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The coefficient of determination R> quantifies the proportion of variance
explained by a statistical model and is an important summary statistic
of biological interest. However, estimating R” for generalized linear mixed
models (GLMMs) remains challenging. We have previously introduced a ver-
sion of R? that we called chLMM for Poisson and binomial GLMMSs, but not
for other distributional families. Similarly, we earlier discussed how to estimate
intra-class correlation coefficients (ICCs) using Poisson and binomial GLMMs.
In this paper, we generalize our methods to all other non-Gaussian distributions,
in particular to negative binomial and gamma distributions that are commonly
used for modelling biological data. While expanding our approach, we highlight
two useful concepts for biologists, Jensen’s inequality and the delta method,
both of which help us in understanding the properties of GLMMs. Jensen’s
inequality has important implications for biologically meaningful interpretation
of GLMMs, whereas the delta method allows a general derivation of variance
associated with non-Gaussian distributions. We also discuss some special con-
siderations for binomial GLMMs with binary or proportion data. We illustrate
the implementation of our extension by worked examples from the field of ecol-
ogy and evolution in the R environment. However, our method can be used
across disciplines and regardless of statistical environments.

1. Introduction

One of the main purposes of linear modelling is to understand the sources of
variation in biological data. In this context, it is not surprising that the coeffi-
cient of determination R? is a commonly reported statistic, because it
represents the proportion of variance explained by a linear model. The intra-
class correlation coefficient (ICC) is a related statistic that quantifies the
proportion of variance explained by a grouping (random) factor in multilevel/
hierarchical data. In the field of ecology and evolution, a type of ICC is often
referred to as repeatability R, where the grouping factor is often individuals
that have been phenotyped repeatedly [1,2]. We have reviewed methods for
estimating R? and ICC in the past, with a particular focus on non-Gaussian
response variables in the context of biological data [2,3]. These previous articles
featured generalized linear mixed-effects models (GLMMs) as the most versatile
engine for estimating R? and ICC (specifically RéLMM and ICCgraym)- The
descriptions were initially limited to random-intercept GLMMs, but have
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later been extended to random-slope GLMMs [4], widening
the applicability of these statistics (see also [5,6]).

However, at least one important issue seems to remain. Cur-
rently, these two statistics are only described for binomial and
Poisson GLMMs. Although these two types of GLMM are
arguably the most popular [7], there are other families of distri-
butions that are commonly used in biology, such as negative
binomial and gamma distributions [8,9]. In this paper, we
revisit and extend RéLMM and ICCgp v to more distributional
families with a particular focus on negative binomial and
gamma distributions. In this context, we discuss Jensen’s
inequality and two variants of the delta method, which are
hardly known among biologists. These concepts are useful not
only for generalizing our previous methods, but also for inter-
preting the results of GLMMs. Furthermore, we refer to some
special considerations when obtaining RéLMM and ICCqrvm
from binomial GLMMs for binary and proportion data, which
we did not discuss in the past [2,3]. We provide worked
examples inspired from the field of ecology and evolution, focus-
ing on implementation in the R environment [10] and finish by
referring to two alternative approaches for obtaining R* and
ICC from GLMMs along with a cautionary note.

2. Definitions of Ry, ICCoipm and
overdispersion

To start with, we present RZGLMM and ICCgppym for a simple
case of Gaussian error distributions based on a linear
mixed-effects model (LMM, hence also referred to as R%MM
and ICCpyp). Imagine a two-level dataset where the first
level corresponds to observations and the second level to
some grouping/clustering factor (e.g. individuals with
repeated measurements) with k fixed-effect covariates. The
model can be written as (referred to as Model 1):

4
vi = Bo+ Y By, + @i + &, (2.1)
=1
a; ~ Gaussian(0, 0% (2.2)
and g;j ~ Gaussian(0, 0*2), (2.3)

where y;; is the jth observation of the ith individual, x, is the jth
value of the ith individual for the hth of k fixed-effect predic-
tors, By is the (grand) intercept, By, is the regression coefficient
for the hth predictor, a;is an individual-specific effect, assumed
tobe normally distributed in the population with the mean and
variance of 0 and o2, g; is an observation-specific residual,
assumed to be normally distributed in the population with
mean and variance of 0 and of, respectively. For this model,
we can define two types of R* as

2 _
RLMM(m)_O_'fZ+0_2+0_2/ (2.4)

2 _ a

k
and o7 = var (Z Bh’%,-) , (2.6)
I

where R%MM(m) represents the marginal R?, which is the pro-
portion of the total variance explained by the fixed effects,
R%MM(C) represents the conditional R?, which is the propor-
tion of the variance explained by both fixed and random
effects, and o7 is the variance explained by fixed effects [11].

As marginal and conditional R* differ only in whether the [ 2 |

random effect variance is included in the numerator, we
avoid redundancy and present equations only for marginal
R? in the following.

Similarly, there are two types of ICC:

0.2

ICCrmm(adj) = o _: p (2.7)
and
0.2
ICCLMM - m . (28)
a f &

If no fixed effects are fitted (other than the intercept),
0'% =0 so that ICCpyy(agj) equals ICCpy. In such a case,
the ICC should not be called ‘adjusted” (sensu [2]). For an
ICC value to be adjusted for a source of variance, that var-
iance must be more than 0 and omitted from the ICC
calculation. As the two versions of ICC differ only in
whether the fixed-effect variance, calculated as in equation
(2.6), is included in the denominator, we avoid redundancy
and present equations only for adjusted ICC in the
following.

One of the main difficulties in extending R? from LMMs to
GLMMs is defining the residual variance o2. For binomial and
Poisson GLMMs with an additive dispersion term, we have
previously stated that o2 is equivalent to o2 + 03, where o2 is
the variance for the additive overdispersion term, and ofi
is the distribution-specific variance [2,3]. Here, overdispersion
represents the excess variation relative to what is expected
from a certain distribution and can be estimated by fitting an
observation-level random effect (OLRE; [12,13]). Alternatively,
overdispersion in GLMMs can be implemented using a multi-
plicative overdispersion term [14]. In such an implementation,
we stated that o2 is equivalent to w - 03, where w is a multipli-
cative dispersion parameter estimated from the model [2].
However, obtaining ¢ for specific distributions is not always
possible, because in many families of GLMMs, o (obser-
vation-level variance) cannot be clearly separated into o2
(overdispersion variance) and o} (distribution-specific var-
iance). It turns out that binomial and Poisson distributions
are special cases where o'é can be usefully calculated, because
either all overdispersion is modelled by an OLRE (additive
overdispersion) or by a single multiplicative overdispersion
parameter (multiplicative overdispersion). This is not the case
for other families. However, as we will show below, we can
always obtain the GLMM version of ¢> (on the latent scale)
directly. We refer to this generalized version of o2 as ‘the
observation-level variance’” here rather than the residual
variance (but we keep the notation ¢?). Note that the
observation-level variance, o-ﬁ, should not be confused with
the variance associated with OLRE, which estimates o2 and
can be considered to be a part of o2.

3. Extension of R, and 1CCq

We now define RZGLMM and ICCgiym for a quasi-Poisson
(may also be referred to as overdispersed Poisson) GLMM,
because the quasi-Poisson distribution is an extension of
Poisson distribution [15,16] and is similar to the negative
binomial distribution, at least in their common applications
[9,17]. Imagine count data repeatedly measured from a
number of individuals with associated data on k covariates.
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Table 1. The observation-level variance o for the three distributional families: quasi-Poisson, negative binomial and gamma with the three different methods
for deriving o2: the delta method, lognormal approximation and the trigamma function, ;. var[In(x)] = g (v) = > -, 1/(v + n) when x follows
gamma distribution. In the R environment, the function, trigamma can be used to obtain s, (v); also note that v is known as a shape parameter while « is as -
a rate parameter in gamma distribution.

distributional
parameters

mean (E[y]) link
variance (var[y]) function

lognormal
approximation

delta method

trigamma function

ELZOLLOZ ‘:ﬂ a)‘npaluj )ogy[ ‘Bjd'ﬁu!qs!|qnd‘/(19pos‘|é/(ougsJ

quasi-Poisson (QP) P(A o) Ely] = log 2 n (1 N g) " <£)
Poisson A>0 vary] = Aw square-root 025w —
(when w = 1) w>0
negative binomial (NB) ~ NB(A, 6) Elyl = A lo ! + ! In( 14 ! + ! ! + -
9 , = g 3 yte) hlixts
e /\2 : squareroot L
0> 0 var[y] :)H_? 0.25<1+—6>
1 1
gamma gamma(A, v) Eyl=A log - In (1 + ) n(v)
14 14
e /\2 e
1 1
gamma (alternative gamma(v, k) Ey] = z log - In (1 + —> Un(v)
K 14 1%
parameterization) ‘ - ‘ - ‘
v>0 v inverse K —
>0 varfy] = e

We fit a quasi-Poisson (QP) GLMM with the log-link function
(Model 2):

vij ~ QP(Aj, w), (3.1)
k
ln()‘l]) =B+ Z thhij +ai (32)
h=1
and a; ~ Gaussian(0, %), (3.3)

where y;; is the jth observation of the ith individual and y;; follows
a quasi-Poisson distribution with two parameters, A; and w
[15,16], In(A;) is the latent value for the jth observation of the
ithindividual, wis the overdispersion parameter (when the multi-
plicative dispersion parameter w is 1, the model becomes a
standard Poisson GLMM), ¢; is an individual-specific effect,
assumed to be normally distributed in the population with the
mean and variance of 0 and o2, respectively (as in Model 1),
and the other symbols are the same as above. Quasi-Poisson dis-
tributions have a mean of A and a variance of Aw (table 1). For such
a model, we can define RéLMM(m) and (adjusted) ICCgp .y as

i

R2 = 34
QPInm) = 62 1 02 +In(1 + w/A) (54

and
ICCap-1n = A (3.5)

o2 +In(l+ w/A)’

where the subscript of R* and ICC denotes the distributional
family, here QP-In for quasi-Poisson distribution with log link,
the term In(1 + w/A) corresponds to the observation-level var-
iance o-ﬁ (table 1; for derivation, see the electronic
supplementary material, appendix S1), w is the overdispersion

(reciprocal) 3

parameter, and A is the mean value of A;;. We discuss how to
obtain A in §5.

The calculation is very similar for a negative binomial
(NB) GLMM with the log link (Model 3):

vij ~ NB(A;;, 0), (3.6)
k
]n()‘lj) = BO + Z thhij + i (37)
h=1
and a; ~ Gaussian(0, %), (3.8)

where y;; is the jth observation of the ith individual and y;
follows a negative binomial distribution with two par-
ameters, A; and 6, where 6 is the shape parameter of the
negative binomial distribution (given by the software often
as the dispersion parameter), and the other symbols are the
same as above. The parameter 6 is sometimes referred to as
‘size’. Negative binomial distributions have a mean of A
and a variance of A + A%/ 6 (table 1). RéLMM(m) and (adjusted)
ICCqrmm for this model can be calculated as

R? = o
NB-In(m) ™ 2 L2 L In(1 4+ 1/A+ 1/6)

(3.9)

and

a2

1CCNp-m = 2 +In(1+1/x+1/6)

(3.10)

Finally, for a gamma GLMM with the log link (Model 4):

yij ~ gamma(Ajj, v), (3.11)
k
In(A;j) = By + Zﬁhxh,, +ai (3.12)
h=1
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and a; ~ Gaussian(0, o'i), (3.13)

where y;; is the jth observation of the ith individual and y;; fol-
lows a gamma distribution with two parameters, A; and v,
where v is the shape parameter of the gamma distribution
(sometimes statistical programmes report 1/v instead of v;
also note that the gamma distribution can be parametrized
in alternative ways, table 1). Gamma distributions have a
mean of A and a variance of A?/v (table 1). RZGLMM<m) and
(adjusted) ICCgrmm can be calculated as

0.2
RZ — f 3.14
gamma- In(m) 0.% + U’ﬁ + ]_n(l + 1/1)) ( )
and
0.2
ICCyamma-tn = 1 (3.15)

2 +In(l+1/v)

4. Obtaining the observation-level variance by
the ‘first’ delta method

For overdispersed Poisson, negative binomial and gamma
GLMMs with log link, the observation-level variance af can
be obtained via the variance of the lognormal distribution
(electronic supplementary material, appendix S1). This is the
approach that has led to the terms presented above. There
are two more alternative methods to obtain the same target:
the delta method and the trigamma function. The two alterna-
tives have different advantages and we will therefore discuss
them in some detail in the following.

The delta method for variance approximation uses a first-
order Taylor series expansion, which is often employed to
approximate the standard error (error variance) for trans-
formations (or functions) of a variable x when the (error)
variance of x itself is known (see [18]; for an accessible refer-
ence for biologists, [19]). The delta method for variance
approximation can be written as

2
var[f(x)] ~ var|x] (%f (x)) , (4.1)

where x is a random variable (typically represented by obser-
vations), f represents a function (e.g. log or square-root), var
denotes variance and d/dx is a (first) derivative with respect
to variable x. Taking derivatives of any function can be
easily done using the R environment (examples can be found
in the electronic supplementary material, appendices). It is
the delta method that Foulley et al. [20] used to derive the
distribution-specific variance o3 for Poisson GLMMs as 1/A
(see also [21]). Given that var[y] = A in the case of Poisson
distributions and dIn(A)/dx=1/A, it follows that
var(In(y)] ~ A(1/ A)? = 1/A (note that for Poisson distributions
without overdispersion, o3 is equal to o> because o> = 0).
One clear advantage of the delta method is its flexibility. We
can easily obtain the observation-level variance o2 for all kinds
of distributions/link functions. For example, by using the delta
method, it is straightforward to obtain o2 for the Tweedie distri-
bution, which has been used to model non-negative real
numbers in ecology (e.g. [22,23]). For the Tweedie distribution,
the variance on the observed scale has the relationship
var[y] = ¢u?, where u is the mean on the observed scale and
¢ is the dispersion parameter, comparable to A and w in
equation (3.1), and p is a positive constant called an index

parameter. Therefore, when used with the log-link function, n

02 can be approximated by ¢u?~? according to equation
(4.1). The lognormal approximation In(1 + ¢u(?~?)) is also poss-
ible (see the electronic supplementary material, appendix S1;
table 1).

The use of the trigamma function iy is limited to distri-
butions with log link, but it is considered to provide the most
accurate estimate of the observation-level variance o2 in those
cases. This is because the variance of a gamma-distributed vari-
able on the log scale is equal to ¥ (v), where v is the shape
parameter of the gamma distribution [24] and hence o? is
1 (v). At the level of the statistical parameters (table 1; on the
‘expected data’ scale; sensu [25]; see their fig. 1), both Poisson
and negative binomial distributions can be seen as special
cases of gamma distributions, and oﬁ can be obtained using
the trigamma function (table 1). For example, o> for the Poisson
distribution is ¢4 (A) (note that 0> = ¢3). As shown in the elec-
tronic supplementary material, appendix S2, In(1+1/)
(lognormal approximation), 1/ (delta method approximation)
and ¢ (A) (trigamma function) give similar results when A is
greater than 2. Our recommendation is to use the trigamma
function for obtaining o2 whenever this is possible.

The trigamma function has been previously used to
obtain observation-level variance in calculations of heritabil-
ity (which can be seen as a type of ICC although in a strict
sense, it is not; see [25]) using negative binomial GLMMs
([24,26]; cf. [25]). Table 1 summarizes observation-level var-
iance o2 for overdispersed Poisson, negative binomial and
gamma distributions for commonly used link functions.

5. How to estimate A from data

For some calculations, we require an estimate of the global
expected value A. Imagine a Poisson GLMM with log link
and additive overdispersion fitted as an OLRE (Model 5):

yij ~ Poisson(A;), (5.1)
P
In(Aj) = By + Z Buxw; + ai + eij, (5.2)
h=1
a; ~ Gaussian(0, 0%, (5.3)
and ejj ~ Gaussian(0, of), (5.4)

where y;; is the jth observation of the ith individual, and fol-
lows a Poisson distribution with the parameter A, e;; is an
additive overdispersion term for jth observation of the ith
individual, and the other symbols are the same as above.
Poisson distributions have a mean of A and a variance of A
(cf. table 1). Using the lognormal approximation RéLMM(m)
and (adjusted) ICCgram can be calculated as
ot

2 _
Rp-in(m) = ot + 0%+ a2 +1In(l+1/A) 59

and

o,
o2+ o2 +In(1+1/1)’

ICCp-y, = (5.6)
where, as mentioned above, the term In(1 + 1/A) is 02 (or 03)
for Poisson distributions with the log link (table 1).

In our earlier papers, we proposed to use the exponential
of the intercept, exp(By) (from the intercept-only model) as an
estimator of A [2,3]; note that exp(By) from models with any
fixed effects will often be different from exp(B) from the
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intercept-only model. We also suggested that it is possible to
use the mean of observed values y;;. Unfortunately, these two
recommendations are often inconsistent with each other. This
is because, given Model 5 (and all the models in the previous
section), the following relationships hold:

exp(Bo) < E[Aql, (5.7)
E[Aj] = exp(By + 0.507) (58)
and E[y;j} = E[)\j]’]/ (5.9)

where E represents the expected value (i.e. mean) on the
observed scale, By is the mean value on the latent scale
(i.e. By from the intercept-only model), o2 is the total variance
on the latent scale (e.g. 0> + 02 in Models 1 and 5, and o2 in
Models 2-4 [2]; see also [27]). In fact, exp(By) gives the
median value of y;; rather than the mean of y;;, assuming a
Poisson distribution. Thus, the use of exp(B,) will often over-
estimate oﬁ, providing smaller estimates of R? and ICC,
compared to when using averaged y; (which is usually a
better estimate of E[y;]). Quantitative differences between
the two approaches may often be negligible, but when A is
small, the difference can be substantial so the choice of the
method needs to be reported for reproducibility (electronic
supplementary material, appendix S2). Our new recommen-
dation is to obtain A via equation (5.8), which is the Poisson
parameter averaged across cluster-level parameters (A; for each
individual in our example; [17,20,28]). Thus, obtaining A via
equation (5.8) will be more accurate than estimating A by calculat-
ing the average of observed values although these two methods
will give very similar or identical values when sampling is
balanced (i.e. observations are equally distributed across in-
dividuals and covariates). This recommendation for obtaining
A also applies to negative binomial GLMMs (table 1).

6. Jensen’s inequality and the ‘second’ delta
method

A general form of equation (5.7) is known as Jensen’s inequal-
ity, g(x) < C@, where ¢ is a convex function. Hence, the
transformation of the mean value is equal to or larger than
the mean of transformed values (the opposite is true for a
concave function; that is, g(¥) > g(—x); [29]). In fact, whenever
the function is not strictly linear, simple application of the
inverse link function (or back-transformation) cannot be
used to translate the mean on the latent scale into the mean
value on the observed scale. This inequality has important
implications for the interpretation of results from GLMMs,
and also generalized linear models GLMs and linear
models with transformed response variables.

Although log-link GLMMs (e.g. Model 5) have an analyti-
cal solution, equation (5.8), this is not usually the case.
Therefore, converting the latent scale values into observation-
scale values requires simulation using the inverse link function.
However, the delta method for bias correction can be used as a
general approximation to account for Jensen’s inequality when
using link functions or transformations. This application of the
delta method uses a second-order Taylor series expansion
[18,30]. A simple case of the delta method for bias correction
can be written as

2
EIF00)] ~ () + 0502 S f(x) (61)

where d*/dx? is a second derivative with respect to the vari- [ 5 |

able x and the other symbols are as in equations (4.1) and
(5.8). By using this bias correction delta method (with
d? exp(x)/dx® = exp(x)), we can approximate equation (5.8)
using the same symbols as in equations (5.7)—(5.9):

E[A;j] = E[exp(By)] ~ exp(By) + 0.50% exp(By). (6.2)

The comparison between equation (5.8) (exact) and
equation (6.2) (approximate) is shown in the electronic sup-
plementary material, appendix S3. The approximation is
most useful when the exact formula is not available as in
the case of a binomial GLMM with logit link (Model 6):

yij ~ binomial(nij, pij)r (63)
k
logit(pj) = By + Y _ By, + @i + e, (6.4)
=1
a; ~ Gaussian(0, 0% (6.5)
and ejj ~ Gaussian(0, 0%), (6.6)

where y;; is the number of ‘success’ in 1; trials by the ith indi-
vidual at the jth occasion (for binary data, n;; is always 1), p;;
is the underlying probability of success, and the other sym-
bols are the same as above. Binomial distributions have a
mean of np and a variance of np(1 - p) (table 2).

To obtain corresponding values between the latent scale
and data (observation) scale, we need to account for Jensen’s
inequality. The logit function used in binomial GLMMs
combines of concave and convex sections, which the delta
method deals with efficiently. The overall intercept, 8, on the
latent scale could therefore be transformed not with the inverse
(anti) logit function (logit™!(x) = exp(x)/(1 + exp(x))), but
with the bias-corrected delta method approximation. Given
that d*logit!(x)/dx? = exp(x)(1 — exp(x))/(1 + exp(x))* in
the case of the binomial GLMM with the logit-link function,
the approximation can be written as (when n = 1)

Ely;] = E[logit™ (5]

__epl(By)
1+ exp(Bo)

exp(Fo)(1 — exp(f))  (67)

+0.507 2
(1+exp(Bo))

T

We can replace 3y with any value obtained from the fixed
part of the model (ie. By + Z,thhu). McCulloch et al. [31]
provide another approximation formula, which, by using
our notation, can be written as

Ely] ~ g™ (3 - 0.3 tan (1L F20PC03)))

(6.8)

Yet, another approximation proposed by Zeger et al. [32]
can be written as

-1

2
16*@) o2 (69)

E[y;] ~ logit™ | B, |: 1+ (—1577_

This approximation, equation (6.9), uses the exact solution
for the inverse probit function, which can be written for a
model like Model 6 but using the probit link: i.e.
probit (p;) = By + Eﬁ:l Buxn; + o + eijinplace of equation (6.4):

Ely;] = probit~! (Bm 1+ a{l).

(6.10)
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‘erf " is the inverse of the Gauss error function, which is often denoted as ‘erf’.
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A comparison among equations (6.7)-(6.9) is also n
shown in electronic supplementary material, appendix S3
(it turns out equation (6.8) gives the best approximation).
Simulation will give the most accurate conversions when
no exact solutions are available. The use of the delta
method for bias correction accounting for Jensen’s in-
equality is a very general and versatile approach that is
applicable for any distribution with any link function (see
the electronic supplementary material, appendix S3) and
can save computation time. We note that the accuracy of
the delta method (both variance approximation and bias
correction) depends on the form of the function f, the
conditions for and limitation of the delta method are
described by Oehlert [30].

(min ~ 1.57; p = 0.5)
20 p=03

(min ~ 1.54; p ~ 0.8;

observation-level variance (min. values
(min=4; p=10.5)

and corresponding p given n = 1)

p
nlin(1 — p)*(1 — p)

27Tn_1p(1 —p)(exp [évrf”‘v(‘va; ,1)4]2)2 ”H

7. Special considerations for binomial GLMMs

The observation-level variance o2 can be thought of as being
added to the latent scale on which other variance components
are also estimated ina GLMM (equations (3.2), (3.7), (3.12), (5.2)
and (6.4) for Models 2-6). As the proposed chLMM and
ICCgLmm are ratios between variance components and their
sums, we can show using the delta method that RZGLMM and
ICCqrmm calculated via o? approximate to those of R? and
ICC on the observation (original) scale (shown in the electronic
supplementary material, appendix S4). In some cases, there
exist specific formulae for ICC on the observation scale [2]. In
the past, we distinguished between ICC on the latent scale
and on the observation scale [2]. Such a distinction turns
out to be strictly appropriate only for binomial distributions
but not for Poisson distributions (and probably also not
for other non-Gaussian distributions). This is because the
property of what we have called the distribution-specific var-
iance o3 for binomial distributions (e.g. 7°/3 for binomial
error distribution with the logit-link function) is quite differ-
ent from what we have discussed as the observation-level
variance o2 although these two types of variance are related

€120£10 4L pany 205y 7 bioBuiysigndigaposeforys:
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conceptually (i.e. both represents variance due to non-
Gaussian distributions with specific link functions). Let us
explain this further.

A binomial distribution with a mean of p (the proportion of
successes) has a variance of p(1 — p)/n (the variance for the
number of successes is np(1l - p); table 2). We find that the
observation-level variance is 1/(np(l —p)) using the delta
method on the logit-link function (table 2). This observation-
level variance 1/(np(1 — p)), or 1/(p(1 — p)) for binary data, is
clearly different from the distribution-specific variance /3.
As with the observation-level variance for the log-Poisson
model (which is 1/A and changes with A; note that we would
have called 1/A the distribution-specific variance; [2,3]),
the observation-level variance of the binomial distribution
changes as p changes (see electronic supplementary material,

(complimentary log—log)

(
e

link name
logit
prdbit T

n > 1 (integers)

Cfy=np
var[yl = np(1 - p)

varlym =pQ-pim

0<p<i

distributional parameters,
mean and variance

binomial(n, p)

appendix S5), suggesting these two observation-level variances
(1/A and 1/(np(1 — p)) are analogous while the distribution-
specific variance 77/3 is not. Further, the minimum value of
1/(p(1 - p)) is 4, which is larger than 7°/3 ~ 3.29, meaning
that the use of 1/p(1 - p) in R? and ICC for binary data will
always produce larger values than those using 7*/3. Conse-
quently, Browne et al. [14] showed that ICC values (or
variance partition coefficients, VPCs) estimated using 7°/3
were higher than corresponding ICC values on the obser-
vation (original) scale using logistic-binomial GLMMs (see

(Bernoulli; n = 1)

binomial
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Figure 1. A schematic of how hypothetical datasets are obtained (see the main text for details).

also [33]). Note that they only considered binary data, i.e.
1/(np(1 —p)), where n=1, because all proportion data
can be rearranged as binary responses with a grouping/
clustering factor.

Then, what is 72/3? Three common link functions in
binomial GLMMs (logit, probit and complementary log—
log) all have corresponding distributions on the latent scale:
the logistic distribution, standard normal distribution and
Gumbel distribution, respectively. Each of these distributions
has a theoretical variance, namely, m2/3,1and 72/6, respect-
ively, which we previous referred to as distribution-specific
variances [2,3] (table 2). As far as we are aware, these theor-
etical variances only exist for binomial distributions. The
meaning of 1/(np(1 —p)), which is the variance on the
latent scale that approximates to the variance due to binomial
distributions on the observation scale is distinct from the
meaning of 7% /3, which is the variance of the latent distri-
bution (i.e. the logistic distribution with the scale parameter
being 1). The use of the theoretical variance will almost
always provide different values of RéLMM and ICCqrvm
from those using the observation-level obtained via the
delta method (see the electronic supplementary material,
appendix S5). This is because the use of #°/3 implicitly
assumes all datasets have the same observation-level variance
regardless of mean proportion (p) given the same number of
trials (1). Therefore, we need distinguishing these theoretical
variances from the observation-level variance. R* and ICC
values using the theoretical distribution-specific variance
might be rightly called the latent (link) scale (sensu [2])
whereas, as mentioned above, R? and ICC values using the
observation-level variance estimate the counterparts on the
observation (original) scale (cf. [25]).

8. Worked examples: revisiting the beetles

In the following, we present a worked example by expanding
the beetle dataset that was generated for previous work [3]. In
brief, the dataset represents a hypothetical species of beetle
that has the following life cycle: larvae hatch and grow in
the soil until they pupate, and then adult beetles feed and
mate on plants. Larvae are sampled from 12 different popu-
lations (‘Population’; figure 1). Within each population,
larvae are collected at two different microhabitats (Habitat):
dry and wet areas as determined by soil moisture. Larvae
are exposed to two different dietary treatments (Treatment):
nutrient rich and control. The species is sexually dimorphic
and can be easily sexed at the pupa stage (Sex). Male beetles
have two different colour morphs: one dark and the other
reddish brown (‘Morph’, labelled as A and B in figure 1).
Sexed pupae are housed in standard containers until they
mature (Container). Each container holds eight same-sex ani-
mals from a single population, but with a mix of individuals
from the two habitats (Ncontainer] = 120; Nianimai] = 960).

We have data on five phenotypes, two of them sex-
limited: (i) the number of eggs laid by each female after
random mating which we had generated previously using
Poisson distributions (with additive dispersion) and we
revisit here for analysis with quasi-Poisson models (i.e. multi-
plicative dispersion), (ii) the incidence of endo-parasitic
infections that we generated as being negative binomial dis-
tributed, (iii) body length of adult beetles which we had
generated previously using Gaussian distributions and that
we revisit here for analysis with gamma distributions, (iv)
time to visit five predefined sectors of an arena (used as a
measure of exploratory tendencies) that we generated as
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Table 3. Parameter settings of regression coefficients (b) and variance components (o) for five datasets: (1) fecundity, (2) endoparasite, (3) size, (4)
exploration and (5) morph; all parameters are set on the latent scale apart from the size data (see below).

intercept sex treatment
response (b) () (b)
fecundity: the number of eggs 1.1 — 0.5
per female
para5|tethe e
endoparasites per individual
S thebodylengthofan15 e
individual®
'”exvplorét'ivbvnv:vth'e't'ivr'h'évtake'n"wmm Sy
visiting five sectors for an
individual
morphcolourmorphofa—08 e

male

habitat population container overdispersion
(b) (s?) (s?) (s%)
0.1 0.4 0.05 0.1

*Data for the six sets of models were simulated on the normal (Gaussian) scale but analysed assuming a gamma error structure with the log link so that
estimations of these parameters will be on the log scale; note the overdispersion variance for this data is the residual variance.

being gamma distributed, and (v) the two male morphs, which
was again generated with binomial distributions (for the
details of parameter settings, table 3). We use this simulated
dataset to estimate RZGLMM and ICCgr v

All data generation and analyses were conducted in R
3.3.1 [10]. We used functions to fit GLMMs from the three
R packages: (i) the glmmadmb function from glmmADMB
[34], (ii) the glmmPQL function from MASS [35], and (iii)
the glmer and glmer.nb functions from Ime4 [36]. In table 4,
we only report results from glmmadmb because this is the
only function that can fit models with all relevant distribu-
tional families. All scripts and results are provided as an
electronic supplementary material, appendix S6. In addition,
electronic supplementary material, appendix S6 includes an
example of a model using the Tweedie distribution, which
was fitted by the cpglmm function from the cplm package
[23]. Notably, our approach for RéLMM is kindly being
implemented in the rsquared function in the R package piece-
wiseSEM [37]. Another important note is that we often find
less congruence in GLMM results from the different packages
than those of LMMs. For example, GLMM using the gamma
error structure with the log-link function (Size and Explora-
tion models), glmmadmb and glmmPQL produced very
similar results, while glmer gave larger R? and ICC values
than the former two functions (for more details, see electronic
supplementary material, appendix S6; also see [38]). Thus, it
is recommended to run GLMMs in more than one package to
check robustness of the results although this may not always
be possible.

In all the models, estimated regression coefficients and
variance components are very much in agreement with what
is expected from our parameter settings (compare table 3
with table 4; see also electronic supplementary material,
appendix S6). When comparing the null and full models,
which had ‘sex” as a predictor, the magnitudes of the variance
component for the container effect always decrease in the full
models. This is because the variance due to sex is confounded
with the container variance in the null model. As expected,
(unadjusted) ICC values from the null models are usually

smaller than adjusted ICC values from the full models because
the observation-level variance (analogous to the residual var-
iance) was smaller in the full models, implying that the
denominator of, for example, equation (3.5) shrinks. However,
the numerator also becomes smaller for ICC values for the con-
tainer effect from the parasite, size and exploration models so
that adjusted ICC values are not necessarily larger than unad-
justed ICC values. Accordingly, adjusted ICCicontainer] iS
smaller in the parasite and size models but not in the explora-
tion model. The last thing to note is that for the morph models
(binomial mixed models), both R? and ICC values are larger
when using the distribution-specific variance rather than the
observation-level variance, as discussed above (table 4; see
also electronic supplementary material, appendix S4).

9. Alternatives and a cautionary note

Here we extend our simple methods for obtaining RZ;\ng
and ICCgrvm for Poisson and binomial GLMMs to other
types of GLMMs such as negative binomial and gamma. We
describe three different ways of obtaining the observational-
level variance and how to obtain the key rate parameter A for
Poisson and negative binomial distributions. We discuss
important considerations which arise for estimating R%;\n
and ICCgramv with binomial GLMMs. As we have shown,
the merit of our approach is not only its ease of implemen-
tation, but also that our approach encourages researchers to
pay more attention to variance components at different
levels. Research papers in the field of ecology and evolution
often report only regression coefficients but not variance
components of GLMMs [3].

We highlight two recent studies that provide alternatives
to our approach. First, Jaeger et al. [5] have proposed R* for
fixed effects in GLMMSs, which they referred to as Ré* (an
extension of an R for fixed effects in linear-mixed models
or R% by Edwards et al. [39]). They show that R, is a general
form of our marginal RZGLMM; in theory, Ré* can be used for
any distribution (error structure) with any link function.
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Jaeger and colleagues highlight that in the framework of R,
they can easily obtain semi-partial R?, which quantifies the
relative importance of each predictor (fixed effect). As they
demonstrate by simulation, their method potentially gives a
very reliable tool for model selection. One current issue for
this approach is that implementation does not seem as
simple as our approach (see also [40]). We note that our
R%, i framework could also provide semi-partial R* via
commonality analysis [41], because unique variance for
each predictor in commonality analysis corresponds to
semi-partial R? [42].

Second, de Villemereuil et al. [25] have provided a frame-
work with which one can estimate exact heritability using
GLMMs at different scales (e.g. data and latent scales).
Their method can be extended to obtain exact ICC values
on the data (observation) scale, which is analogous to, but
not the same as, our ICCgpy using the observation-level
variance, oi described above. Further, this method can, in
theory, be extended to estimate RZGLMM on the data (obser-
vation) scale. One potential difficulty is that the method of
de Villemereuil et al. [25] is exact but that a numerical
method is used to solve relevant equations so one will require
a software package (e.g. the QGglmm package). Relevantly,
they have shown that heritability on the latent scale does
not need o3 (distribution-specific) but only need o2 (overdis-
persion variance), which has interesting consequences in
relation to our RéLMM and ICCgym (we briefly describe

this possibility in the electronic supplementary material,
appendix S7; see also [40]).

Finally, we finish by repeating what we said at the end of
our original R paper [3]. Both R? and ICC are indices that are
likely to reflect only one or a few aspects of a model fit to the
data and should not be used for gauging the quality of a
model. We encourage biologists use R* and ICC in conjunc-
tions with other indices like information criteria (e.g. AIC,
BIC and DIC), and more importantly, with model diagnostics
such as checking for model assumptions, heteroscedasticity
and sensitivity to outliers.
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