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The coefficient of determination R2 quantifies the proportion of variance

explained by a statistical model and is an important summary statistic

of biological interest. However, estimating R2 for generalized linear mixed

models (GLMMs) remains challenging. We have previously introduced a ver-

sion of R2 that we called R2
GLMM for Poisson and binomial GLMMs, but not

for other distributional families. Similarly, we earlier discussed how to estimate

intra-class correlation coefficients (ICCs) using Poisson and binomial GLMMs.

In this paper, we generalize our methodsto all other non-Gaussian distributions,

in particular to negative binomial and gamma distributions that are commonly

used for modelling biological data. While expanding our approach, we highlight

two useful concepts for biologists, Jensen’s inequality and the delta method,

both of which help us in understanding the properties of GLMMs. Jensen’s

inequality has important implications for biologically meaningful interpretation

of GLMMs, whereas the delta method allows a general derivation of variance

associated with non-Gaussian distributions. We also discuss some special con-

siderations for binomial GLMMs with binary or proportion data. We illustrate

the implementation of our extension by worked examples from the field of ecol-

ogy and evolution in the R environment. However, our method can be used

across disciplines and regardless of statistical environments.
1. Introduction
One of the main purposes of linear modelling is to understand the sources of

variation in biological data. In this context, it is not surprising that the coeffi-

cient of determination R2 is a commonly reported statistic, because it

represents the proportion of variance explained by a linear model. The intra-

class correlation coefficient (ICC) is a related statistic that quantifies the

proportion of variance explained by a grouping (random) factor in multilevel/

hierarchical data. In the field of ecology and evolution, a type of ICC is often

referred to as repeatability R, where the grouping factor is often individuals

that have been phenotyped repeatedly [1,2]. We have reviewed methods for

estimating R2 and ICC in the past, with a particular focus on non-Gaussian

response variables in the context of biological data [2,3]. These previous articles

featured generalized linear mixed-effects models (GLMMs) as the most versatile

engine for estimating R2 and ICC (specifically R2
GLMM and ICCGLMM). The

descriptions were initially limited to random-intercept GLMMs, but have
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later been extended to random-slope GLMMs [4], widening

the applicability of these statistics (see also [5,6]).

However, at least one important issue seems to remain. Cur-

rently, these two statistics are only described for binomial and

Poisson GLMMs. Although these two types of GLMM are

arguably the most popular [7], there are other families of distri-

butions that are commonly used in biology, such as negative

binomial and gamma distributions [8,9]. In this paper, we

revisit and extend R2
GLMM and ICCGLMM to more distributional

families with a particular focus on negative binomial and

gamma distributions. In this context, we discuss Jensen’s

inequality and two variants of the delta method, which are

hardly known among biologists. These concepts are useful not

only for generalizing our previous methods, but also for inter-

preting the results of GLMMs. Furthermore, we refer to some

special considerations when obtaining R2
GLMM and ICCGLMM

from binomial GLMMs for binary and proportion data, which

we did not discuss in the past [2,3]. We provide worked

examples inspired from the field of ecology and evolution, focus-

ing on implementation in the R environment [10] and finish by

referring to two alternative approaches for obtaining R2 and

ICC from GLMMs along with a cautionary note.
2. Definitions of R2
GLMM, ICCGLMM and

overdispersion
To start with, we present R2

GLMM and ICCGLMM for a simple

case of Gaussian error distributions based on a linear

mixed-effects model (LMM, hence also referred to as R2
LMM

and ICCLMM). Imagine a two-level dataset where the first

level corresponds to observations and the second level to

some grouping/clustering factor (e.g. individuals with

repeated measurements) with k fixed-effect covariates. The

model can be written as (referred to as Model 1):

yij ¼ b0 þ
Xp

h¼1

bhxhij þ ai þ 1ij, ð2:1Þ

ai � Gaussianð0, s2
aÞ ð2:2Þ

and 1ij � Gaussianð0, s2
1Þ, ð2:3Þ

where yij is the jth observation of the ith individual, xhij is the jth
value of the ith individual for the hth of k fixed-effect predic-

tors, b0 is the (grand) intercept, bh is the regression coefficient

for the hth predictor,ai is an individual-specific effect, assumed

to be normally distributed in the population with the mean and

variance of 0 and s2
a, 1ij is an observation-specific residual,

assumed to be normally distributed in the population with

mean and variance of 0 and s2
1, respectively. For this model,

we can define two types of R2 as

R2
LMMðmÞ ¼

s2
f

s2
f þ s2

a þ s2
1

, ð2:4Þ

R2
LMMðcÞ ¼

s2
f þ s2

a

s2
f þ s2

a þ s2
1

ð2:5Þ

and s2
f ¼ var

Xk

h

bhxhij

 !
, ð2:6Þ

where R2
LMMðmÞ represents the marginal R2, which is the pro-

portion of the total variance explained by the fixed effects,

R2
LMMðcÞ represents the conditional R2, which is the propor-

tion of the variance explained by both fixed and random

effects, and s2
f is the variance explained by fixed effects [11].
As marginal and conditional R2 differ only in whether the

random effect variance is included in the numerator, we

avoid redundancy and present equations only for marginal

R2 in the following.

Similarly, there are two types of ICC:

ICCLMMðadjÞ ¼
s2
a

s2
a þ s2

1

ð2:7Þ

and

ICCLMM¼
s2
a

s2
a þ s2

f þ s2
1

: ð2:8Þ

If no fixed effects are fitted (other than the intercept),

s2
f ¼ 0 so that ICCLMM(adj) equals ICCLMM. In such a case,

the ICC should not be called ‘adjusted’ (sensu [2]). For an

ICC value to be adjusted for a source of variance, that var-

iance must be more than 0 and omitted from the ICC

calculation. As the two versions of ICC differ only in

whether the fixed-effect variance, calculated as in equation

(2.6), is included in the denominator, we avoid redundancy

and present equations only for adjusted ICC in the

following.

One of the main difficulties in extending R2 from LMMs to

GLMMs is defining the residual variance s2
1. For binomial and

Poisson GLMMs with an additive dispersion term, we have

previously stated that s2
1 is equivalent to s2

e þ s2
d, where s2

e is

the variance for the additive overdispersion term, and s2
d

is the distribution-specific variance [2,3]. Here, overdispersion

represents the excess variation relative to what is expected

from a certain distribution and can be estimated by fitting an

observation-level random effect (OLRE; [12,13]). Alternatively,

overdispersion in GLMMs can be implemented using a multi-

plicative overdispersion term [14]. In such an implementation,

we stated that s2
1 is equivalent to v � s2

d, where v is a multipli-

cative dispersion parameter estimated from the model [2].

However, obtaining s2
d for specific distributions is not always

possible, because in many families of GLMMs, s2
1 (obser-

vation-level variance) cannot be clearly separated into s2
e

(overdispersion variance) and s2
d (distribution-specific var-

iance). It turns out that binomial and Poisson distributions

are special cases where s2
d can be usefully calculated, because

either all overdispersion is modelled by an OLRE (additive

overdispersion) or by a single multiplicative overdispersion

parameter (multiplicative overdispersion). This is not the case

for other families. However, as we will show below, we can

always obtain the GLMM version of s2
1 (on the latent scale)

directly. We refer to this generalized version of s2
1 as ‘the

observation-level variance’ here rather than the residual

variance (but we keep the notation s2
1). Note that the

observation-level variance, s2
1, should not be confused with

the variance associated with OLRE, which estimates s2
e and

can be considered to be a part of s2
1.
3. Extension of R2
GLMM and ICCGLMM

We now define R2
GLMM and ICCGLMM for a quasi-Poisson

(may also be referred to as overdispersed Poisson) GLMM,

because the quasi-Poisson distribution is an extension of

Poisson distribution [15,16] and is similar to the negative

binomial distribution, at least in their common applications

[9,17]. Imagine count data repeatedly measured from a

number of individuals with associated data on k covariates.

http://rsif.royalsocietypublishing.org/


Table 1. The observation-level variance s2
1 for the three distributional families: quasi-Poisson, negative binomial and gamma with the three different methods

for deriving s2
1: the delta method, lognormal approximation and the trigamma function, c1. var½lnðxÞ� ¼ c1ðnÞ ¼

P1
n¼1 1=ðnþ nÞ when x follows

gamma distribution. In the R environment, the function, trigamma can be used to obtain c1ðnÞ; also note that n is known as a shape parameter while k is as
a rate parameter in gamma distribution.

family
distributional
parameters

mean (E[ y])
variance (var[ y])

link
function delta method

lognormal
approximation trigamma function

quasi-Poisson (QP) QPðl, vÞ E½y� ¼ l log v

l
ln 1þ v

l

� �
c1

l

v

� �
Poisson

(when v ¼ 1)

l . 0

v . 0

var½y� ¼ lv square-root 0.25v —

negative binomial (NB) NBðl, uÞ E½y� ¼ l log
1
l
þ 1
u

ln 1þ 1
l
þ 1
u

� �
c1

1
l
þ 1
u

� ��1
 !

l . 0

u . 0 var½y� ¼ lþ l2

u

square-root
0:25 1þ l

u

� �
—

gamma gammaðl, nÞ E½y� ¼ l log
1
n

ln 1þ 1
n

� �
c1ðnÞ

l . 0

n . 0 var½y� ¼ l2

n

inverse

(reciprocal)
1

nl2

—

gamma (alternative

parameterization)

gammaðn, kÞ E½y� ¼ n

k
log

1
n

ln 1þ 1
n

� �
c1ðnÞ

n . 0

k . 0 var½y� ¼ n

k2

inverse

(reciprocal)
k2

n3

—
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We fit a quasi-Poisson (QP) GLMM with the log-link function

(Model 2):

yij � QPðlij,vÞ, ð3:1Þ

lnðlijÞ ¼ b0 þ
Xk

h¼1

bhxhij þ ai ð3:2Þ

and ai � Gaussianð0,s2
aÞ, ð3:3Þ

where yij is the jth observation of the ith individual and yij follows

a quasi-Poisson distribution with two parameters, lij and v

[15,16], ln(lij) is the latent value for the jth observation of the

ith individual,v is the overdispersion parameter (when the multi-

plicative dispersion parameter v is 1, the model becomes a

standard Poisson GLMM), ai is an individual-specific effect,

assumed to be normally distributed in the population with the

mean and variance of 0 and s2
a, respectively (as in Model 1),

and the other symbols are the same as above. Quasi-Poisson dis-

tributions have a mean ofland avariance oflv (table 1). For such

a model, we can define R2
GLMMðmÞ and (adjusted) ICCGLMM as

R2
QP-lnðmÞ ¼

s2
f

s2
f þ s2

a þ lnð1þ v=lÞ
ð3:4Þ

and

ICCQP- ln ¼
s2
a

s2
a þ lnð1þ v=lÞ , ð3:5Þ

where the subscript of R2 and ICC denotes the distributional

family, here QP-ln for quasi-Poisson distribution with log link,

the term ln(1 þ v/l) corresponds to the observation-level var-

iance s2
1 (table 1; for derivation, see the electronic

supplementary material, appendix S1), v is the overdispersion
parameter, and l is the mean value of lij. We discuss how to

obtain l in §5.

The calculation is very similar for a negative binomial

(NB) GLMM with the log link (Model 3):

yij � NBðlij, uÞ, ð3:6Þ

lnðlijÞ ¼ b0 þ
Xk

h¼1

bhxhij þ ai ð3:7Þ

and ai � Gaussianð0,s2
aÞ, ð3:8Þ

where yij is the jth observation of the ith individual and yij

follows a negative binomial distribution with two par-

ameters, lij and u, where u is the shape parameter of the

negative binomial distribution (given by the software often

as the dispersion parameter), and the other symbols are the

same as above. The parameter u is sometimes referred to as

‘size’. Negative binomial distributions have a mean of l

and a variance of l þ l2/u (table 1). R2
GLMMðmÞ and (adjusted)

ICCGLMM for this model can be calculated as

R2
NB- lnðmÞ ¼

s2
f

s2
f þ s2

a þ lnð1þ 1=lþ 1=uÞ ð3:9Þ

and

ICCNB- ln ¼
s2
a

s2
a þ lnð1þ 1=lþ 1=uÞ , ð3:10Þ

Finally, for a gamma GLMM with the log link (Model 4):

yij � gammaðlij, nÞ, ð3:11Þ

lnðlijÞ ¼ b0 þ
Xk

h¼1

bhxhij þ ai ð3:12Þ

http://rsif.royalsocietypublishing.org/
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and ai � Gaussianð0,s2
aÞ, ð3:13Þ

where yij is the jth observation of the ith individual and yij fol-

lows a gamma distribution with two parameters, lij and n,

where n is the shape parameter of the gamma distribution

(sometimes statistical programmes report 1/n instead of n;

also note that the gamma distribution can be parametrized

in alternative ways, table 1). Gamma distributions have a

mean of l and a variance of l2/n (table 1). R2
GLMMðmÞ and

(adjusted) ICCGLMM can be calculated as

R2
gamma- lnðmÞ ¼

s2
f

s2
f þ s2

a þ lnð1þ 1=nÞ ð3:14Þ

and

ICCgamma- ln ¼
s2
a

s2
a þ lnð1þ 1=nÞ : ð3:15Þ
:20170213
4. Obtaining the observation-level variance by
the ‘first’ delta method

For overdispersed Poisson, negative binomial and gamma

GLMMs with log link, the observation-level variance s2
1 can

be obtained via the variance of the lognormal distribution

(electronic supplementary material, appendix S1). This is the

approach that has led to the terms presented above. There

are two more alternative methods to obtain the same target:

the delta method and the trigamma function. The two alterna-

tives have different advantages and we will therefore discuss

them in some detail in the following.

The delta method for variance approximation uses a first-

order Taylor series expansion, which is often employed to

approximate the standard error (error variance) for trans-

formations (or functions) of a variable x when the (error)

variance of x itself is known (see [18]; for an accessible refer-

ence for biologists, [19]). The delta method for variance

approximation can be written as

var½fðxÞ� � var½x� d

dx
f ðxÞ

� �2

, ð4:1Þ

where x is a random variable (typically represented by obser-

vations), f represents a function (e.g. log or square-root), var

denotes variance and d/dx is a (first) derivative with respect

to variable x. Taking derivatives of any function can be

easily done using the R environment (examples can be found

in the electronic supplementary material, appendices). It is

the delta method that Foulley et al. [20] used to derive the

distribution-specific variance s2
d for Poisson GLMMs as 1/l

(see also [21]). Given that var½y� ¼ l in the case of Poisson

distributions and d lnðlÞ=dx ¼ 1=l, it follows that

var½lnðyÞ� � lð1=lÞ2 ¼ 1=l (note that for Poisson distributions

without overdispersion, s2
d is equal to s2

1 because s2
e ¼ 0).

One clear advantage of the delta method is its flexibility. We

can easily obtain the observation-level variance s2
1 for all kinds

of distributions/link functions. For example, by using the delta

method, it is straightforward to obtains2
1 for the Tweedie distri-

bution, which has been used to model non-negative real

numbers in ecology (e.g. [22,23]). For the Tweedie distribution,

the variance on the observed scale has the relationship

var½y� ¼ wmp, where m is the mean on the observed scale and

w is the dispersion parameter, comparable to l and v in

equation (3.1), and p is a positive constant called an index
parameter. Therefore, when used with the log-link function,

s2
1 can be approximated by wmðp�2Þ according to equation

(4.1). The lognormal approximation lnð1þ wmðp�2ÞÞ is also poss-

ible (see the electronic supplementary material, appendix S1;

table 1).

The use of the trigamma function c1 is limited to distri-

butions with log link, but it is considered to provide the most

accurate estimate of the observation-level variance s2
1 in those

cases. This is because the variance of a gamma-distributed vari-

able on the log scale is equal to c1ðnÞ, where n is the shape

parameter of the gamma distribution [24] and hence s2
1 is

c1ðnÞ. At the level of the statistical parameters (table 1; on the

‘expected data’ scale; sensu [25]; see their fig. 1), both Poisson

and negative binomial distributions can be seen as special

cases of gamma distributions, and s2
1 can be obtained using

the trigamma function (table 1). For example, s2
1 for the Poisson

distribution is c1ðlÞ (note that s2
1 ¼ s2

d). As shown in the elec-

tronic supplementary material, appendix S2, ln(1þ 1/l)

(lognormal approximation), 1/l (delta method approximation)

and c1ðlÞ (trigamma function) give similar results when l is

greater than 2. Our recommendation is to use the trigamma

function for obtaining s2
1 whenever this is possible.

The trigamma function has been previously used to

obtain observation-level variance in calculations of heritabil-

ity (which can be seen as a type of ICC although in a strict

sense, it is not; see [25]) using negative binomial GLMMs

([24,26]; cf. [25]). Table 1 summarizes observation-level var-

iance s2
1 for overdispersed Poisson, negative binomial and

gamma distributions for commonly used link functions.
5. How to estimate l from data
For some calculations, we require an estimate of the global

expected value l. Imagine a Poisson GLMM with log link

and additive overdispersion fitted as an OLRE (Model 5):

yij � PoissonðlijÞ, ð5:1Þ

lnðlijÞ ¼ b0 þ
Xp

h¼1

bhxhij þ ai þ eij, ð5:2Þ

ai � Gaussianð0,s2
aÞ ð5:3Þ

and eij � Gaussianð0,s2
e Þ, ð5:4Þ

where yij is the jth observation of the ith individual, and fol-

lows a Poisson distribution with the parameter lij, eij is an

additive overdispersion term for jth observation of the ith
individual, and the other symbols are the same as above.

Poisson distributions have a mean of l and a variance of l

(cf. table 1). Using the lognormal approximation R2
GLMMðmÞ

and (adjusted) ICCGLMM can be calculated as

R2
P- lnðmÞ ¼

s2
f

s2
f þ s2

a þ s2
e þ lnð1þ 1=lÞ ð5:5Þ

and

ICCP- ln ¼
s2
a

s2
a þ s2

e þ lnð1þ 1=lÞ , ð5:6Þ

where, as mentioned above, the term ln(1 þ 1/l) is s2
1 (or s2

d)

for Poisson distributions with the log link (table 1).

In our earlier papers, we proposed to use the exponential

of the intercept, exp(b0) (from the intercept-only model) as an

estimator of l [2,3]; note that exp(b0) from models with any

fixed effects will often be different from exp(b0) from the

http://rsif.royalsocietypublishing.org/
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intercept-only model. We also suggested that it is possible to

use the mean of observed values yij. Unfortunately, these two

recommendations are often inconsistent with each other. This

is because, given Model 5 (and all the models in the previous

section), the following relationships hold:

expðb0Þ � E½lij�, ð5:7Þ
E½lij� ¼ expðb0 þ 0:5s2

tÞ ð5:8Þ
and E½yij� ¼ E½lij�, ð5:9Þ

where E represents the expected value (i.e. mean) on the

observed scale, b0 is the mean value on the latent scale

(i.e. b0 from the intercept-only model), s2
t is the total variance

on the latent scale (e.g. s2
a þ s2

e in Models 1 and 5, and s2
a in

Models 2–4 [2]; see also [27]). In fact, exp(b0) gives the

median value of yij rather than the mean of yij, assuming a

Poisson distribution. Thus, the use of exp(b0) will often over-

estimate s2
d, providing smaller estimates of R2 and ICC,

compared to when using averaged yij (which is usually a

better estimate of E[yij]). Quantitative differences between

the two approaches may often be negligible, but when l is

small, the difference can be substantial so the choice of the

method needs to be reported for reproducibility (electronic

supplementary material, appendix S2). Our new recommen-

dation is to obtain l via equation (5.8), which is the Poisson

parameter averaged across cluster-level parameters (li for each

individual in our example; [17,20,28]). Thus, obtaining l via

equation (5.8) will be more accurate than estimatinglby calculat-

ing the average of observed values although these two methods

will give very similar or identical values when sampling is

balanced (i.e. observations are equally distributed across in-

dividuals and covariates). This recommendation for obtaining

l also applies to negative binomial GLMMs (table 1).
6. Jensen’s inequality and the ‘second’ delta
method

A general form of equation (5.7) is known as Jensen’s inequal-

ity, gð�xÞ � gðxÞ, where g is a convex function. Hence, the

transformation of the mean value is equal to or larger than

the mean of transformed values (the opposite is true for a

concave function; that is, gð�xÞ � gðxÞ; [29]). In fact, whenever

the function is not strictly linear, simple application of the

inverse link function (or back-transformation) cannot be

used to translate the mean on the latent scale into the mean

value on the observed scale. This inequality has important

implications for the interpretation of results from GLMMs,

and also generalized linear models GLMs and linear

models with transformed response variables.

Although log-link GLMMs (e.g. Model 5) have an analyti-

cal solution, equation (5.8), this is not usually the case.

Therefore, converting the latent scale values into observation-

scale values requires simulation using the inverse link function.

However, the delta method for bias correction can be used as a

general approximation to account for Jensen’s inequality when

using link functions or transformations. This application of the

delta method uses a second-order Taylor series expansion

[18,30]. A simple case of the delta method for bias correction

can be written as

E½ fðxÞ� � fðxÞ þ 0:5s2
t

d2

dx2
fðxÞ, ð6:1Þ
where d2/dx2 is a second derivative with respect to the vari-

able x and the other symbols are as in equations (4.1) and

(5.8). By using this bias correction delta method (with

d2 expðxÞ=dx2 ¼ expðxÞ), we can approximate equation (5.8)

using the same symbols as in equations (5.7)–(5.9):

E½lij� ¼ E½expðb0Þ� � expðb0Þ þ 0:5s2
t expðb0Þ: ð6:2Þ

The comparison between equation (5.8) (exact) and

equation (6.2) (approximate) is shown in the electronic sup-

plementary material, appendix S3. The approximation is

most useful when the exact formula is not available as in

the case of a binomial GLMM with logit link (Model 6):

yij � binomialðnij, pijÞ, ð6:3Þ

logitðpijÞ ¼ b0 þ
Xk

h¼1

bhxhij þ ai þ eij, ð6:4Þ

ai � Gaussianð0,s2
aÞ ð6:5Þ

and eij � Gaussianð0,s2
e Þ, ð6:6Þ

where yij is the number of ‘success’ in nij trials by the ith indi-

vidual at the jth occasion (for binary data, nij is always 1), pij

is the underlying probability of success, and the other sym-

bols are the same as above. Binomial distributions have a

mean of np and a variance of np(1 – p) (table 2).

To obtain corresponding values between the latent scale

and data (observation) scale, we need to account for Jensen’s

inequality. The logit function used in binomial GLMMs

combines of concave and convex sections, which the delta

method deals with efficiently. The overall intercept, b0 on the

latent scale could therefore be transformed not with the inverse

(anti) logit function (logit�1ðxÞ ¼ expðxÞ=ð1þ expðxÞÞ), but

with the bias-corrected delta method approximation. Given

that d2logit�1ðxÞ=dx2 ¼ expðxÞð1� expðxÞÞ=ð1þ expðxÞÞ3 in

the case of the binomial GLMM with the logit-link function,

the approximation can be written as (when n ¼ 1)

E½yij� ¼ E½logit�1ðb0Þ�

� expðb0Þ
1þ expðb0Þ

þ 0:5s2
t

expðb0Þð1� expðb0ÞÞ
ð1þ expðb0ÞÞ3

:
ð6:7Þ

We can replace b0 with any value obtained from the fixed

part of the model (i.e. b0 þ
P

bhxhij ). McCulloch et al. [31]

provide another approximation formula, which, by using

our notation, can be written as

E½yij� � logit�1 b0 � 0:5s2
t tanh

b0ð1þ 2 expð�0:5s2
tÞÞ

6

� �� �
:

ð6:8Þ

Yet, another approximation proposed by Zeger et al. [32]

can be written as

E½yij� � logit�1 b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16

ffiffiffi
3
p

15p

� �2

s2
t

s2
4

3
5
�1

0
B@

1
CA: ð6:9Þ

This approximation, equation (6.9), uses the exact solution

for the inverse probit function, which can be written for a

model like Model 6 but using the probit link: i.e.

probit ðpijÞ ¼ b0 þ
Pk

h¼1 bhxhij þ ai þ e
ij

in placeof equation (6.4):

E½yij�¼ probit�1 b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

t

q �1
� �

: ð6:10Þ
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A comparison among equations (6.7)–(6.9) is also

shown in electronic supplementary material, appendix S3

(it turns out equation (6.8) gives the best approximation).

Simulation will give the most accurate conversions when

no exact solutions are available. The use of the delta

method for bias correction accounting for Jensen’s in-

equality is a very general and versatile approach that is

applicable for any distribution with any link function (see

the electronic supplementary material, appendix S3) and

can save computation time. We note that the accuracy of

the delta method (both variance approximation and bias

correction) depends on the form of the function f, the

conditions for and limitation of the delta method are

described by Oehlert [30].
 Interface
14:20170213
7. Special considerations for binomial GLMMs
The observation-level variance s2

1 can be thought of as being

added to the latent scale on which other variance components

are also estimated in a GLMM (equations (3.2), (3.7), (3.12), (5.2)

and (6.4) for Models 2–6). As the proposed R2
GLMM and

ICCGLMM are ratios between variance components and their

sums, we can show using the delta method that R2
GLMM and

ICCGLMM calculated via s2
1 approximate to those of R2 and

ICC on the observation (original) scale (shown in the electronic

supplementary material, appendix S4). In some cases, there

exist specific formulae for ICC on the observation scale [2]. In

the past, we distinguished between ICC on the latent scale

and on the observation scale [2]. Such a distinction turns

out to be strictly appropriate only for binomial distributions

but not for Poisson distributions (and probably also not

for other non-Gaussian distributions). This is because the

property of what we have called the distribution-specific var-

iance s2
d for binomial distributions (e.g. p2/3 for binomial

error distribution with the logit-link function) is quite differ-

ent from what we have discussed as the observation-level

variance s2
1 although these two types of variance are related

conceptually (i.e. both represents variance due to non-

Gaussian distributions with specific link functions). Let us

explain this further.

A binomial distribution with a mean of p (the proportion of

successes) has a variance of p(1 – p)/n (the variance for the

number of successes is np(1 – p); table 2). We find that the

observation-level variance is 1/(np(1 – p)) using the delta

method on the logit-link function (table 2). This observation-

level variance 1/(np(1 – p)), or 1/( p(1 – p)) for binary data, is

clearly different from the distribution-specific variance p2/3.

As with the observation-level variance for the log-Poisson

model (which is 1/l and changes with l; note that we would

have called 1/l the distribution-specific variance; [2,3]),

the observation-level variance of the binomial distribution

changes as p changes (see electronic supplementary material,

appendix S5), suggesting these two observation-level variances

(1/l and 1/(np(1 – p)) are analogous while the distribution-

specific variance p2/3 is not. Further, the minimum value of

1/( p(1 – p)) is 4, which is larger than p2/3 � 3.29, meaning

that the use of 1/p(1 – p) in R2 and ICC for binary data will

always produce larger values than those using p2/3. Conse-

quently, Browne et al. [14] showed that ICC values (or

variance partition coefficients, VPCs) estimated using p2/3

were higher than corresponding ICC values on the obser-

vation (original) scale using logistic-binomial GLMMs (see

http://rsif.royalsocietypublishing.org/


population (N = 12)
(random) body length

(response)

exploration
(response)

endoparasitic
infection
(response)
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(response)

female egg
number
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(fixed)

treatment
(fixed)
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(fixed)
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A A AAAB B B
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Figure 1. A schematic of how hypothetical datasets are obtained (see the main text for details).
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also [33]). Note that they only considered binary data, i.e.

1/(np(1 – p)), where n ¼ 1, because all proportion data

can be rearranged as binary responses with a grouping/

clustering factor.

Then, what is p2/3? Three common link functions in

binomial GLMMs (logit, probit and complementary log–

log) all have corresponding distributions on the latent scale:

the logistic distribution, standard normal distribution and

Gumbel distribution, respectively. Each of these distributions

has a theoretical variance, namely, p2/3, 1 and p2/6, respect-

ively, which we previous referred to as distribution-specific

variances [2,3] (table 2). As far as we are aware, these theor-

etical variances only exist for binomial distributions. The

meaning of 1/(np(1 – p)), which is the variance on the

latent scale that approximates to the variance due to binomial

distributions on the observation scale is distinct from the

meaning of p2/3, which is the variance of the latent distri-

bution (i.e. the logistic distribution with the scale parameter

being 1). The use of the theoretical variance will almost

always provide different values of R2
GLMM and ICCGLMM

from those using the observation-level obtained via the

delta method (see the electronic supplementary material,

appendix S5). This is because the use of p2/3 implicitly

assumes all datasets have the same observation-level variance

regardless of mean proportion ( p) given the same number of

trials (n). Therefore, we need distinguishing these theoretical

variances from the observation-level variance. R2 and ICC

values using the theoretical distribution-specific variance

might be rightly called the latent (link) scale (sensu [2])

whereas, as mentioned above, R2 and ICC values using the

observation-level variance estimate the counterparts on the

observation (original) scale (cf. [25]).
8. Worked examples: revisiting the beetles
In the following, we present a worked example by expanding

the beetle dataset that was generated for previous work [3]. In

brief, the dataset represents a hypothetical species of beetle

that has the following life cycle: larvae hatch and grow in

the soil until they pupate, and then adult beetles feed and

mate on plants. Larvae are sampled from 12 different popu-

lations (‘Population’; figure 1). Within each population,

larvae are collected at two different microhabitats (Habitat):

dry and wet areas as determined by soil moisture. Larvae

are exposed to two different dietary treatments (Treatment):

nutrient rich and control. The species is sexually dimorphic

and can be easily sexed at the pupa stage (Sex). Male beetles

have two different colour morphs: one dark and the other

reddish brown (‘Morph’, labelled as A and B in figure 1).

Sexed pupae are housed in standard containers until they

mature (Container). Each container holds eight same-sex ani-

mals from a single population, but with a mix of individuals

from the two habitats (N[container] ¼ 120; N[animal] ¼ 960).

We have data on five phenotypes, two of them sex-

limited: (i) the number of eggs laid by each female after

random mating which we had generated previously using

Poisson distributions (with additive dispersion) and we

revisit here for analysis with quasi-Poisson models (i.e. multi-

plicative dispersion), (ii) the incidence of endo-parasitic

infections that we generated as being negative binomial dis-

tributed, (iii) body length of adult beetles which we had

generated previously using Gaussian distributions and that

we revisit here for analysis with gamma distributions, (iv)

time to visit five predefined sectors of an arena (used as a

measure of exploratory tendencies) that we generated as

http://rsif.royalsocietypublishing.org/


Table 3. Parameter settings of regression coefficients (b) and variance components (s2) for five datasets: (1) fecundity, (2) endoparasite, (3) size, (4)
exploration and (5) morph; all parameters are set on the latent scale apart from the size data (see below).

response
intercept
(b)

sex
(b)

treatment
(b)

habitat
(b)

population
(62)

container
(62)

overdispersion
(62)

fecundity: the number of eggs

per female

1.1 — 0.5 0.1 0.4 0.05 0.1

parasite: the number of

endoparasites per individual

1.8 22 20.8 0.7 0.5 0.8 —

size: the body length of an

individuala

15 23 0.4 0.15 1.3 0.3 1.2

exploration: the time taken

visiting five sectors for an

individual

4 21 2 20.5 0.2 0.2 —

morph colour morph of a

male

20.8 — 0.8 0.5 1.2 0.2 —

aData for the six sets of models were simulated on the normal (Gaussian) scale but analysed assuming a gamma error structure with the log link so that
estimations of these parameters will be on the log scale; note the overdispersion variance for this data is the residual variance.
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being gamma distributed, and (v) the two male morphs, which

was again generated with binomial distributions (for the

details of parameter settings, table 3). We use this simulated

dataset to estimate R2
GLMM and ICCGLMM.

All data generation and analyses were conducted in R

3.3.1 [10]. We used functions to fit GLMMs from the three

R packages: (i) the glmmadmb function from glmmADMB

[34], (ii) the glmmPQL function from MASS [35], and (iii)

the glmer and glmer.nb functions from lme4 [36]. In table 4,

we only report results from glmmadmb because this is the

only function that can fit models with all relevant distribu-

tional families. All scripts and results are provided as an

electronic supplementary material, appendix S6. In addition,

electronic supplementary material, appendix S6 includes an

example of a model using the Tweedie distribution, which

was fitted by the cpglmm function from the cplm package

[23]. Notably, our approach for R2
GLMM is kindly being

implemented in the rsquared function in the R package piece-

wiseSEM [37]. Another important note is that we often find

less congruence in GLMM results from the different packages

than those of LMMs. For example, GLMM using the gamma

error structure with the log-link function (Size and Explora-

tion models), glmmadmb and glmmPQL produced very

similar results, while glmer gave larger R2 and ICC values

than the former two functions (for more details, see electronic

supplementary material, appendix S6; also see [38]). Thus, it

is recommended to run GLMMs in more than one package to

check robustness of the results although this may not always

be possible.

In all the models, estimated regression coefficients and

variance components are very much in agreement with what

is expected from our parameter settings (compare table 3

with table 4; see also electronic supplementary material,

appendix S6). When comparing the null and full models,

which had ‘sex’ as a predictor, the magnitudes of the variance

component for the container effect always decrease in the full

models. This is because the variance due to sex is confounded

with the container variance in the null model. As expected,

(unadjusted) ICC values from the null models are usually
smaller than adjusted ICC values from the full models because

the observation-level variance (analogous to the residual var-

iance) was smaller in the full models, implying that the

denominator of, for example, equation (3.5) shrinks. However,

the numerator also becomes smaller for ICC values for the con-

tainer effect from the parasite, size and exploration models so

that adjusted ICC values are not necessarily larger than unad-

justed ICC values. Accordingly, adjusted ICC[container] is

smaller in the parasite and size models but not in the explora-

tion model. The last thing to note is that for the morph models

(binomial mixed models), both R2 and ICC values are larger

when using the distribution-specific variance rather than the

observation-level variance, as discussed above (table 4; see

also electronic supplementary material, appendix S4).
9. Alternatives and a cautionary note
Here we extend our simple methods for obtaining R2

GLMM

and ICCGLMM for Poisson and binomial GLMMs to other

types of GLMMs such as negative binomial and gamma. We

describe three different ways of obtaining the observational-

level variance and how to obtain the key rate parameter l for

Poisson and negative binomial distributions. We discuss

important considerations which arise for estimating R2
GLMM

and ICCGLMM with binomial GLMMs. As we have shown,

the merit of our approach is not only its ease of implemen-

tation, but also that our approach encourages researchers to

pay more attention to variance components at different

levels. Research papers in the field of ecology and evolution

often report only regression coefficients but not variance

components of GLMMs [3].

We highlight two recent studies that provide alternatives

to our approach. First, Jaeger et al. [5] have proposed R2 for

fixed effects in GLMMs, which they referred to as R2
b� (an

extension of an R2 for fixed effects in linear-mixed models

or R2
b by Edwards et al. [39]). They show that R2

b� is a general

form of our marginal R2
GLMM; in theory, R2

b� can be used for

any distribution (error structure) with any link function.

http://rsif.royalsocietypublishing.org/
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Jaeger and colleagues highlight that in the framework of R2
b�,

they can easily obtain semi-partial R2, which quantifies the

relative importance of each predictor (fixed effect). As they

demonstrate by simulation, their method potentially gives a

very reliable tool for model selection. One current issue for

this approach is that implementation does not seem as

simple as our approach (see also [40]). We note that our

R2
GLMM framework could also provide semi-partial R2 via

commonality analysis [41], because unique variance for

each predictor in commonality analysis corresponds to

semi-partial R2 [42].

Second, de Villemereuil et al. [25] have provided a frame-

work with which one can estimate exact heritability using

GLMMs at different scales (e.g. data and latent scales).

Their method can be extended to obtain exact ICC values

on the data (observation) scale, which is analogous to, but

not the same as, our ICCGLMM using the observation-level

variance, s2
1 described above. Further, this method can, in

theory, be extended to estimate R2
GLMM on the data (obser-

vation) scale. One potential difficulty is that the method of

de Villemereuil et al. [25] is exact but that a numerical

method is used to solve relevant equations so one will require

a software package (e.g. the QGglmm package). Relevantly,

they have shown that heritability on the latent scale does

not need s2
d (distribution-specific) but only need s2

e (overdis-

persion variance), which has interesting consequences in

relation to our R2
GLMM and ICCGLMM (we briefly describe
this possibility in the electronic supplementary material,

appendix S7; see also [40]).

Finally, we finish by repeating what we said at the end of

our original R2 paper [3]. Both R2 and ICC are indices that are

likely to reflect only one or a few aspects of a model fit to the

data and should not be used for gauging the quality of a

model. We encourage biologists use R2 and ICC in conjunc-

tions with other indices like information criteria (e.g. AIC,

BIC and DIC), and more importantly, with model diagnostics

such as checking for model assumptions, heteroscedasticity

and sensitivity to outliers.

Data accessibility. No empirical data were used in this study and all
simulated data and related scripts are provided as electronic
supplementary material available online for this publication.

Authors’ contributions. S.N. conceived ideas, and conducted analysis
with discussions with H.S. All developed the ideas further, and
contributed to writing and editing of the manuscript.

Competing interests. We declare we have no competing interests.

Funding. S.N. was supported by an Australian Research Council Future
Fellowship (FT130100268). P.C.D.J. was supported by the UK BBSRC
Zoonoses and Emerging Livestock Systems (ZELS) Initiative BB/
L018926/1. H.S. was supported by an Emmy Noether fellowship
from the German Research Foundation (DFG; SCHI 1188/1-1).

Acknowledgements. We thank Losia Lagisz for help in making figure 1.
This work has been benefited from discussion with Jarrod Hadfield,
Pierre de Villemereuil, Alistair Senior, Joel Pick and Dan Noble. We
also thank an anonymous reviewer, whose comments have improved
our manuscript.
References
1. Lessells CM, Boag PT. 1987 Unrepeatable
repeatabilities: a common mistake. Auk 104,
116 – 121. (doi:10.2307/4087240)

2. Nakagawa S, Schielzeth H. 2010 Repeatability for
Gaussian and non-Gaussian data: a practical guide
for biologists. Biol. Rev. 85, 935 – 956. (doi:10.1111/
j.1469-185X.2010.00141.x)

3. Nakagawa S, Schielzeth H. 2013 A general and
simple method for obtaining R2 from generalized
linear mixed-effects models. Methods Ecol. Evol. 4,
133 – 142. (doi:10.1111/j.2041-210x.2012.00261.x)

4. Johnson PC.D. 2014 Extension of Nakagawa &
Schielzeth’s R2

GLMM to random slopes models. Methods
Ecol. Evol. 5, 944 – 946. (doi:10.1111/2041-210x.12225)

5. Jaeger BC, Edwards LJ, Das K, Sen PK. 2017 An R2

statistic for fixed effects in the generalized linear
mixed model. J. Appl. Stat. 44, 1086 – 1105.
(doi:10.1080/02664763.2016.1193725)

6. LaHuis DM, Hartman MJ, Hakoyama S, Clark PC.
2014 Explained variance measures for multilevel
models. Organ Res. Methods 17, 433 – 451. (doi:10.
1177/1094428114541701)

7. Bolker BM, Brooks ME, Clark CJ, Geange SW,
Poulsen JR, Stevens MHH, White JSS. 2009
Generalized linear mixed models: a practical guide
for ecology and evolution. Trends Ecol. Evol. 24,
127 – 135. (doi:10.1016/J.Tree.2008.10.008)

8. Bolker BM. 2008 Ecological models and data in R.
Princeton, NJ: Princeton University Presss.

9. Ver Hoef JM, Boveng PL. 2007 Quasi-Poisson vs.
negative binomial regression: how should we model
overdispersed count data? Ecology 88, 2766 – 2772.
(doi:10.1890/07-0043.1)

10. R Development Core Team. 2016 R: a language and
environment for statistical computing. Version 2.15.0
ed. Vienna, Austria: R Foundation for Statistical
Computing.

11. Snijders T, Bosker R. 2011 Multilevel analysis: an
introduction to basic and advanced multilevel
modeling, 2nd edn. London, UK: Sage.

12. Harrison XA. 2014 Using observation-level random
effects to model overdispersion in count data in
ecology and evolution. Peerj 2, e616. (doi:10.7717/
peerj.616)

13. Harrison XA. 2015 A comparison of observation-level
random effect and Beta-Binomial models for
modelling overdispersion in Binomial data in ecology
& evolution. Peerj 3, e1114. (doi:10.7717/peerj.1114)

14. Browne WJ, Subramanian SV, Jones K, Goldstein H.
2005 Variance partitioning in multilevel logistic
models that exhibit overdispersion. J. R. Stat. Soc.
Stat. 168, 599 – 613. (doi:10.1111/j.1467-985X.
2004.00365.x)

15. Efron B. 1986 Double exponential-families and their
use in generalized linear-regression. J. Am. Stat.
Assoc. 81, 709 – 721. (doi:10.2307/2289002)

16. Gelfand AE, Dalal SR. 1990 A note on overdispersed
exponential-families. Biometrika 77, 55 – 64.
(doi:10.2307/2336049)

17. Gelman A, Hill J. 2006 Data analysis using regression
and multilevel/hierarchical models. Cambridge, UK:
Cambridge University Press.
18. Ver Hoef JM. 2012 Who invented the delta method?
Am. Stat. 66, 124 – 127. (doi:10.1080/00031305.
2012.687494)

19. Powell LA. 2007 Approximating variance of
demographic parameters using the delta method: a
reference for avian biologists. Condor 109, 949 – 954.
(doi:10.1650/0010-5422(2007)109949:Avodpu]2.0.
Co;2)

20. Foulley JL, Gianola D, Im S. 1987 Genetic evaluation
of traits distributed as Poisson-binomial with
reference to reproductive characters. Theor. Appl.
Genet. 73, 870 – 877. (doi:10.1007/Bf00289392)

21. Gray BR, Burlew MM. 2007 Estimating trend
precision and power to detect trends across grouped
count data. Ecology 88, 2364 – 2372. (doi:10.1890/
06-1714.1)

22. Foster SD, Bravington MV. 2013 A Poisson-Gamma
model for analysis of ecological non-negative
continuous data. Environ. Ecol. Stat. 20, 533 – 552.
(doi:10.1007/s10651-012-0233-0)

23. Zhang YW. 2013 Likelihood-based and Bayesian
methods for Tweedie compound Poisson linear
mixed models. Stat. Comput. 23, 743 – 757. (doi:10.
1007/s11222-012-9343-7)

24. Tempelman RJ, Gianola D. 1999 Genetic analysis of
fertility in dairy cattle using negative binomial
mixed models. J. Dairy Sci. 82, 1834 – 1847. (doi:10.
3168/jds.S0022-0302(99)75415-9)

25. de Villemereuil P, Schielzeth H, Nakagawa S,
Morrissey M. 2016 General methods for evolutionary
quantitative genetic inference from generalized

http://dx.doi.org/10.2307/4087240
http://dx.doi.org/10.1111/j.1469-185X.2010.00141.x
http://dx.doi.org/10.1111/j.1469-185X.2010.00141.x
http://dx.doi.org/10.1111/j.2041-210x.2012.00261.x
http://dx.doi.org/10.1111/2041-210x.12225
http://dx.doi.org/10.1080/02664763.2016.1193725
http://dx.doi.org/10.1177/1094428114541701
http://dx.doi.org/10.1177/1094428114541701
http://dx.doi.org/10.1016/J.Tree.2008.10.008
http://dx.doi.org/10.1890/07-0043.1
http://dx.doi.org/10.7717/peerj.616
http://dx.doi.org/10.7717/peerj.616
http://dx.doi.org/10.7717/peerj.1114
http://dx.doi.org/10.1111/j.1467-985X.2004.00365.x
http://dx.doi.org/10.1111/j.1467-985X.2004.00365.x
http://dx.doi.org/10.2307/2289002
http://dx.doi.org/10.2307/2336049
http://dx.doi.org/10.1080/00031305.2012.687494
http://dx.doi.org/10.1080/00031305.2012.687494
http://dx.doi.org/10.1650/0010-5422(2007)109949:Avodpu]2.0.Co;2
http://dx.doi.org/10.1650/0010-5422(2007)109949:Avodpu]2.0.Co;2
http://dx.doi.org/10.1007/Bf00289392
http://dx.doi.org/10.1890/06-1714.1
http://dx.doi.org/10.1890/06-1714.1
http://dx.doi.org/10.1007/s10651-012-0233-0
http://dx.doi.org/10.1007/s11222-012-9343-7
http://dx.doi.org/10.1007/s11222-012-9343-7
http://dx.doi.org/10.3168/jds.S0022-0302(99)75415-9
http://dx.doi.org/10.3168/jds.S0022-0302(99)75415-9
http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170213

11

 on September 14, 2017http://rsif.royalsocietypublishing.org/Downloaded from 
mixed models. Genetics 204, 1281 – 1294. (doi:10.
1534/genetics.115.186536)

26. Matos CA.P., Thomas DL, Gianola D, Tempelman RJ,
Young LD. 1997 Genetic analysis of discrete
reproductive traits in sheep using linear and
nonlinear models.1. Estimation of genetic
parameters. J. Anim. Sci. 75, 76 – 87.

27. Carrasco JL. 2010 A generalized concordance
correlation coefficient based on the variance
components generalized linear mixed models for
overdispersed count data. Biometrics 66, 897 – 904.
(doi:10.1111/J.1541-0420.2009.01335.X)

28. Foulley JL, Im S. 1993 A marginal quasi-
likelihood approach to the analysis of Poisson variables
with generalized linear mixed models. Genet. Sel. Evol.
25, 101 – 107. (doi:10.1051/gse:19930107)

29. Rao CR. 2002 Linear statistical inference and its
applications, 2nd edn. New York, NY: John Wiley &
Sons.

30. Oehlert GW. 1992 A note on the delta method. Am.
Stat. 46, 27 – 29. (doi:10.2307/2684406)

31. McCulloch CE, Searle SR, Neuhaus JM. 2008
Generalized, linear, and mixed models, 2nd edn.
Hoboken, NJ: Wiley.
32. Zeger SL, Liang KY, Albert PS. 1988 Models for
longitudinal data: a generalized estimating equation
approach. Biometrics 44, 1049 – 1060. (doi:10.2307/
2531734)

33. Goldstein H, Browne W, Rasbash J. 2002
Partitioning variation in multilevel models.
Understand. Stat. 1, 223 – 231. (doi:10.1207/
S15328031US0104_02)

34. Fournier DA, Skaug HJ, Ancheta J, Ianelli J,
Magnusson A, Maunder MN, Nielsen A, Sibert J.
2012 AD model builder: using automatic
differentiation for statistical inference of highly
parameterized complex nonlinear models. Optim.
Method Softw. 27, 233 – 249. (doi:10.1080/
10556788.2011.597854)

35. Venables WN, Ripley BD. 2002 Modern applied
statistics with S, 4th edn. New York, NY: Springer.

36. Bates D, Machler M, Bolker BM, Walker SC. 2015
Fitting linear mixed-effects models using lme4.
J. Stat. Softw. 67, 1 – 48. (doi:10.18637/jss.v067.i01)

37. Lefcheck JS. 2016 PIECEWISESEM: Piecewise
structural equation modelling in R for ecology,
evolution, and systematics. Methods Ecol. Evol. 7,
573 – 579. (doi:10.1111/2041-210x.12512)
38. Brooks ME, Kristensen KK, van Benthem KJ,
Magnusson A, Berg CW, Nielsen A, Skaug HJ,
Machler M, Bolker BM. 2017 Modeling zero-inflated
count data with glmmTMB. bioRxiv. (doi:10.1101/
132753)

39. Edwards LJ, Muller KE, Wolfinger RD, Qaqish BF,
Schabenberger O. 2008 An R2 statistic for fixed
effects in the linear mixed model. Stat. Med. 27,
6137 – 6157. (doi:10.1002/Sim.3429)

40. Ives AR. 2017 R2s for correlated data: phylogenetic
models, LMMs, and GLMMs. bioRxiv. (doi:10.1101/
144170)

41. Ray-Mukherjee J, Nimon K, Mukherjee S,
Morris DW, Slotow R, Hamer M. 2014 Using
commonality analysis in multiple regressions:
a tool to decompose regression effects in
the face of multicollinearity. Methods
Ecol. Evol. 5, 320 – 328. (doi:10.1111/2041-
210x.12166)

42. Nimon KF, Oswald FL. 2013 Understanding the
results of multiple linear regression: beyond
standardized regression coefficients. Organ Res.
Methods 16, 650 – 674. (doi:10.1177/109442811
3493929)

http://dx.doi.org/10.1534/genetics.115.186536
http://dx.doi.org/10.1534/genetics.115.186536
http://dx.doi.org/10.1111/J.1541-0420.2009.01335.X
http://dx.doi.org/10.1051/gse:19930107
http://dx.doi.org/10.2307/2684406
http://dx.doi.org/10.2307/2531734
http://dx.doi.org/10.2307/2531734
http://dx.doi.org/10.1207/S15328031US0104_02
http://dx.doi.org/10.1207/S15328031US0104_02
http://dx.doi.org/10.1080/10556788.2011.597854
http://dx.doi.org/10.1080/10556788.2011.597854
http://dx.doi.org/10.18637/jss.v067.i01
http://dx.doi.org/10.1111/2041-210x.12512
http://dx.doi.org/10.1101/132753
http://dx.doi.org/10.1101/132753
http://dx.doi.org/10.1002/Sim.3429
http://dx.doi.org/10.1101/144170
http://dx.doi.org/10.1101/144170
http://dx.doi.org/10.1111/2041-210x.12166
http://dx.doi.org/10.1111/2041-210x.12166
http://dx.doi.org/10.1177/1094428113493929
http://dx.doi.org/10.1177/1094428113493929
http://rsif.royalsocietypublishing.org/

	The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded
	Introduction
	Definitions of R_{{\rm GLMM}}^2 , ICCGLMM and overdispersion
	Extension of R_{{\rm GLMM}}^2  and ICCGLMM
	Obtaining the observation-level variance by the &lsquo;first&rsquo; delta method
	How to estimate &lambda; from data
	Jensen’s inequality and the &lsquo;second&rsquo; delta method
	Special considerations for binomial GLMMs
	Worked examples: revisiting the beetles
	Alternatives and a cautionary note
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


