Novel homozygous splice acceptor site GnRH Receptor (GnRHR) mutation: human GnRHR “knockout”

Silveira, L.F.G., Stewart, P.M., Thomas, M., Clark, D.A., Bouloux, P.M.G. and MacColl, G.S. (2002) Novel homozygous splice acceptor site GnRH Receptor (GnRHR) mutation: human GnRHR “knockout”. Journal of Clinical Endocrinology and Metabolism, 87(6), pp. 2973-2977. (doi: 10.1210/jcem.87.6.8535) (PMID:12050282)

Full text not currently available from Enlighten.

Abstract

Mutations in the GnRH receptor (GnRHR) have been shown to be responsible for a significant number of autosomic recessive and, less commonly, sporadic cases of idiopathic hypogonadotropic hypogonadism. We describe a woman with complete GnRH resistance secondary to a novel homozygous GnRHR gene mutation, transmitted as an autosomal recessive trait. The propositus presented with primary amenorrhea and absent thelarche and pubarche. Dynamic tests demonstrated absent spontaneous gonadotropin pulsatility, and no response to either exogenous pulsatile (10 μg/pulse at 90-min intervals over 6 h) or acute (100 μg) GnRH administration. However, she responded to exogenous gonadotropin administration, with a resulting normal pregnancy. Genomic DNA extracted from peripheral blood was PCR amplified using amplimers spanning intron-exon boundaries for the three exons of GnRHR and revealed a homozygous splice junction mutation (G to A transversion) at the intron 1-exon 2 boundary. Her unaffected sister, with a totally normal phenotype, was heterozygous for this mutation. After lymphocyte Epstein-Barr virus transformation, RNA was extracted and subjected to RT-PCR, using primers located in the first and third exons. Results showed a transcript lacking all of exon 2 (exon 2 skipping), with splicing of exon 1 to exon 3. This created a frame shift, generating a coding sequence for three new amino acids, followed by a stop codon. Although it is not clear whether the mutant receptor is actually expressed, the resultant mRNA sequence was presumed to produce a truncated receptor with no binding or signaling capacity.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Clark, Dr Duncan
Authors: Silveira, L.F.G., Stewart, P.M., Thomas, M., Clark, D.A., Bouloux, P.M.G., and MacColl, G.S.
College/School:College of Medical Veterinary and Life Sciences > School of Life Sciences
Journal Name:Journal of Clinical Endocrinology and Metabolism
Publisher:Oxford University Press
ISSN:0021-972X
ISSN (Online):1945-7197

University Staff: Request a correction | Enlighten Editors: Update this record