unchanged with system defocus.

in increased levels of aberrations.
The ongoing aim of this project is to address the high levels of aberrations in the cubic PSF images (Figures 1c and
1d above) by fully characterising and calibrating the system with the microendoscope in place.
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