
 

 
 
 
 
 

Fumero, J., Remmelg, T., Steuwer, M. and Dubach, C. (2015) Runtime Code 

Generation and Data Management for Heterogeneous Computing in Java. In: PPPJ 

'15 Proceedings of the Principles and Practices of Programming on The Java 

Platform, Melbourne, FL, USA, 08-11 Sep 2015, pp. 16-26. ISBN 9781450337120. 

 

   

There may be differences between this version and the published version. You are 

advised to consult the publisher’s version if you wish to cite from it. 
 

© ACM 2016. This is the author's version of the work. It is posted here for your 

personal use. Not for redistribution. The definitive Version of Record was 

published in PPPJ '15 Proceedings of the Principles and Practices of Programming 

on The Java Platform, Melbourne, FL, USA, 08-11 Sep 2015, pp. 16-26. ISBN 

9781450337120, http://dx.doi.org/10.1145/2807426.2807428.   
 
 

http://eprints.gla.ac.uk/146606/ 
     

 
 
 
 
 

 
Deposited on: 28 August 2017 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://dx.doi.org/10.1145/2807426.2807428
http://eprints.gla.ac.uk/146605/
http://eprints.gla.ac.uk/146605/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


Runtime Code Generation and Data Management
for Heterogeneous Computing in Java

Juan José Fumero Toomas Remmelg Michel Steuwer Christophe Dubach
The University of Edinburgh

{juan.fumero, toomas.remmelg, michel.steuwer, christophe.dubach}@ed.ac.uk

Abstract
GPUs (Graphics Processing Unit) and other accelerators are
nowadays commonly found in desktop machines, mobile devices
and even data centres. While these highly parallel processors offer
high raw performance, they also dramatically increase program
complexity, requiring extra effort from programmers. This results
in difficult-to-maintain and non-portable code due to the low-level
nature of the languages used to program these devices.

This paper presents a high-level parallel programming
approach for the popular Java programming language. Our goal is
to revitalise the old Java slogan – Write once, run anywhere — in
the context of modern heterogeneous systems. To enable the use of
parallel accelerators from Java we introduce a new API for
heterogeneous programming based on array and functional
programming. Applications written with our API can then be
transparently accelerated on a device such as a GPU using our
runtime OpenCL code generator.

In order to ensure the highest level of performance, we present
data management optimizations. Usually, data has to be translated
(marshalled) between the Java representation and the
representation accelerators use. This paper shows how marshal
affects runtime and present a novel technique in Java to avoid this
cost by implementing our own customised array data structure.
Our design hides low level data management from the user making
our approach applicable even for inexperienced Java
programmers.

We evaluated our technique using a set of applications from
different domains, including mathematical finance and machine
learning. We achieve speedups of up to 500× over sequential and
multi-threaded Java code when using an external GPU.

Categories and Subject Descriptors D Software [D.1.3]:
Concurrent Programming

Keywords Algorithmic Skeletons,Parallel Patterns,Code
Generation,Heterogeneous Systems,GPGPU

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPPJ ’15, September 08-11, 2015, Melbourne, FL, USA.
Copyright c© 2015 ACM 978-1-4503-3712-0/15/09. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2807426.2807428

1. Introduction
Computer systems are increasingly becoming more complex and
heterogeneous. Systems ranging form workstations to smart phones
are nowadays equipped with multiple parallel processors. These
systems often feature accelerators like Graphics Processing Units
(GPUs) or Intel Xeon PHI. These devices have evolved to general
purpose hardware and can now be effectively used to accelerate
many types of parallel workloads.

Specialized parallel programming approaches have been
introduced targeting heterogeneous systems (e.g., OpenCL [30])
or GPUs in particular (e.g., CUDA [10]). However, programming
such systems using these low-level languages is a challenging task
even for experienced programmers: parallelism is expressed
explicitly by the programmer and data has to be moved manually
to and from the GPU memory. In recent years, this problem has
been acknowledged by the research community and approaches
reducing the programming effort for heterogeneous computing
have been proposed. For instance OpenACC [29] and OpenMP
4.0 [32] allow programmers to target heterogeneous devices by
adding annotations to sequential loops. This reduces the amount of
boilerplate code, but still requires programmers to identify and
explicitly decide how the parallelism should be exploited.

Unfortunately, incorporating heterogeneous computing in
mainstream object oriented languages like Java has so far received
little attention. Existing solutions based on bindings such as
JOCL [23] for Java enable the use of OpenCL device from Java by
exposing all the low-level details of OpenCL. The programmer is
responsible for handling the complexity of programming the
heterogeneous system by writing the actual device code in C and
not in Java and orchestrating its execution. Other approaches such
as Aparapi [1] requires the programmer to write in Java the
computational in a low-level style similar to OpenCL.

Structured parallel programming [8, 27] is a promising
approach where common parallel patterns (a.k.a., algorithmic
skeletons) are used to easily express the algorithmic structure of
the computation. Practical solutions targeting heterogeneous
systems have been developed in form of high-level
libraries [3, 14, 15, 21, 35] as well as programming languages like
Nvidia’s NOVA [9], Lime [12], or SAC [19]. In this paper, we
present a high-level Java API [16] and runtime that is based on
parallel patterns. It can be used to program parallel heterogeneous
hardware transparently from Java. Our goal is to completely hide
the underlying complexity from the programmer using a
high-level interface based on well-known parallel patterns. While
our API is fully Java compliant, we enable heterogeneous
execution by recognizing calls to our API and compile parts of the
Java application to OpenCL kernels at runtime.

In the context of heterogeneous computing and Java Virtual
Machine, data management is an important aspect which has a



direct impact on performance. Usually, a time consuming explicit
conversion between the Java data type and the C OpenCL data
type via JNI is required. In this paper, we focus on addressing the
challenge of seamlessly and efficiently managing data in Java as
well as on the accelerator. We discuss how our implementation
handles shortcomings of Java generics and avoids the cost of
translating between different representations (marshalling) of data
in Java and OpenCL. As we will see in the results section, our
system is able to achieve a large end-to-end speedup compared
with the execution of the original sequential application in Java.

To summarize, our paper makes the following contributions:

1. Presentation of a high-level pattern-based API and its
implementation;

2. Presentation of a Java bytecode to OpenCL code generator for
seamless heterogeneous computing in Java;

3. Presentation of optimization techniques for data management,
including the avoidance of marshalling;

4. Experimental evaluation showing the benefits of
heterogeneous computing and our optimization techniques
using a set of benchmark applications.

The rest of the paper is organized as follows. In Section 2 we
present how our pattern-based API can be used for high-level
parallel programming in Java. Section 3 shows our overall system
design. In Section 4 we discuss the design and implementation of
our high-level pattern-based API and section 5 discusses how we
generate OpenCL code from Java and execute it. Section 6
introduces and discusses our data management optimization
techniques. Section 7 presents our benchmark applications and
how they are expressed in our API. Section 8 evaluates our
approach by showing performance numbers. Section 9 discusses
related work and Section 10 concludes the paper and discuss the
future work.

2. High-Level Programming with Parallel
Patterns in Java

In this section we present our pattern-based Java API which
extends our prior work [16] with the addition of our own array
implementation discussed later. It is designed to be similar in style
to the Stream API introduced in Java 8, both describing operations
performed on arrays. Our design emphasizes composition and
re-usability, allowing programmers to specify a computation once
and apply it multiple times or reuse it as part of a larger
computation. Computations are expressed by composing parallel
patterns (a.k.a., algorithmic skeletons [8]), which are implemented
in an object oriented style in our API but originally inspired from
functional programming.

Listing 1 shows how the computation of dot product is
expressed with our high-level API. On lines 2–5 the computation
of the dot product is defined. The AF class contains factory
methods (static) for creating all patterns known to our system. The
ArrayFunc class implements the Function interface found in Java
8 where the first and second generic type parameter represent the
element type of the input and output respectively. The ArrayFunc

object representing the dot product implementation is defined by
first, multiplying pairwise two vectors using the zip2 and map

patterns (lines 3 and 4). Then the intermediate result is summed up
using the reduce pattern (line 5).

The <Float,Float> generic types before the zip2 specify that
the input to the map array function are two arrays whose elements
are of type Float. This information is added so that the Java
compiler can infer the correct type for the lambda expression used
to customize the map pattern. The information is encoded as a tuple

1 // defining the dot product
2 ArrayFunc <Tuple2 <Float , Float >, Float > dotP
3 = AF.<Float , Float >zip2
4 .map(x -> x._1() * x._2())
5 .reduce ((x,y) -> x + y, 0.0f);
6

7 // input creation from two Java array a and b
8 PArray <Tuple2 <Float , Float >> input
9 = PArray.from(a,b);

10

11 // executing the dot product on the input
12 PArray <Float > output = dotP.apply(input);

Listing 1: Dot product Java code with our pattern-based API

type, i.e., a fixed size collection of values from different types,
which we added to our API. We use a Tuple2 (a.k.a., as Pair) to
represent the two input vectors of the dot product computation.

In order to manage data transfer between Java and an
accelerator transparently for the user, we implemented our own
portable array class: PArray<T>. The implementation of this class
will be discussed later in the paper. Its usage can be seen in
lines 8–9, where we have a factory method to create and initialize
our PArray using two standard Java arrays (a and b). We
automatically infer the generic type T of the PArray<T> class from
the given Java arrays.

Once the computation has been defined and the input data is
prepared, we can start executing the computation. Line 12 shows
how the dot product computation is performed by applying the
input data to the previously defined dotP array function. If a GPU
is present in the system, our runtime will automatically move the
data to the device, execute the computation there and read back the
results. The resulting output is stored in the output array.

This example shows how our parallel patterns can be used to
easily express parallel computations on arrays. Our API is tightly
integrated with modern Java code and no additional programming
language (e.g. OpenCL) has to be learned for targeting
heterogeneous systems. We only use native Java features, like the
newly introduced lambda expressions, which simplifies the
programming, and we use generics to provide a strongly typed
API. Currently, our API supports the well-known basic
data-parallel patterns zip, map, and reduce which can be used as
building blocks for expressing data parallelism. We will see in
Section 7 how these patterns can be used to implement real-world
applications in Java. We plan to extend this set of patterns in the
future to support a wider range of applications (e.g. stencil code,
iterative algorithms).

3. System Overview
Our system is designed to allow transparent use of a parallel
accelerator (e.g. GPU) if available directly from Java. It is built
around three major components: (1) a high-level Java Array
programming API, (2) an OpenCL code generator and (3) a
runtime that manages the execution of the computation on an
OpenCL device. Our high-level API is inspired from the array
programming model and provides the user with composable
algorithmic patterns such as map or reduce as seen in the previous
section. The OpenCL code generator extends the new Oracle
Graal VM [13] (just in time compiler written in Java) to compile
Java byte into OpenCL. Finally, our third component handles data
transfer and device management.

Our code generator internally uses libraries provided by Graal
for processing standard Java byte-code and generate OpenCL code
from it. It is, therefore, not limited to run on the Graal VM, but



Application +
ArrayFunction API

Java Bytecode

(using Graal API)

OpenCL Kernel Generation

OpenCL Execution

Java source compilation

Java execution
dotP.apply(input)

Accelerator

OpenCL Kernel

JOCL

output

Figure 1: Overview of our system.

merely uses functionality and utilities provided by Graal which
facilitates the compilation and runtime code generation.

Figure 1 gives an overview of our system and how the runtime
handles the execution of the example presented in the previous
section. As seen earlier, the application is written in pure Java
where parallelism is expressed with the help of our Array Function
API. We will describe the design and implementation of our API in
Section 4. The application Java code is then compiled into standard
Java byte-code and can be run as usual in a standard Java VM.

At runtime, when the application makes the first call to the
application of an array function, our runtime checks the system
configuration and determines whether we should attempt to run
the computation on an OpenCL device (e.g. GPU). If no OpenCL
device are available, the system will fall back to a pure Java
implementation. If an OpenCL is available, our runtime will
attempt to accelerate the computation using that device. We start
the process of generating an OpenCL Kernel using our Graal
OpenCL backend, which is described in Section 5. This requires
running on a Java VM that supports the Graal API; if this is not
available we fall back to pure Java execution. Note that we do not
rely on any advance features offered by Graal at the moment but
simply use it as a frontend for accessing the Java byte-code. Once
the OpenCL kernel has been generated, we execute it on the
accelerator using the JOCL OpenCL Java bindings, as described in
Section 6. If there is any runtime error, the execution aborts and
the computation resumes safely in pure Java.

In contrast with prior work such as LiquidMetal [12], our
system generates the OpenCL kernel at runtime whenever it
detects a usable OpenCL device. In our case the application is
packaged as standard Java Bytecode without any device specific
code. This is an important feature since we keep the philosophy of
“compile-once run-everywhere”. In addition, this offers the unique
opportunity to specialise the code for the device available. The
same design can be used to support another device-specific
backend (e.g.. CUDA PTX) or to implement device specific
optimizations.

4. API Design & Implementation
In this section we discuss the design of our Java API for
heterogeneous systems. From a programming point of view, our
API puts emphasis on composability and reuse of parallel patterns.
From a performance point of view, our API allows applications to

Ar r ayFunc

Map

MapThr eads

MapOpenCL

Reduce. . .
appl y( )  {
 f or  ( i  = 0;  i  < s i ze;  ++i )
   out [ i ]  = f . appl y( i n[ i ] ) ) ;
}

appl y( )  {
 f or  ( t hr ead :  t hr eads)
   t hr ead. per f or mMapSeq( ) ;
}

appl y( )  {
 copyToDevi ce( ) ;
 execut e( ) ;
 copyToHost ( ) ;
}

Funct i on

Figure 2: Inheritance of the implementation of Map pattern.

be portable and support execution on conventional Java as well as
accelerators without requiring code changed from the programmer.

4.1 API Design
As Java is an object oriented programming language, our API is
designed and implemented in an object oriented style, but still
different from similar previous Java libraries like JMuesli [24] or
Skandium [26]. Each parallel array operation in our API, like Map

or Reduce, is represented as a class which inherits from the abstract
ArrayFunc<inT, outT> super class. This class defines the apply

method which is used for performing an operation on an input array
and produce an output array.

A concrete operation, like Map, can be instantiated either
directly using the new keyword, e.g., new Map(f), or by invoking a
corresponding factory method, e.g., .map(f), as shown in
Listing 1. All factory methods are defined in the ArrayFunc

super-class, which allows the programmer to chain the
instantiation of multiple operations. As all classes are
implemented as generics our API ensures that only type safe
compositions can be used.

Each parallel pattern is customized with an object satisfying
the new Java Function interface. Most conveniently, a lambda
expression is used to create this object, as shown in Listing 1.
This design is fundamental different from similar previous Java
libraries [24, 26], where the programmer customizes the patterns by
implementing subclasses inheriting from predefined superclasses
defining the interface used by the implementation of the pattern.
This purely object oriented style requires a lot of boilerplate code,
as new classes have to implemented and instantiated. In our API
design, all of this can be avoided by using the new Java lambda
expressions, which follow a more functional style and are easier to
read and maintain.

4.2 Portable Implementation
Our design allows for a portable implementation which supports
the execution on accelerators as well as conventional Java. Figure 2
shows the inheritance relationships for the implementation of the
Map pattern.

The Map class inherits, like all parallel patterns, from the
abstract ArrayFunc class. This class provides a straight forward
sequential implementation of the map pattern in Java which can,
for example, be used for testing and debugging purposes. A
parallel implementation using Java threads is provided in the
separate subclass MapThreads. This class can be customized by
specifying the number of threads used for the parallelization,
where our default is the number of available processor cores.



...
10: aload_2
11: iload_3
12: aload_0
13: getfield
16: aaload
18: invokeinterface#apply
23: aastore
24: iinc
27: iload_3
...

Java source
Map.apply(f)

Java bytecode

Graal VM

CFG + Dataflow
(Graal IR)

void kernel (
  global float* input,
  global float* output) {
    ...;
    ...;
} OpenCL Kernel

3. optimizations

2. IR generation

4. kernel generation

1. Type inference

Figure 3: OpenCL code generation process from compiled Java
byte-code run within the Graal VM. 1) First, we infer the input data
types of the lambda expression. 2) Then the byte-code is converted
into the Graal IR representation (control flow + data flow graph)
and 3) various optimizations are performed. 4) Finally, our backend
generates an OpenCL kernel

Finally, the OpenCL implementation of the map pattern is
encapsulated in its own subclass MapOpenCL. This implementation
performs three basic steps upon execution: 1) upload the input
data to the accelerator; 2) perform the computation on the
accelerator; 3) download the computed result back to Java.

The OpenCL kernel code generation happens just-in-time and
will be explained in more detail in Section 5. Our implementation
uses internally the Graal API to perform the OpenCL kernel
generation and relies on the JOCL Java bindings for OpenCL to
drive the execution. Note that if the Graal API is not present or if
there is no OpenCL device detected, the execution of the
computation via OpenCL is not possible. In this case the
implementation of the super class is invoked as a fallback, which
means the computation is performed in Java using multiple
threads.

From a design point of view it is maybe suprising that
MapOpenCL inherits from MapThreads instead directly from Map, but
from an implementation point of view this design has the benefit
of allowing for a straightforward implementation of the fallback
behaviour.

The map factory method shown earlier in Listing 1 creates an
instance of the MapOpenCL class, so that our implementation by
default will first try to execute on an accelerator using OpenCL
and only if that fails perform the computation in Java.
Programmers also have the possibility to easily commit to a
specific implementation by creating an instance of the appropriate
class for performing the map computation sequentially, using
multiple threads, or using OpenCL.

5. OpenCL Kernel Compilation
This section describes the process of generating OpenCL code from
Java which allows us to execute computations seamlessly on GPUs.
We use Oracle’s Graal infrastructure [18] for our implementation
and developed our own OpenCL backend for it.

5.1 Overview
Our compilation and code generation process is shown in
Figure 3. The programmer writes the application by using our API

as discussed earlier. A program written with our API is then
compiled to ordinary Java byte-code using the standard Java
compiler. This results in byte-code which represents parts of the
implementation of the map parallel primitive. The byte-codes
contain a virtual call to the apply method of the lambda f which
implements the Function interface.

At runtime, when the map primitive is called, our
implementation transforms the original byte-code into OpenCL
code following four steps. First, we need to rediscover the types
used in the lambda since all the generics have been erased. Once
the type information has been recovered, the byte-code is
converted to the Graal IR which is a CFG (Control Flow Graph).
We invoke standard Graal IR optimizations such as inlining and
node replacements to produce an optimized CFG. After
optimization, we generate the OpenCL code by traversing the
CFG and generating appropriate OpenCL source code for each
node in the Graal IR. Once the kernel is created, we cache and
reuse it if the user makes another call to the same map function.

5.2 Type Inference
Before we can actually generate an OpenCL kernel, we need to
recover the type information in the lambda expression of the map
function. The original type information is erased by the Java
compiler since lambda functions use generics. To recover this
information, our system execute a small part of the computation in
pure Java for each high-level patterns (e.g. map, reduce, zip). For
instance, in the case of the map pattern, we simply run the lambda
expression on the first element of the input array. Using runtime
reflection, we can infer both the input and output type of each
expression. This information is then stored into the Graal IR to
make it available when generating OpenCL code.

5.3 Graal IR Generation and Optimization
To generate the Graal IR we first identify the code regions in the
program which should be compiled into an OpenCL kernel. For
example, for the map pattern, the customizing lambda expression
is handed over to Graal which parses the corresponding byte-code
into its own internal IR [13].

Once the Graal IR is generated, we perform a series of
transformations for preparing it for the OpenCL code generation.
Each of these transformations operates on the control flow graph
(CFG), by removing existing nodes or adding new nodes. We start
the optimization process by applying common compiler
optimizations:

• Canonicalizing: local optimizations such as constant folding
and local strength reduction are applied.

• Inlining: method calls are replaced in the graph by the
implementation of the corresponding method.

• Dead code elimination: code segments which are never
executed are removed from the graph.

We apply an additional set of OpenCL specific optimizations to
remove and transform nodes which do not require a corresponding
implementation in OpenCL. For example, we remove null pointer
checks on the inputs and output arguments to the function since
we can check for these outside of the kernel. We also eliminate the
(un)box nodes by converting all the wrapper objects such as Float
or Integer to their corresponding primitives equivalent (float,
int). In addition, we extended the existing node replacement
strategy in Graal for dealing with OpenCL specific math
operations. Method calls to the Java math library are transparently
replaced with OpenCL specific nodes representing calls to
equivalent OpenCL built-in math functions. Note that if at any
point during this process we encounter a problem (e.g. a feature



used in the lambda not supported in OpenCL), we abort the
OpenCL kernel generation process and fall back to pure Java
execution.

5.4 OpenCL Code Generation Example
We now illustrate the optimization and code generation process
with a small example. Consider the following program which
multiplies all the integer input elements by two and cast them to a
double value:

ArrayFunc <Integer ,Double > mul2 =
AF.map(x -> (double)x*2);

Figure 4 shows the Graal IR (leftmost) corresponding to our
example. The Param node corresponds to the input parameter. The
MethodCallTarget node in the IR together with the
Invoke#Integer.intValue node performs the unboxing of the
Integer object into an integer primitive. After applying the
inlining and dead code optimization passes we obtain the graph in
the middle, where the invoke nodes representing method calls
have been replaced. As a result, the intValue invocation is
lowered to an Unbox node and a null pointer check is added.
Similarly the Double.valueOf node is lowered into a Box node.
After applying our OpenCL specific optimizations the graph on
the right is produced where exceptions and (un)boxing are
removed, as there are not required in our OpenCL implementation.
The graph on the right is then passed to our OpenCL kernel
generator, which produces the final OpenCL code as shown in the
figure.

1 inline double lambda0(int p0) {
2 double cast_1 = (double) p0;
3 double result_2 = cast_1 * 2.0;
4 return result_2;
5 }
6 kernel void lambdaComputationKernel (
7 global int * p0,
8 global int *p0_index_data ,
9 global double *p1 ,

10 global int *p1_index_data)
11 {
12 int p0_dim_1 = 0; int p1_dim_1 = 0;
13 int gs = get_global_size (0);
14 int loop_1 = get_global_id (0);
15 for ( ; ; loop_1 += gs) {
16 int p0_len_dim_1 = p0_index_data[p0_dim_1 ];
17 bool cond_2 = loop_1 < p0_len_dim_1;
18 if (cond_2) {
19 int auxVar0 = p0[loop_1 ];
20 double res = lambd0(auxVar0);
21 p1[p1_index_data[p1_dim_1 + 1] + loop_1]
22 = res;
23 } else { break; }
24 }
25 }

Listing 2: OpenCL Kernel automatically generated by the Graal-
OpenCL runtime

Listing 2 shows the complete kernel generated automatically
for the example above. Lines 1–5 show the code generated for
the lambda expression, which multiplies the vector element by a
constant and performs the int to double conversion. Lines 6–25
show the implementation of map in OpenCL. The global ID is
obtained in line 14 and is used to access the elements from the
arrays passed to the main kernel which are passed to the generated
function in line 20.

0.0

0.2

0.4

0.6

0.8

1.0

A
m

o
u

n
t 

o
f 

to
ta

l 
ru

n
ti
m

e
 i
n

 %

Unmarshaling

CopyToCPU

GPU Execution

CopyToGPU

Marshaling

Java overhead

Figure 5: Breakdown of the total runtime of the Black Scholes
application into single steps. The marshalling and unmarshalling
steps are constituting over half of the total runtime.

6. OpenCL Data Management
In this section we discuss the challenge of efficiently managing data
in a heterogeneous setting with Java and the CPU on the one side
and OpenCL and the GPU on the other. We start the section by
describing the challenges involved and providing some evidence
of the scale of the problem. Then we discuss our optimization
techniques applied to address these challenges.

6.1 The Challenge of Data Management
Efficient data management is essential in heterogeneous systems.
Usually the CPU and GPU do not share the same physical memory
and, therefore, data has to be moved between them which can limit
the performance benefits of the GPU. The usage of Java introduces
an additional challenge for efficiently managing data. Java uses
reference semantics, i.e., references to objects are managed instead
of the objects itself. When a collection of objects is stored in an
array the references to the objects are stored in the array. This
data management is fundamentally different from value semantics
used in OpenCL (which it inherits from C) where not references to
objects but instead the objects themselves are stored in the array.

For primitive types like int and float, Java uses the same
value semantics as C but unfortunately these types cannot be used
together with Java generics. As our API relies on generics for
ensuring strong type safety, we cannot use primitives types
directly. To circumvent this drawback Java provides corresponding
wrapper types (Integer and Float) which follow Java
conventional reference semantics and can be used together with
generics.

The process of translating between the two data representation
of Java and OpenCL is known as (un)marshalling. Unfortunately,
marshalling is an expensive task. Figure 5 shows the runtime for
the Black Scholes application (discussed later in Section 7)
implemented using our API without applying any data
management optimizations. We can see that the marshalling and
specially the unmarshalling steps take up 90% of the runtime. In
the next subsection we are going to discuss optimizations to avoid
performing marshalling altogether.

6.2 A Portable Array Class
To take control of the data management and to be able to apply
optimizations, we implemented our own array class which we
named “PArray” for Portable Array (portable across devices).
PArray<T> is a generic Java class, where T is the type of the
elements stored in the array. T can either be the wrapper of a
primitive type, e.g., Float, our own tuple type class, e.g.,



Param

StartNode MethodCallTarget

Invoke#Integer.intValue

DoubleConvert Const (2.0)

*

MethodCallTarget

Invoke#Double.valueOf

Param

StartNode IsNull

GuardingPi (NullCheckException)

DoubleConvert Const (2.0)

*

Box

Return
Return

Unbox

Param

StartNode

DoubleConvert Const (2.0)

*

Return

inline double lambda0 ( int p0 )  {

      double cast_1 = ( double ) p0 ;
      double result_2 = cast_1 * 2.0;
      return result_2 ;
}

Figure 4: Graal IR optimisation phases and C OpenCL code generation. The left side shows the Graal IR for the input code in Java (lambda
expression). Then, in-line Graal IR optimisation is invoked and it produces the second graph. As we produce C OpenCL code, we do not
need to support null pointers, box and unbox, therefore this graph is optimised given the graph in the right side.

Tuple2<Float, Float> or a nested array type for representing
multidimensional data. Our array class follows a value semantics,
i.e., instead of references to values copies of the values are stored
in the array. This enables us to avoid the marshalling step and
directly pass a pointer to our internal storage to the OpenCL
implementation, as no Java code can hold a reference to an
element in our arrays.

6.2.1 Handling Generics
Our implementation of the PArray<T> class uses the Java
Reflection API at runtime to inspect the type of T the first time the
array is filled up with data. If T is a wrapper type like Float our
implementation directly stores a buffer of the underlying primitive
type; for an PArray<Float> internally we store a Java
FloatBuffer from the Java.nio package which is a low-level data
storage of primitive float values. This implementation strategy
helps us to circumvent the drawback that Java generics cannot be
used together with primitive types, which has been reported as a
major performance disadvantage of JMuesli [24].

6.2.2 Tuples Support
For arrays of tuples we internally store multiple buffers, one for
each component of the tuple since this layout is generally more
efficient on accelerators. For example for an PArray<Tuple2<Float

, Double>> we store one FloatBuffer and one DoubleBuffer as
can be seen in figure 6. When an element of such an array is
accessed from Java code we build an object of type Tuple2<Float

, Double> on the fly. Using this data layout we can avoid the
marshalling cost for tuples, as our generated OpenCL kernels will
accept one array per component of the tuple as arguments.

It is possible to use our PArray and Tuple types in the lambda
expressions used for customizing the patterns. For example the
lambda expression might return a tuple (as it is the case for the
Black-Scholes benchmark discussed later in Section 7). For

Programmer's View

Tuple2

...

Graal-OCL VM

float float float float...

double double double double...

FloatBuffer

DoubleBuffer

...

0 1 2 n-1

...

0 1 2 n-1

0 1 2 n-1

float

double

Tuple2

float

double

Tuple2

float

double

Tuple2

float

double

...

PArray<Tuple2<Float,Double>>

Figure 6: Strategy to avoid marshalling in the VM for the OpenCL
component.

instance the following code show a simple example which stores
the same value twice in a Tuple2:

AF.<Float > map(x -> new Tuple2 <>(x, x));

This is perfectly legal in our system. When generating the OpenCL
kernel code for this lambda expression we generate a C struct

representing the Tuple2 instance.

6.3 Data Optimizations
We now discuss two optimizations that our system perform
specifically to reduce data management overheads (marshalling
and transfer to/from the device).



6.3.1 Avoiding Marshalling
The main motivation for implementing our own array class is that
we can completely avoid the cost of marshalling. The low-level
buffers, like FloatBuffer, store their values in the same data layout
as expected by C and OpenCL. When executing an OpenCL kernel
we can directly move the data from the FloatBuffer to the GPU
without the marshalling step which can add significant overhead,
as we showed in our previous paper [16]. We provide custom get

and put methods for accessing the elements in our arrays.
When a lambda expression reads or return tuples, the generated

OpenCL kernel code for such a lambda expression will read or
store its results directly from/into many distinct OpenCL buffers
– one for each component of the tuple. Since our code generator
knows about our special Tuple classes, we can generate the correct
OpenCL code. When copied back from the GPU to the CPU these
OpenCL buffers are copied directly into the allocated low-level
Java buffers, thus, avoiding the unmarshalling step.

For multidimensional arrays, e.g., PArray<PArray<Float>>, we
allocate a single flattened buffer and perform the appropriate index
calculations when accessing the array. Again this allows us to
circumvent the marshalling step, as in OpenCL multidimensional
data is usually handled in the same manner.

6.3.2 Pinned Memory
Implementing our own array class also offers us the ability to
decide precisely where to allocate the storage for the data. In the
case where the computation involved the use of an OpenCL device
(e.g., GPU), we allocate the data in pinned memory at the OS
level (i.e., the memory pages involved will never be swapped). This
enables faster transfer time between the host and the device since
the GPU DMA engine can be used, freeing the CPU from managing
the data transfer.

7. Benchmark Applications
In this section we present our four benchmark applications ranging
from linear algebra (saxpy), to applications from the fields of
mathematical finance (Black-Scholes), physics (N-Body
simulation), data analysis (Monte Carlo simulation) and
machine-learning with k-means clustering). We discuss how they
can be implemented by an application developer using our pattern
based API.

7.1 Single-Precision alpha X Plus Y (saxpy)
Our first benchmark application is a simple linear algebra
benchmark which scales a vector with a constant α and then adds
it too another vector. Listing 3 shows the implementation of saxpy
using our API. The two input vectors are combined into an array
of pairs using the zip pattern (in line 3). The following map pattern
is then used to specify how to process each pair of elements. The
computation is specified using a lambda expression (see line 4),
where the two corresponding elements of both vectors are added
together after the first vector has been scaled with alpha. This
example shows how ordinary variables defined outside of the
patterns can naturally be accessed inside an lambda expression.

7.2 Black-Scholes
The Black-Scholes financial mathematics application is a standard
method used is high frequency trading and computes so called call
and put options for stock prices. Listing 4 shows the
implementation in Java using our API. We use the map pattern (see
line 2) to compute the call and put options for a given stock price.
The map returns the call and put options encoded in a tuple (see
line 5). Finally, in line 8 computation is applied to the array of
stock prices.

1 float a = 1.5f;
2 ArrayFunc <Tuple2 <Float , Float >, Float > saxpy
3 = AF.<Float , Float > zip2()
4 .map(p -> a * p._1() + p._2());
5

6 PArray <Float > result = saxpy.apply(left ,right);

Listing 3: Saxpy Java code with our ArrayFunction API

1 ArrayFunc <Float , Tuple2 <Float , Float >> bs
2 = AF.<Float > map( stockPrice -> {
3 float call = computeCallOption (...);
4 float put = computePutOption (...);
5 return new Tuple2 <>(call , put); });
6

7 PArray <Tuple2 <Float , Float >> result
8 = bs.apply(sPrices);

Listing 4: Implementation of the Black-Scholes application using
our pattern-based API

1 ArrayFunc <Tuple7 <...>, Tuple7 <...>> nBody
2 = AF.<...> zip7().map( b -> {
3 float f[] = computeForce(b, bs);
4 updateForce(b, f);
5 updateVelocity(b, f);
6 return b; });
7

8 do { bs = nBody.apply(bs); } while (condition);

Listing 5: N -Body simulation implemented using our API.

7.3 N -Body Simulation
N -Body simulations are widely used in physics and astronomy to
simulate how a system of particles (a.k.a., bodies) behaves over
time. In an iterative process, forces between each combination of
pairs of bodies are computed from which the velocity of each body
is derived.

Our implemented (shown in Listing 5) encodes the bodies as
tuples with seven elements: the first three elements encode the
position; the next three elements encode the velocity; and the last
element encodes the mass of the body. In each step of the iteration
(line 8) we update the array of bodies bs by applying the
computation to each body b using the map pattern (line 2). Inside
the map we first compute the force which act upon body b from all
other bodies before we use this to update its force and velocity
(see lines 3–5).

7.4 Monte Carlo Simulation
Monte Carlo simulations perform approximations using statistical
sampling, i.e., by generating and analyzing a large number of
random numbers. This basic technique is useful in a number of
applications ranging from risk management, physics simulation, to
data analysis.

In our implementation we generate a large number of random
values to approximate the value of π. We generate an array of
random numbers in Java on which we apply the map pattern. Each
random number serves as a random seed to initialize the pseudo-
random number generator on the GPU which generates a large
number of random numbers in parallel.



1 ArrayFunc <Float , Float > mc
2 = AF.<Float > map( seed -> {
3 for (int i = 0; i < iter; ++i) {
4 seed = updateSeed(seed);
5 float x = generateRandomNumber(seed);
6 float y = generateRandomNumber(seed);
7 if (dist(x, y) <= 1.0f) { sum++; } }
8 return sum / iter; } );
9

10 PArray <Float > result = mc.apply(seeds);

Listing 6: Monte Carlo simulation implemented with our
ArrayFunction API

1 do { // step 1
2 membership = AF.<Float ,Float >zip2().map( p

-> {
3 return computeClusterID(p, centers);
4 } ).apply(points);
5 // step 2
6 centers = computeAndUpdateCentres(points ,

memberships);
7 } while (condition);

Listing 7: Kmeans classification by using the ArrayFunction API

7.5 K-means Clustering
K-means clustering is a method from the domain of machine-
learning to group (or cluster) similar data points. Its an iterative
refinement process which contains of two steps: 1) each data point
is assigned to its nearest cluster; 2) the new center point of the
cluster is computed based on all points in the cluster.

Listing 7 shows a sketch of the implementation in Java using
our API. We only express the first step using our API. This shows
how our API can naturally integrate with ordinary Java code, which
implements the second step. The computation is executed as an
iterative process until a termination condition is met (see line 7).
A data point is represented as a tuple of two float values, therefore,
we use the zip2 pattern together with the map pattern (see line 2)
to compute the nearest new cluster id for each point p. Because
this computational step requires access to the cluster centers, we
defined the computation inside the iteration where the centers

variable can be access inside the lambda expression. Our caching
mechanism explained in section 5 ensures that we only generate the
OpenCL kernel for this computation once.

After the points have been assigned to clusters we perform the
second step of updating the cluster centers in pure Java by calling a
static method (see line 6). This shows the tight and fluid integration
of our API with Java, where one computational step is performed
on the GPU and the next one in Java, both steps defined using the
same language.

8. Evaluation
Experimental setup We evaluated our approach using two
separate systems. The first system comprising a four core Intel i7
4770K processor with 16GB of RAM and a AMD Radeon R9
295X2 GPU with 2 × 4GB of graphics memory. The second
system has the same Intel CPU also with 16GB RAM and a Nvidia
GeForce GTX Titan Black with 6GB graphics memory. We use
OpenCL 1.2 and the latest GPU drivers available (AMD: 1598.5,
Nvidia: 331.79). The Java version used is Oracle JRE 8 (1.8.0.25).

We executed every benchmark 100 times and present the
median runtime measured. We measured the execution time for a
sequential version of each benchmark in pure Java and compare it
against parallel versions implemented using our API running on
the multi core CPU and the GPU. We include all overhead in our
measurements, especially the time required for transferring data to
and from the GPU. We do not include the time for performing the
JIT compilation of the Java byte-code, neither for the Java Hotspot
compiler nor for our Graal based implementation.

Generating the OpenCL code for our benchmarks takes
between 70 and 300 milliseconds. We use a caching system to
store the generated GPU code similar to the handling of CPU code
by normal JVMs. Therefore, if the same GPU computation is
executed multiple times, we generate the code only once and
obatin the generated code from the cache afterwards.

We measure performance using two input data sizes for each
benchmark. For saxpy the smaller input size is an array of 64 MB
and the larger of 512 MB of float values. K-means processes 8
million (small) and 33 million (large) points. Black-Scholes
computed options for 200 thousand (small) and 6 million (large)
stock prices. N-Body simulates 64 and 256 thousand particles and
Monte Carlo is initialized with 256 thousand random numbers for
the small input size and with 1 million random numbers for the
large input size.

Runtime Results Java Multithreaded Execution We evaluate all
our benchmarks against sequential Java implementations which
operate on arrays of primitive Java types. This is how Java
programmers traditionally implement performance oriented
applications reaching performance close to native written C code.

On our system uses a four core CPU with hyper-threading. We
uses our API as shown in the previous section to implement our
benchmarks and performed measurements using 1, 2, 4, 8, and
16 Java threads. The results are shown in Figure 7. The y-axis
shows the speedup of our implementation over the sequential Java
implementation.

The first benchmark saxpy is a very memory intensive
benchmark with few computations performed per memory
operation. Therefore, we did not expect to see a speedup as the
multiple threads executing all wait for the data to be read from
memory. The sequential Java application already uses the perfect
memory layout, a primitive float array, using our API we
introduce an overhead by using a FloatBuffer as our storage and
passing the float values through some layers of our API.

The other four benchmarks show substantially better results, as
these are benchmarks more suited for parallel execution. For the
K-Means application we compare the runtime of the first step,
where using our API gives a speedup of over 3× as compared to
sequential Java for the larger data size. For Black-Scholes, N-Body
and Monte Carlo, we can even see higher speedups of up to 5×.

We can especially see, that the single threaded implementation
using our API introduces no, or only a moderate overhead, as
compared to sequential Java for these four benchmarks. Overall,
these results show, that our API is well-suited for implementing
data-parallel applications in Java even when only using the power
of a multi core CPU.

Runtime Results GPU Execution For execution on the GPU we
can reuse the unmodified application we used for our runtime
measurements with Java threads. Figure 8 shows the speedups we
obtain over sequential Java when we perform the computations on
two different GPUs: a Nvidia GeForce GTX Titan Black and a
AMD Radeon R9 295X2 GPU.

In Figure 8 we use a logarithmic scale on the y-axis, because of
the large speedups we obtain for some of the benchmarks. For
each benchmark, input data size, and GPU we show two bars: one



0

1

2

3

4

5

6

small large

Saxpy
small large

K−Means

small large

Black−Scholes

small large

N−Body
small large

Monte Carlo

S
p
e
e
d
u
p
 v

s
. 
J
a
va

 s
e
q
u
e
n
ti
a
l

Number of Java Threads

#1 #2 #4 #8 #16

Figure 7: Speedup for all benchmark applications over sequential Java execution with multiple Java threads.

0.1

1

10

100

1000

small large

Saxpy

0.004 0.004
small large

K−Means
small large

Black−Scholes
small large

N−Body
small large

Monte Carlo

S
p
e
e
d
u
p
 v

s
. 
J
a
va

 s
e
q
u
e
n
ti
a
l

Nvidia Marshalling Nvidia Optimized AMD Marshalling AMD Optimized

Figure 8: Speedup for all benchmark applications over sequential Java execution with GPU.

showing the application runtime with marshalling and the second
bar showing the runtime with our optimizations applied as
described in Section 6 which avoid marshalling.

We can see that the effect of marshalling can be very significant
and our optimization technique avoiding marshalling enables large
additional speedups. For the saxpy application we can see, that
GPU execution with marshalling introduces a significant slowdown
over sequential Java execution up to three orders of magnitude. By
avoiding marshalling we can even obtain a small speedup for this
memory-intensive benchmark.

For K-Means we can see that avoiding marshalling allows the
speedups to jump by a factor of ≈ 10×, from about 3× to 30×.
For Black-Scholes the speedup improves from 10.0× to 121.0×
for the small data size and from 2.3× to 169.4× for the large data
size. These two applications are examples of applications which
offer substantial parallelism, but require a significant amount of
data to be transferred between Java and the GPU. For these type
of applications our optimization can offer a runtime improvement
of up to 70× times, as observed for the large data size of Black-
Scholes executed on the AMD GPU.

The last two applications N-Body and Monte Carlo are
examples of applications which are very computational intensive,
therefore, these applications very effectively harness the power of
the GPU resulting in massive speedups of up to 600 over
sequential Java for the N-Body application executed on the AMD
GPU. For these applications little data is moved between Java and

the GPU, therefore, our data management optimizations have only
a very minor effect on the overall application runtime.

Overall the results show that our API offers high performance
for data parallel application executed on the GPU. Massive
performance improvements can be achieved using application
written in pure Java using our API. In addition, for some
applications our data management optimizations significantly
improve performance.

9. Related Work
Other projects have been proposed to simplify parallel and
especially GPU programming using high-level abstractions in Java
and other programming languages.

9.1 Skeleton- and Pattern-Based Approaches
Parallel pattern based programming approaches have been studied
in theory and practice for some time [8, 27]. Cole [8] introduced
functional parallel patterns as algorithmic skeletons. Multiple
implementations of skeleton frameworks have been developed
since for clusters and multi-core CPUs, e.g., FastFlow [4] and
Muesli [15]. For a comprehensive overview see [17]. SkelCL [35]
and SkePU [14] are recent skeleton frameworks offering
high-level patterns similar to the once presented in this paper for
programming multi-GPU systems in C++.

Intels Threading Building Blocks allows programmers to
express parallel programs in a structured way [27]. Predefined



building blocks are customized and used similar to the patterns
presented in this paper. TBB can be used to program multi core
CPUs as well as Intels Xeon Phi accelerator. Thrust [21] and
Bolt [2] are C++ libraries developed by NVIDIA and AMD which
offer sets of customizable patterns to simplify GPU programming.
While some ideas are similar to our approach, non of these
projects target Java as we do.

JMuesli [24] and Skandium [26] are skeleton libraries for
programming clusters and multi-core CPUs from Java. Different
to our approach these projects do not target GPUs and do not
make use of the most recent Java 8 features, like lambda
expressions, which greatly simplifies the programming and allows
the programmer to avoid writing extensive boilerplate code.

9.2 Low-level Language Extensions
There exists also lower level extensions for existing languages
which include directive approaches such as OpenMP and
OpenACC. OpenACC, as well as OpenMP in its latest version 4.0,
introduce directives and clauses for heterogeneous computing as a
extension for C/C++ and Fortran Programmers. Both approaches
defines a set of directives which the programmer uses to annotate
loops in the program. The directives add information how the
loops can be parallelized and executed on GPUs. These approach
have been used to target GPUs by converting OpenMP to
CUDA [25], hiCUDA [20] which translates sequential C code to
CUDA or accULL, an OpenACC implementation which generates
OpenCL and CUDA source code [34]. Although these approaches
saves a lot of engineering work, they remain low level:
programmers have to express the parallelism explicitly and must
control the data transfer to and form the GPU explicitly as well.

9.3 High-Level Languages for GPUs Programming
Many similar projects outside of the Java world have been
proposed for simplifying GPU programming. Accelerate is a
functional domain specific language built within Haskell to
support GPU acceleration [6]. Copperhead [5] is a data parallel
programming language by NVIDIA integrated in Python.
NOVA [9] is a functional programming language developed by
NVIDIA offering parallel patterns as primitive in the language to
express parallelism. HiDP [28] is a parallel programming
language which uses patterns to hierarchical structure data parallel
computations. Obsidian [7] is an embedded language for Haskell
which allows to program in GPU by using high level
constructions. Obsidian uses an API as a intermediate layer for
optimizations with CUDA. X10 [36] is a language for high
performance computing that can also be used to program
GPUs [11]. However, the programming style often remains
low-level since the programmer has to express the same low-level
operations found in CUDA or OpenCL.

Lime [12] is a Java based programming language which adds
new operators to the Java programming language to easily
expressing parallelism for stream computations. It has been
defined by IBMs for their Liquid Metal project and can be
compiled to OpenCL code for GPU execution. Programmers have
to commit to learn a new language, whereas they can use our API
directly in Java. Furthermore, switching the programming
language is often not an option, as it requires a major investment
for rewriting the entire software project.

9.4 Java-Specific Approaches for GPU programming
For programming GPUs in Java there exists simple language
bindings for OpenCL (JOCL [23]) or CUDA (JavaCL [22]).
However, by using these bindings programmers are forced to
switch programming languages and encode their computations
directly in OpenCL or CUDA. Rootbeer [33] and Aparapi [1],

both developed by AMD, address this issue by converting Java
bytecode to OpenCL at runtime. Nevertheless, these projects
remain low-level as they still require the programmer to explicitly
exploit the parallelism and do not raise the level of abstraction like
our approach does.

Sumatra [31] is a new OpenJDK project aiming to use the Java
8 Stream API as input and compile it to HSAIL code which can be
executed by AMD GPUs. This approach is very similar to ours in
spirit, but our API design has a stronger emphasize on re usability
and composability in contrast to the Java 8 Stream API. In addition,
we generate OpenCL code which allows us to target a broad range
of hardware which is currently not the case with HSAIL.

10. Conclusion and future work
In this paper, we have presented a high-level API for easily
expressing parallel programs in Java. Our implementation
compiles at runtime the Java bytcode to OpenCL and executes it
on GPUs. We presented optimizations techniques which reduce
the overhead introduced by Java and are applied automatically
inside our compiler and runtime system.

We evaluated our approach using five benchmarks from
different application domains. Our runtime experiments show, that
using the GPU speedups of over 500× (including overheads) are
possible with our approach. We show that our data management
optimizations avoid the cost of marashalling and can substantially
improve performance by up to 70x when executing on GPUs.

For future work, we plan to extend our API with more patterns,
e.g., to enable nearest neighbor (a. k. a. stencil) computations. We
plan to choose our patterns with care, because we want to keep the
number of patterns small as they should act a set of basic building
block. We want the users to leverage composition to build larger
computational patterns from these building blocks.

Based on the presented infrastructure for executing efficient
GPU applications in Java, we want to explore advanced memory
optimizations such as usage of the fast local memory on GPUs from
the high-level API.

Besides, we want to extend our API to support multi GPU
execution and simultaneous execution in Java and on GPUs. We
intend to exploit machine learning techniques for predicting for
a given combination of application and hardware the best way to
execute the application, using Java, a GPU, or both.

Acknowledgments
We would like to thank Oracle Labs for their support of this work.
The authors would also like to thank the anonymous rewiers, as
well as Thibaut Lutz, Alberto Magni and Andrew McLeod for
fruitful discussions and their help regarding our implementation
and benchmarks.

References
[1] AMD. Aparapi. http://aparapi.github.io/.
[2] AMD. Bolt C++ template library. http://github.com/

HSA-Libraries/Bolt.
[3] BUONO, D., DANELUTTO, M., LAMETTI, S., AND TORQUATI, M.

Parallel Patterns for General Purpose Many-Core. In 21st Euromicro
International Conference on Parallel, Distributed, and Network-
Based Processing, PDP 2013, Belfast, United Kingdom (2013), IEEE
Computer Society, pp. 131–139.

[4] CAMPA, S., DANELUTTO, M., GOLI, M., GONZÁLEZ-VÉLEZ,
H., POPESCU, A. M., AND TORQUATI, M. Parallel Patterns for
Heterogeneous CPU/GPU Architectures: Structured Parallelism from
Cluster to Cloud. Future Generation Comp. Syst. 37 (2014), 354–366.

[5] CATANZARO, B., GARLAND, M., AND KEUTZER, K. Copperhead:
Compiling an Embedded Data Parallel Language. In Proceedings

http://aparapi.github.io/
http://github.com/HSA-Libraries/Bolt
http://github.com/HSA-Libraries/Bolt


of the 16th ACM Symposium on Principles and Practice of Parallel
Programming (2011), PPoPP.

[6] CHAKRAVARTY, M. M., KELLER, G., LEE, S., MCDONELL, T. L.,
AND GROVER, V. Accelerating Haskell array codes with multicore
GPUs. In Proc. of the 6th workshop on Declarative Aspects of
Multicore Programming (2011), DAMP.

[7] CLAESSEN, K., SHEERAN, M., AND SVENSSON, J. Obsidian: GPU
Programming in Haskell. In In Proc. of 20th International Symposium
on the Implementation and Application of Functional Languages
(2008), IFL.

[8] COLE, M. Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press, Cambridge, MA, USA, 1991.

[9] COLLINS, A., GREWE, D., GROVER, V., LEE, S., AND SUSNEA, A.
NOVA: A functional language for data parallelism. In Proceedings
of the 2014 ACM SIGPLAN International Workshop on Libraries,
Languages, and Compilers for Array Programming (2014), ARRAY.

[10] Nvidia CUDA, 2015. http://developer.nvidia.com/.
[11] CUNNINGHAM, D., BORDAWEKAR, R., AND SARASWAT, V. GPU

Programming in a High Level Language: Compiling X10 to CUDA. In
Proceedings of the 2011 ACM SIGPLAN X10 Workshop (2011), X10.

[12] DUBACH, C., CHENG, P., RABBAH, R., BACON, D. F., AND FINK,
S. J. Compiling a High-level Language for GPUs: (via Language
Support for Architectures and Compilers). In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation (2012), PLDI.

[13] DUBOSCQ, G., WÜRTHINGER, T., STADLER, L., WIMMER, C.,
SIMON, D., AND MÖSSENBÖCK, H. Graal IR: An Intermediate
Representation for Speculative Optimizations in a Dynamic Compiler.
In Proceedings of the 7th ACM Workshop on Virtual Machines and
Intermediate Languages (New York, NY, USA, 2013), VMIL, ACM,
pp. 1–10.

[14] ENMYREN, J., AND KESSLER, C. W. SkePU: A Multi-backend
Skeleton Programming Library for multi-GPU Systems. In
Proceedings of the Fourth International Workshop on High-level
Parallel Programming and Applications (2010), HLPP.

[15] ERNSTING, S., AND KUCHEN, H. Algorithmic Skeletons for Multi-
core, Multi-GPU Systems and Clusters. IJHPCN 7, 2 (2012), 129–
138.

[16] FUMERO, J. J., STEUWER, M., AND DUBACH, C. A Composable
Array Function Interface for Heterogeneous Computing in Java. In
Proceedings of ACM SIGPLAN International Workshop on Libraries,
Languages, and Compilers for Array Programming (2014), ARRAY.

[17] GONZÁLEZ-VÉLEZ, H., AND LEYTON, M. A Survey of Algorithmic
Skeleton Frameworks: High-level Structured Parallel Programming
Enablers. Softw. Pract. Exper. 40, 12 (Nov. 2010), 1135–1160.

[18] GRAAL. Oracle Graal VM. http://openjdk.java.net/
projects/graal/.

[19] GUO, J., RODRIGUES, W., THIYAGALINGAM, J., GUYOMARC’H,
F., BOULET, P., AND SCHOLZ, S.-B. Harnessing the Power of GPUs
without Losing Abstractions in SAC and ArrayOL: A Comparative
Study. In Proceedings of the IPDPS 2011 Workshop on High-Level
Parallel Programming Models and Supportive Environments (2011),
pp. 1183–1190.

[20] HAN, T. D., AND ABDELRAHMAN, T. S. hiCUDA: High-level
GPGPU programming. IEEE Trans. Parallel Distrib. Syst. 22, 1 (Jan.

2011).
[21] HOBEROCK, J., AND BELL, N. Thrust: A Parallel Template Library.

http://developer.nvidia.com/thrust.
[22] Java bindings for OpenCL, 2015. http://javacl.googlecode.

com.
[23] Java bindings for OpenCL. http://www.jocl.org/.
[24] KUCHEN, H., AND ERNSTING, S. Data Parallel Skeletons in Java.

In Proceedings of the International Conference on Computational
Science, ICCS 2012, Omaha, Nebraska, USA, 4-6 June, 2012 (2012),
H. H. Ali, Y. Shi, D. Khazanchi, M. Lees, G. D. van Albada,
J. Dongarra, and P. M. A. Sloot, Eds., vol. 9 of Procedia Computer
Science, Elsevier, pp. 1817–1826.

[25] LEE, S., MIN, S.-J., AND EIGENMANN, R. OpenMP to GPGPU: a
Compiler Framework for Automatic Translation and Optimization. In
Proceedings of the 14th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming (1999), PPoPP.

[26] LEYTON, M., AND PIQUER, J. M. Skandium: Multi-core
Programming with Algorithmic Skeletons. In Proceedings of the 18th
Euromicro Conference on Parallel, Distributed and Network-based
Processing, PDP 2010, Pisa, Italy, February 17-19, 2010 (2010),
M. Danelutto, J. Bourgeois, and T. Gross, Eds., IEEE Computer
Society, pp. 289–296.

[27] MCCOOL, M., ROBISON, A. D., AND REINDERS, J. Structured
Parallel Programming. Morgan Kaufmann, 2012.

[28] MUELLER, F., AND ZHANG, Y. HIDP: A Hierarchical Data Parallel
Language. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO) (2013),
CGO.

[29] OpenACC. http://www.openacc-standard.org/.
[30] OpenCL. http://www.khronos.org/opencl/.
[31] OPENJDK. Project Sumatra. http://openjdk.java.net/

projects/sumatra/.
[32] OpenMP 4.0. http://openmp.org/wp/.
[33] PRATT-SZELIGA, P. C., FAWCETT, J. W., AND WELCH, R. D.

Rootbeer: Seamlessly Using GPUs from Java. In High Performance
Computing and Communication 2012 IEEE 9th International
Conference on Embedded Software and Systems (HPCC-ICESS), 2012
IEEE 14th International Conference on (2012), G. Min, J. Hu, L. C.
Liu, L. T. Yang, S. Seelam, and L. Lefevre, Eds., HPCC-ICESS.

[34] REYES, R., LÓPEZ-RODRÍGUEZ, I., FUMERO, J. J., AND
DE SANDE, F. accULL: An OpenACC Implementation with CUDA
and OpenCL Support. In European Conference on Parallel Processing
(2012), Euro-Par.

[35] STEUWER, M., KEGEL, P., AND GORLATCH, S. Skelcl - A portable
skeleton library for high-level GPU programming. In 25th IEEE
International Symposium on Parallel and Distributed Processing,
IPDPS 2011, Anchorage, Alaska, USA, 16-20 May 2011 - Workshop
Proceedings (2011), IEEE, pp. 1176–1182.

[36] TARDIEU, O., HERTA, B., CUNNINGHAM, D., GROVE, D.,
KAMBADUR, P., SARASWAT, V., SHINNAR, A., TAKEUCHI, M.,
AND VAZIRI, M. X10 and APGAS at Petascale. In Proceedings of
the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (2014), PPoPP.

http://developer.nvidia.com/
http://openjdk.java.net/projects/graal/
http://openjdk.java.net/projects/graal/
http://developer.nvidia.com/thrust
http://javacl.googlecode.com
http://javacl.googlecode.com
http://www.jocl.org/
http://www.openacc-standard.org/
http://www.khronos.org/opencl/
http://openjdk.java.net/projects/sumatra/
http://openjdk.java.net/projects/sumatra/
http://openmp.org/wp/

	1 Introduction
	2 High-Level Programming with Parallel Patterns in Java
	3 System Overview
	4 API Design & Implementation
	4.1 API Design
	4.2 Portable Implementation

	5 OpenCL Kernel Compilation
	5.1 Overview
	5.2 Type Inference
	5.3 Graal IR Generation and Optimization
	5.4 OpenCL Code Generation Example

	6 OpenCL Data Management
	6.1 The Challenge of Data Management
	6.2 A Portable Array Class
	6.2.1 Handling Generics
	6.2.2 Tuples Support

	6.3 Data Optimizations
	6.3.1 Avoiding Marshalling
	6.3.2 Pinned Memory


	7 Benchmark Applications
	7.1 Single-Precision alpha X Plus Y (saxpy)
	7.2 Black-Scholes
	7.3 N-Body Simulation
	7.4 Monte Carlo Simulation
	7.5 K-means Clustering

	8 Evaluation
	9 Related Work
	9.1 Skeleton- and Pattern-Based Approaches
	9.2 Low-level Language Extensions
	9.3 High-Level Languages for GPUs Programming
	9.4 Java-Specific Approaches for GPU programming

	10 Conclusion and future work

