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a b s t r a c t

Variation in the structure of ground fuels, i.e. the moss and litter (M/L) layer, may be an important control
on fire severity in heather moorlands and thus influence vegetation regeneration and soil carbon dy-
namics. We completed experimental fires in a Calluna vulgaris-dominated heathland to study the role of
the M/L layer in determining (i) fire-induced temperature pulses into the soil and (ii) post-fire soil
thermal dynamics. Manually removing the M/L layer before burning increased fire-induced soil heating,
both at the soil surface and 2 cm below. Burnt plots where the M/L layer was removed simulated the fuel
structure after high severity fires where ground fuels are consumed but the soil does not ignite. Where
the M/L layer was manually removed, either before or after the fire, post-fire soil thermal dynamics
showed larger diurnal and seasonal variation, as well as similar patterns to those observed after wildfires,
compared to burnt plots where the M/L layer was not manipulated. We used soil temperatures to explore
potential changes in post-fire soil respiration. Simulated high fire severity (where the M/L layer was
manually removed) increased estimates of soil respiration in warm months. With projected fire regimes
shifting towards higher severity fires, our results can help land managers develop strategies to balance
ecosystem services in Calluna-dominated habitats.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The severity of a fire was defined by Keeley (2009) as the direct,
immediate fire effects such as degradation and loss of organic
matter. Variation in severity can influence post-fire vegetation
regeneration due tomechanisms occurring during the fire itself and
altered post-fire environmental conditions. Immediate fire mech-
anisms include thermal damage to plant structures (Legg et al.,
1992), and germination cues related to temperature pulses
(Whittaker and Gimingham, 1962) and chemicals from smoke and
ash (Bargmann et al., 2014). Altered post-fire environmental con-
ditions include loss of nutrients (Rosenburgh et al., 2013), substrate
change due consumption of ground fuels, e.g. the moss and litter
(M/L) layers, during high severity fires (Davies et al., 2010), and
changes to post-fire soil microclimate resulting from loss of
a Valldigna, 46760, Valencia,
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vegetation cover (Mallik, 1986; Brown et al., 2015). The latter is
important as microclimate is a control on soil respiration and soil
carbon dynamics (Lloyd and Taylor, 1994; Kettridge et al., 2012;
Walker et al., 2016). Fire can also alter soil chemistry and struc-
ture (Granged et al., 2011) and soil microbiology (Ward et al., 2012;
Fontúrbel et al., 2016), can be associated with increased rates of soil
erosion (Fern�andez and Vega, 2016) and can lead to a loss of organic
matter at high fire severities (Neary et al., 1999). Where ecosystems
have peat or thick organic soils, the ignition of these during
extremely severe fires can have considerable consequences for
carbon storage and ecological function (Maltby et al., 1990; Davies
et al., 2013; Turetsky et al., 2015).

Calluna vulgaris (L.) Hull (hereafter Calluna) dominated heath-
lands are internationally rare habitats of substantial conservation
importance (Thompson et al., 1995). Typically found in north-west
Europe, including Sweden, Norway, Denmark, the Netherlands,
Italy and Spain, Calluna heathlands are perhaps best represented in
the UK and Ireland (Gimingham, 1972). Calluna heathlands are
semi-natural ecosystems that resulted from human land-use since
the Mesolithic (Simmons and Innes, 1987). Management activities
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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have included forest clearance, intensified grazing mainly from
cattle and sheep, and burning to promote nutritious new growth
for livestock (Webb, 1998). Anthropogenic fire played a significant
role in the expansion and maintenance of Calluna heathlands
(Dodgshon and Olsson, 2006).

Under a changing climate, it is projected that alterations to the
seasonality of rainfall and warmer temperatures throughout
heathlands' range will result in increased frequency and/or severity
of summer drought (Murphy et al., 2009; Stocker et al., 2013; Cook
et al., 2014). These climatic changes suggest the potential for
increased wildfire activity (Westerling et al., 2006; Krawchuk et al.,
2009) and higher severity wildfires that consume a larger propor-
tion of ground fuels (Davies et al., 2016a). With many heathlands
overlying peat deposits or organic soils that store substantial
amounts of carbon (Bradley et al., 2005; Ostle et al., 2009), there is
concern that higher severity fires could increase carbon emissions
from both direct combustion and greater soil respiration resulting
from an altered post-fire soil microclimate (Brown et al., 2015).

In the UK, managed burning remains a common, though
controversial, practice and is particularly strongly associated with
red grouse (Lagopus lagopus scoticus Latham) and deer (Cervus
elaphus L.) management on sporting estates (Davies et al., 2016b).
Current forms of management date back approximately 200 years
and aim to increase Calluna productivity and forage quality, and to
produce a range of habitat structures by burning narrow (ca. 30 m
wide) strips to create a mosaic of different stand-ages (Allen et al.,
2016). Such traditional burning can have benefits for habitat
maintenance, biodiversity (Allen et al., 2016; Glaves et al., 2013)
and fire risk reduction (Davies et al., 2008a). However, negative
consequences have been noted for other ecosystem services such as
carbon sequestration (Garnett et al., 2000) and stream water
chemistry and ecology (Ramchunder et al., 2013). In order to
minimise wildfire risk and reduce potentially negative ecological
effects, managed burning is only permitted between, approxi-
mately, 1 October and 15 April (exact dates depend on country,
altitude, etc.; see DEFRA, 2007; WAG, 2008; SEERAD, 2011). This
means managers do not burn after mid-spring when heathland
birds are nesting and when drier, warmer weather is likely to lead
to difficult-to-control, high intensity fires.

On many heathlands Calluna forms dense, continuous stands
(Gimingham, 1960) comprised of an upper canopy with a high
proportion of live vegetation, a lower canopy with mainly dead
foliage, a lower layer of dead and live stems without foliage and
finally a M/L layer on top of a carbon-rich soil (Davies and Legg,
2011). During managed burns the M/L layer typically has a high
fuel moisture content (>250%) and plays an important role in
insulating soil from substantial temperature pulses, and possibly
ignition, during the passage of a flaming fire-front (Davies and Legg,
2011). This often means that despite high fireline intensities, fire
severity at the ground level, and thus impact on vegetation
regeneration and soil properties, is low (Davies et al., 2009).
However, where the moisture content of the M/L layer is below its
ignition threshold (ca. 70%; Davies and Legg, 2011; Santana and
Marrs, 2014), fuel available for combustion increases substan-
tially, leading to higher soil heating (Bradstock and Auld, 1995) and
difficulties with fire control (Davies et al., 2010).

Currently we have little quantitative evidence of how heathland
fuel structure influences fire severity. In particular, additional
knowledge of how the M/L layer controls fire-induced soil heating
and post-fire soil thermal dynamics is needed. We investigated this
by manipulating the structure of the M/L layer in experimental
burn plots. Our objectives were to (i) quantify the role of the M/L
layer in insulating soils from raised temperatures during managed
burning, (ii) model post-fire soil thermal dynamics in relation to
simulated variation in fire severity, and (iii) estimate the potential
effect of altered soil microclimate on soil respiration.

2. Material and methods

2.1. Study area

The experiment was completed at Glen Tanar Estate, Aber-
deenshire, Scotland (latitude 57.013�N, longitude 2.957�W, eleva-
tion of 330 m a.s.l.). Weather records from 1994e2007 at Aboyne
weather station, 13 km east of the site, elevation 130 m, show an
average annual rainfall of 837 mm, mean summer temperature of
13.8 �C and mean winter temperature of 3.1 �C (Met Office, 2012).

Soils at the site are peaty podzols with a mean organic horizon
depth of 9 cm. Vegetation is dominated by a dense and homoge-
nous canopy of mature (sensu Gimingham,1989) Calluna, with Erica
cinerea L., Vaccinium myrtillus L., Trichophorum cespitosum (L.)
Hartm. and Carex spp. also common. Beneath the Calluna canopy
we found a discontinuous layer of pleurocarpous mosses (domi-
nant species: Hypnum jutlandicum Holmen and Warncke, and
Pleurozium schreberi (Brid.) Mitt.) which are replaced by layers of
Calluna litter where stand canopies were particularly dense. There
are frequent wet flushes dominated by Molinia caerulea (L.)
Moench, Eriophorum vaginatum L. and Sphagnum spp. More
recently-burnt areas include patches of building phase Calluna and
areas dominated by Nardus stricta L. and M. caerulea.

2.2. Experimental design and measurements

We completed seven experimental fires on four separate days
between 12 and 26 April 2013. All fires were ignited with a drip
torch, burnt as head fires (i.e. main fire spread direction was the
same as wind direction) and covered an area of around 25 � 30 m.
Within each fire we established six 1 �1 m plots assigned to one of
three treatments (each treatment replicated twice in each fire): (i)
plots where the M/L layer was not manipulated, (ii) the M/L layer
was removed after the fire, (iii) the M/L layer was removed before
the fire. Wemanually removed the M/L layer down to the top of the
O-horizon in the latter two fuel treatments. The treatments allowed
us to quantify the effect of theM/L layer on fire-induced soil heating
by comparing plots where the M/L layer was present at the time of
burning versus plots where it had been removed. Furthermore, the
treatments simulated fuel structure after low severity fires where
M/L layer consumption is limited, and after higher severity where
the M/L layer is consumed (Davies et al., 2016a), and thus allowed
estimation of the effect of fire severity on post-fire soil thermal
dynamics. The simulated approach is useful as when ground fuels
become flammable (low moisture content), fuel available for
combustion increases substantially (Davies et al., 2010), normal
control methods have limited effectiveness and managed burning
becomes too hazardous. This has limited the ability of previous
research to capture a wide range of severities.

There can be substantial fine-scale (1 m2) spatial variability in
the behaviour of surface fires (Bradstock and Auld, 1995; Thaxton
and Platt, 2006; Davies et al., 2010). Our experimental design
therefore followed the “microplot” approach for fire behaviour:
plots within fires are treated as independent observations due to
the significant variation in fire behaviour that results from in-
teractions between heterogeneity in fuel structure, moisture con-
tent and fire weather (principally wind speed) during a burn
(Fernandes et al., 2000). We assessed the validity of the microplot
approach by partitioning the variance of fuel structure metrics (e.g.
fuel load, bulk density, M/L layer thickness) in “within fires” and
“between fires” components using a random effects model (see
Table S1 in supplementary material). We used the non-destructive
FuelRule method (Davies et al., 2008b), which is based on visual
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obstruction of a banded measurement stick, to estimate plot fuel
load and structure with five measurements taken in each plot. The
method was calibrated using destructive sampling (full details are
provided in Grau-Andr�es, 2017).

To estimate fuel moisture content (FMC), immediately before
each fire we sampled the top 2 cm of the soil, the top 2 cm of the M/
L layer, dead Calluna shoots and live Calluna shoots (defined sensu
Davies and Legg, 2011). We extracted a single soil core from a
random location in each plot and calculated the FMC and dry bulk
density of the top 2 cm of soil. We took M/L layer samples from
three randomly-selected locations in each plot where the M/L layer
had not been removed, and a single, integrated sample of live and
dead Calluna FMC from each fire. Samples were dried in a fan-
assisted oven at 80 �C for 48 h, and FMC expressed as percentage
of dry weight.

During the burns we recorded ambient air temperature, relative
humidity and wind speed using a Kestrel 4000 Wind Tracker
mounted on a wind vane and 1.25 m tripod, i.e. at approximately
mid-flame height. Fire rate of spread was estimated using Davies
et al. (2009) empirical equation for Calluna moorlands based on
wind speed, Calluna height and live Calluna moisture content. We
used four “duff spikes” (metal spikes with a notch level with the M/
L surface; e.g. Davies et al., 2010) per plot to estimate consumption
of the M/L layer during the fires to the nearest 1 cm.

To assess temperature pulses from the passage of the fire front
we buried two Hobo™ loggers connected to K-type twisted pair
thermocouples in each plot. The thermocouples were located at the
soil surface (i.e. below overlying layers of moss and litter in plots
where these layers were not removed) and 2 cm below the top of
the soil. Temperatures were recorded at 1 s intervals. In plots where
it had not been removed, we measured the thickness of the M/L
layer above the top thermocouple to the nearest 0.5 cm. Based on
the thermocouple data we estimated five metrics of fire-induced
soil heating (Table 1).

Post-fire soil thermal dynamics data were collected from two
different experiments: the experimental fires and a series of
wildfires. For the experimental fires, we buried iButton™ temper-
ature loggers (0.5 �C accuracy, 2 h logging interval) 2 cm below the
top of the soil. We buried a single iButton in a randomly-selected
plot of each treatment in each of the seven fires. Next to each fire
we also located an iButton in a single unburnt (control) plot.
Temperatures were recorded from 26 April 2013 to 10 April 2014.
We analysed post-fire soil thermal dynamics in three wildfires to
assess whether our experimental manipulation of ground fuel
structure led to fire effects similar to those seen in moderately-
severe to severe wildfires. The three wildfires burnt Calluna-
dominated heaths and/or bogs in northern England (Anglezarke,
53.658� N, 2.569� W; Wainstalls, 53.777� N, 1.928� W) and north-
east Scotland (Finzean, 57.025� N, 2.702� W) between April 2011
andMarch 2012, capturing a range of variability in fire severity (e.g.
ground fuel consumption ranged 0.4e1.0 kg m�2; Davies et al.,
2016a). In each wildfire two paired plots were monitored, each
Table 1
Fire-induced soil heating metrics calculated from temperature measurements at the soil

Variable Details

Total heat (�C.s)
Measurement that integrates both the extent of temperature

temperature at i seconds after the start of the fire and T0 is t
Maximum T (C) Maximum soil temperature.
Heating and cooling

rates (l)
Exponential growth (heating) and exponential decay (cooling
curves. l were estimated fitting non-linear models of the type
temperature, using the package gnm (Turner and Firth, 2015)

t above 50 �C (s) Time that soil temperature was above the 50 �C threshold, ass
1993; Massman et al., 2010) and stimulation of seed germina
with an unburnt and a burnt subplot located either side of the
perimeter of the fire. iButtons were used to record bi-hourly tem-
peratures 2 cm below the top of the soil for approximately a month
between August and September 2012. Soil types included rocky
organic soils at Finzean and deep peat soils at the other sites. The
potential effect of site, habitat type and fire behaviour were
confounded in this experimental design but it still provides us with
useful comparative data where information is otherwise lacking.

2.3. Data analysis

2.3.1. The role of the M/L layer in controlling fire-induced soil
heating

All data analysis was performed in R 3.2.2 (R Core Team, 2015).
Due to thermocouple malfunction, the number of observations was
41 at the soil surface and 38 two cm below. We examined differ-
ences in M/L layer consumption and fire-induced soil heating be-
tween burnt plots where the M/L layer was not removed, and plots
where it was removed after the fire, to assess whether the two
treatments could be grouped together in subsequent analyses. M/L
layer consumption did not differ significantly between plots where
the M/L layer was removed after the fire (average ± standard de-
viation was 0.21 ± 0.49 cm) versus where it was not manipulated
(0.13 ± 0.38 cm). Where frequency of zeros was low and thus sta-
tistical testing was possible (i.e. soil heating metrics except time
above 50 �C), differences were not significant (Table S2). Therefore,
both treatments were combined into an “M/L layer present” group.

We investigated the effect of variation in ground fuel structure
on fire-induced soil heating using linear mixed effects models that
included an interaction between treatment (M/L layer present and
removed) and depth of measurement (soil surface and 2 cm below)
as fixed effects and fire as a random effect (function “lme” in the
package nlme; Pinheiro et al., 2015). Response variables were
logarithmically transformed, except for total heat, for which a
square root transformation was used. Statistical analysis of time
above 50 �C was not possible due to high abundance of zeros.
Multiple comparisons (Hothorn et al., 2008) tested differences
between treatments within measurement depth. We used the
function “g.squaredGLMM” in the packageMuMIn (Barton, 2015) to
calculate the marginal R2 (variance explained by fixed effects) and
conditional R2 (variance explained by both fixed and random ef-
fects) (Nakagawa and Schielzeth, 2013; Johnson, 2014).

To assess which environmental variables were most important
in determining fire-induced soil heating in plots where the M/L
layer was not removed, i.e. representative of normal managed
burning in Callunamoorlands, we fitted separate linear fixed effects
models for each temperature metric (Table 1, except for time above
50 �C due to high abundance of zeros) including interactions be-
tween measurement depth and each environmental variable as
fixed effects and fire as a random effect. Available environmental
variables measured at the plot level were total biomass above
ground, M/L layer thickness, soil bulk density, M/L layer FMC and
surface and 2 cm below, from the start of the fire to 35 min after.

increase and its duration. Calculated as
P
i¼1

2100
ðTi � T0Þ, where Ti is the soil

he temperature before the start of the fire.

) constants (l) associated with the rising and falling limbs of the temperature-time
Ti ¼ T0,e ðl , iÞ , where Ti is temperature at time i (in minutes) and T0 is the initial
.
ociated with damage to, and mortality of, plant tissues (Granstr€om and Schimmel,
tion (Whittaker and Gimingham, 1962).
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soil FMC. Soil bulk density and FMCwere negatively correlated and,
to avoid multicollinearity (Zuur et al., 2010), only soil FMC, a priori a
stronger control on soil heating (Busse et al., 2010), was included in
the initial models. Total heat was square root-transformed, and the
other response variables were log-transformed. A constant variance
structure accounted for the heterogeneity in variance between
measurement depths. Akaike's Information Criterion (AIC) was
used for model selection: terms that did not lower AIC by more
than two units were sequentially removed (Symonds and
Moussalli, 2010).
2.3.2. Effect of fire severity on post-fire soil thermal dynamics
Post-fire mean daily temperature (00:00 to 22:00) and daily

temperature range, defined as the difference between maximum
and minimum daily temperatures, were calculated using data from
the iButtons. Simple harmonic regression (Cowpertwait and
Metcalfe, 2009) was used to model mean daily temperature and
daily temperature range separately in each treatment. We used
linear mixed effects models that included sampling day and the
sine and cosine terms of the harmonic expression as fixed effects:

MDT=DTR tr ð�CÞ � sdayþ cosð2$ p $sday=365Þ
þ sinð2$ p $sday=365Þ (1)

where mean daily temperature (MDT) or daily temperature range
(DTR) in treatment tr is a function of the sampling day sday (1, 25
April 2013, to 350, 10 April 2014) and a cosine and sine term. Fire
was included as a random effect and temporal correlation of the
data (continuous bi-hourly measurements at the same location)
was accounted for with an autocorrelation structure of order 1
(function “corAR1” in package nlme). We calculated amplitude
(vertical distance from the centreline to the wave maximum, in �C)
and phase (horizontal distance to awave starting at sampling day 1,
in days) that characterise the modelled sinusoids following
Piegorsch and Bailer (2005). Uncertainty in amplitude and phase
was estimated using the approximate variance of a function of
random variables based on a Taylor expansion (Meyer, 1970). For
both mean daily temperature and daily range, we computed 95%
confidence intervals for the differences in amplitude between all
pairs of treatment levels. We followed the same procedure for
differences in phase.

We tested whether soil temperatures following experimental
fires responded differently to changing weather conditions
compared to soils burnt-over by wildfires. To allow comparison of
data from the experimental fires with the paired plot data from the
wildfires (which burnt different sites in different years) we took
two approaches to defining paired plots from our experimental fire
data: one pair included the unburnt plot and the plot where the M/
L layer was not removed (defined as “low severity” treatment), and
the second pair included the same unburnt plot and an average of
the two plots where the M/L layer was removed (simulated “high
severity”). For both the wildfires and the experimental burns, we
calculated the difference between temperatures in the unburnt
subplot and the burnt subplot in each paired plot. We only used
data from the experimental fires where mean daily temperature in
the unburnt plot was within the range of mean daily temperatures
recorded in the unburnt wildfire subplots (6.6e15.4 �C). Post-fire
changes in mean daily temperature were modelled as a function
of mean daily temperature in the unburnt plot and the fire type
associated with the paired plot (wildfire, low severity experimental
fire and simulated high severity experimental fire). Mean daily
temperature in the unburnt plot was used as a proxy for weather
conditions, and was included in the model to account for the effect
of weather on post-fire thermal dynamics. We fitted a random
slopes and interceptmodel with an interaction betweenmean daily
temperature in the unburnt plot and fire type as fixed effects,
paired plot as a random effect and an autocorrelation structure of
order 1.
2.3.3. Effect of post-fire soil thermal dynamics on relative soil
respiration

Given the key role of temperature in controlling metabolic rates,
temperature-driven models are often used to estimate soil respi-
ration (Del Grosso et al., 2005). We used Eq. (2) (Lloyd and Taylor,
1994) to explore the potential effect of observed changes in soil
thermal dynamics on soil respiration.

R ¼ R10 e
308:56

�
1

56:02� 1
T�227:13

�
(2)

where R10 is the estimated respiration at 10 �C and T is the soil
temperature in K. As R10 was unknown for the site, we used a
unitless value of 1 and thus expressed estimates of respiration as
the proportional change in respiration relative to that at 10 �C. We
estimated relative respiration during the first year after the fire in
each plot using the bi-hourly temperature measurements. The
approach focuses on soil temperature and does not consider other
drivers of soil respiration such as moisture content and substrate
dynamics (Curiel Yuste et al., 2007) likely to change after burning
(Ward et al., 2012). Thus, our estimates provide an indication of
how post-fire soil respiration may change due to an altered soil
thermal regime alone, and noting that potentially important in-
teractions with other environmental variables were not explored.
Average relative respiration estimates were calculated for each plot
in each season (spring: MarcheMay, summer: JuneeAugust,
autumn: SeptembereNovember, winter: DecembereFebruary),
providing seven averages (one per fire) for each treatment and
season. The data were analysed using a linear mixed effects model
including an interaction between treatment and season as fixed
effects and fire as a random effect. We performed multiple com-
parisons tests using the function “glht” in the package multcomp
(Hothorn et al., 2008).
3. Results

3.1. The role of the M/L layer in controlling fire-induced soil heating

M/L consumption in plots where the M/L layer was not removed
before the fire was very low: 0.17 ± 0.44 cm. Soil heating, as
measured by total heat, maximum temperature and time above
50 �C, was higher in plots where the M/L layer had been removed
prior to the fire than in those where it was present during the burn
(Table 2). Temperatures were also considerably higher at the soil
surface compared to 2 cm below ground. The temperature time
curves consistently showed a steep rising limb associated with the
arrival of the fire front followed by a shallow falling limb related to
residual flaming and smouldering combustion and the slow cool
down of the heated soil mass (Fig. 1). For temperature residence,
maximum temperature, rate of heating and rate of cooling, the
statistically significant interaction between treatment and depth of
measurement indicated that M/L layer removal had a larger effect
at the top of the soil compared to 2 cm below (model details are
provided in Table S3).

Fuel structure and moisture content of the different fuel layers
was relatively homogenous across fires (Table 3). For plots where
the M/L layer was not manipulated, the main controls on fire-
induced soil heating were depth of measurement, the moisture
content of the soil and the moisture content of the M/L layer,



Table 2
Mean and standard deviation (in parentheses) of fire-induced soil heating metrics by depth of measurement (soil surface and 2 cm below) and treatment (M/L layer present or
removed). Within each variable and depth of measurement, different letters indicate statistically significant differences between treatments (a ¼ 0.05). Statistical testing
details are provided in Tables S3 and S4.

Variable 2 cm 0 cm

M/L present M/L removed M/L present M/L removed

Total heat (�C.s) 1895 (2256) a 4322 (3874) b 7791 (7012) a 20469 (10170) b
Maximum T (�C) 7 (3) a 9 (4) b 21 (22) a 73 (34) b
Heating rate (l) 0.02 (0.04) a 0.03 (0.04) b 0.8 (2) a 5 (4) b
Cooling rate (l) 3e-05 (4e-05) a 0.003 (0.01) b 0.08 (0.1) a 0.5 (0.3) b
t above 50 �C (s) 0 (0) 0 (0) 11.1 (34.2) 57.8 (57.7)
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Fig. 1. Representative examples of fire-induced soil heating curves associated with
plots where the M/L layer was present or removed at the time of the fire, at both
measurement depths (soil surface and 2 cm below). Curves with the same colour
belong to the same plot/treatment.

Table 4
Optimal linear mixed effects models explaining variation in soil heating metrics as a
function of depth of measurement (soil surface and 2 cm below) and moisture
content of soil and of the M/L layer.

Response DF R2m R2c Fixed effect t-value p-value

Total heat (�C.s) 45 0.21 0.32 Depth 4.82 <0.001
Soil FMC 2.35 0.023

Maximum T (�C) 46 0.17 0.34 Depth 5.08 <0.001
Heating slope (l) 46 0.10 0.34 Depth 3.41 0.001
Cooling slope (l) 45 0.16 0.16 Depth 4.38 <0.001

M/L layer FMC �2.06 0.046
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although the explanatory power of the models was low (Table 4).

3.2. Effect of fire severity on post-fire soil thermal dynamics

The harmonic expressions (Eq. (1)) had a significant effect in
modelling mean daily temperature and daily temperature range
(Table S3). Marginal R2 (variance explained by fixed effects) ranged
between 0.88 and 0.90 in mean daily temperature models and
between 0.27 and 0.61 in daily temperature range models. Low
marginal R2 in daily temperature rangemodels was associated with
weak seasonal patterns in unburnt plots. Daily temperature range
was highest in burnt plots where the M/L layer was manually
removed, lowest in unburnt plots, and intermediate in burnt plots
where the M/L layer was not removed (Fig. 2). Differences in daily
temperature range between treatments were highest in summer
(up to ca. 6 �C) and lowest in winter (up to ca. 0.5 �C). Mean daily
temperature in burnt plots was higher than in unburnt in summer
Table 3
Summary of environmental variables associated with the experimental fires. M/L
layer thickness and FMC refer to plots where the M/L layer was mot removed.

Variable n Mean (SD) Range

Fire rate of spread (m min�1) 7 7 (3.3) 3.7e12
Wind speed (m s�1) 7 3.3 (1.5) 1.9e6.3
Air temperature (�C) 7 8.6 (2.6) 5.1e11.1
Relative humidity (%) 7 58 (12) 41e73
Live Calluna FMC (%) 7 81 (6) 74e92
Dead Calluna FMC (%) 7 15 (4) 13e23
Calluna height (cm) 42 51.3 (7.7) 31e65
Fuel load above moss (kg m�2) 42 1.5 (0.2) 1.0e1.9
M/L layer thickness (cm) 28 4.0 (1.9) 1.0e8.0
M/L layer FMC (%) 28 251 (77) 103e398
Soil FMC (%) 42 422 (88) 192e630
Soil bulk density (g cm�3) 42 0.1 (0.1) 0.02e0.4
and spring and lower in autumn andwinter. The removal of theM/L
layer amplified the effect of burning and resulted in higher tem-
peratures in spring and summer and lower temperatures in autumn
and winter.

Mean daily temperature and daily temperature range were
similar in burnt plotswhere theM/L layerwas removed after thefire
and in plots where it was removed before the fire. Comparisons
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Fig. 2. Modelled mean daily temperature and daily temperature range (26 April 2013
to 10 April 2014) for unburnt plots (U), burnt plots (B), and burnt plots where the M/L
layer was removed after (BR) and before the fire (RB). The harmonic linear mixed ef-
fects model included sampling day and the sine and cosine terms of the harmonic
expression as fixed effects, and fire as a random effect.
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Fig. 3. Difference in post-fire soil mean daily temperature (MDT) between burnt and
unburnt plots in experimental fires and wildfires versus MDT in the unburnt plot. (top)
The M/L layer was not removed in burnt plots in experimental fires; (bottom) the M/L
layer was manually removed in burnt plots in experimental fires. Fitted values from
models including an interaction between unburnt MDT and fire type (wildfire, low
severity experimental fire and simulated high severity experimental fire, i.e. where the
M/L layer was removed) as a fixed effect are also shown.
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between both treatments suggest that consumption of the Calluna
canopy and removal of the M/L layer had an effect of a similar
magnitude on soil thermal dynamics. For example, mean daily
temperature in burnt plotswas 1.6 �C higher than in unburnt in July,
while it was approximately 2.6 �C higher in burnt plots where the
M/L layer was removed. Similarly, daily temperature range in July
was 2.6 �C higher in burnt than in unburnt plots and 5.9 �C higher in
burnt plots where the M/L layer was removed than in unburnt.

Larger mean daily temperature amplitude in burnt plots where
the M/L layer was removed indicated more extreme seasonal soil
thermal dynamics (Table 5). The larger amplitude of the daily
temperature range in the same plots indicated greater diurnal ex-
tremes. The negative phase for mean daily temperature and daily
temperature range in burnt plots showed that annual patterns of
soil thermal dynamics in these plots lead those of unburnt plots, i.e.
maximum (summer) and minimum (winter) temperatures
occurred 4e10 days earlier in the year in burnt compared to un-
burnt plots. Comparison of the 95% confidence intervals of the
difference in amplitude between treatments revealed that seasonal
patterns in mean daily temperature and in daily range were
significantly different between all treatments except between plots
where the M/L layer was removed before the fire and plots where it
was removed afterwards. Patterns in phase differences were
similar, except for mean daily temperature where phase was
different in burnt plots where the M/L layer was removed before
compared to after the fire.

Post-wildfire increases in mean daily soil temperature during
warmer weather (as estimated by soil temperature in the unburnt
plot) were similar to that observed after experimental fires in plots
where the M/L layer was manually removed (p-value ¼ 0.8), but
significantly higher (p-value ¼ 0.03) than in plots where the M/L
layer was not removed (Fig. 3). Model details are provided in full in
Table S6.

3.3. Effect of post-fire soil thermal dynamics on estimated soil
respiration

Estimated relative soil respiration followed seasonal tempera-
ture patterns, with the highest values in summer and the lowest in
winter (Fig. 4). The higher temperatures recorded in burnt plots
where the M/L layer was removed led to significantly higher esti-
mated relative respiration in the warmer summer months.

4. Discussion

4.1. The role of the M/L layer in controlling fire-induced soil heating

The effect of removing the M/L layer was similar across all
measures of fire-induced soil heating: a small increase in the
response variable at 2 cm depth and a substantial increase at the
top of the soil (Table 2). For example, average maximum
Table 5
Amplitude and phase of the mean daily temperature and daily temperature range
models (Fig. 2), for each fuel treatment. Variance in parenthesis. Same letters within
columns indicate non-significant differences between fuel treatments, based on 95%
confidence intervals. Phase is relative to that in unburnt: negative values indicate
the sinusoidal wave is to the left (leading) the unburnt.

Treatment Mean Daily Temperature Daily Temperature Range

Amplitude (�C) Phase (days) Amplitude (�C) Phase (days)

Unburnt 5.6 (0.01) a 0.0 (0.04) a 0.9 (0.001) a 0.0 (0.4) a
B 6.8 (0.01) b �6.0 (0.01) b 2.2 (0.005) b �4.0 (0.4) b
BR 7.7 (0.02) c �9.9 (0.02) c 3.7 (0.01) c �9.4 (0.5) c
RB 7.7 (0.02) c �10.4 (0.03) d 3.6 (0.008) c �9.8 (0.4) c
temperature at the top of the soil was ca. 20 �C in burnt plots where
the M/L layer was not removed compared to ca. 75 �C where it was
removed. The insulating effect of the M/L layer was apparent from
the increased heating and cooling rates in plots where theM/L layer
was removed before the fire.Where theM/L layer was not removed,
l
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Fig. 4. Estimates of soil respiration relative to soil respiration at 10 �C, per season and
treatment (codes follow Fig. 2). The height of the boxes indicate approximate first and
third percentiles; the bar across is the median; the whiskers extend to most extreme
datapoint within 1.5 times the interquartile range; circles are data outwith this range.
Within each season, treatments with different lower-case letters are significantly
different. Capital letters refer to overall differences between seasons (a ¼ 0.05). Sta-
tistical testing is reported in full in Table S7, Table S8 and Table S9.
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i.e. conditions generally representative of managed burning in
Calluna moorlands, the high M/L layer FMC (251%) limited the
transmission of raised temperatures into the soil (Busse et al., 2010)
and prevented the ignition of the M/L layer (Davies and Legg, 2011;
Santana and Marrs, 2014). Soil and M/L layer moisture content
explained some of the variation in soil heating, although overall
model performance was low (Table 4). This is possibly due to a
combination of the limited range of environmental and weather
conditions under which we were able to safely complete our burns
(Table 3) and the stochastic nature of fire behaviour and fuel
structures at small temporal and/or spatial scales (Davies et al.,
2010). Future research aiming to understand the effect of envi-
ronmental variables on fire-induced soil heating more completely
might benefit from greater variation in fuel structure, fuel moisture
content and fire weather.

Although average soil maximum temperatures in plots where
the M/L layer was removed were above the critical threshold for
damage to rhizomes (55e59 �C) and seeds (65e75 �C) for common
heathland species (Granstr€om and Schimmel, 1993), the relatively
short average time above 50 �C (around a minute) suggests
extensive damage was unlikely (Mallik and Gimingham, 1985;
Schimmel and Granstr€om, 1996). Nevertheless, considering 70% of
viable Calluna seeds in shallow organic soils are located in the
upper 2 cm of the soil profile (Legg et al., 1992), the increased fire-
induced soil heating observed in plots where the M/L layer was
removed suggests thermal insulation from ground fuels can be an
important control on post-fire vegetation response. Compared to
low severity fires with limited M/L layer consumption and soil
heating, moderately-high severity fires can promote regeneration
of Calluna seeds through stronger germination cues from fire-
induced temperature pulses (Whittaker and Gimingham, 1962),
ash and smoke (Bargmann et al., 2014) and warmer soil during the
growing season (Fig. 2). Furthermore, greater M/L layer consump-
tion increases the area of bare soil thus improving the establish-
ment of Calluna seeds (Davies et al., 2010). However, regeneration
would decline sharply in high severity fires with extensive below-
ground heating leading to seed mortality (Schimmel and
Granstr€om, 1996) and, in extremely severe wildfires, changes to
soil structure and soil loss (Maltby et al., 1990; Davies et al., 2013).

4.2. Effect of fire severity on post-fire soil thermal dynamics

Differences in post-fire soil thermal dynamics between treat-
ments can be explained by three main mechanisms: (i) the removal
of the Calluna canopy and the M/L layer thus increasing solar ra-
diation and air movement and facilitating heat exchange between
soil and atmosphere (Barclay-Estrup, 1971); (ii) lower albedo in
burnt plots, especially where theM/L layer was removed, due to the
dark exposed soil (Chambers and Chapin, 2002); (iii) the alteration
of soil moisture content, likely dependent on complex interactions
between habitat, fire behaviour and weather. For example,
depending on fire severity and soil characteristics, fire can create a
water repellent layer that can reduce soil evaporation (Certini,
2005; Kettridge et al., 2015). Low near-surface moisture content
can reduce latent heat fluxes and result in large diurnal tempera-
ture variations at the soil surface (upper 1.5 cm) (Kettridge et al.,
2012). Comparison of soil thermal dynamics in unburnt plots,
burnt plots and burnt plots where the M/L layer was manually
removed indicates the contribution of the Calluna canopy and the
M/L layer to alteration of post-fire thermal dynamics were of
similar magnitude, i.e. the further increase in soil solar irradiation,
exposure to air flow, reduced albedo and/or altered moisture
regime from the removal of the M/L layer was comparable to that
from burning.

The results suggest that soil thermal dynamics after high
severity fires where the M/L layer is consumed have both wider
seasonal and diurnal ranges than after low severity fires where M/L
layer consumption is low. The similarity in soil thermal dynamics
between burnt plots where the M/L layer was manually removed
after and before the fires can be explained by the high soil moisture
content at the time of burning (mean 422%, Table 3), which was
likely to have minimised the potential for soil scorching and the
formation of hydrophobic surface layers (Certini, 2005). The change
in soil thermal dynamics in burnt plots resulted in warmer soil
temperatures during the growing season, especially in plots where
the M/L layer was manually removed.

Higher mean and maximum daily temperatures, and lower
minimum daily temperatures in recently burnt plots have been
observed previously in heather moorlands (Brown et al., 2015). The
post-wildfire soil temperature data we analysed, although short in
duration and occurring within limited range of weather conditions,
showed a relationship between mean daily soil temperature and
prevailing weather conditions similar to that observed in experi-
mental fires where the M/L layer was removed (Fig. 3). This may
indicate that the combustion of the M/L layer in wildfires (Davies
et al., 2016a) could be an important driver of increased alteration
to post-fire soil thermal dynamics. However, further research needs
to confirm this as differences in habitat and soil characteristics
between our experimental and wildfire sites (e.g. soils were
generally deeper and wetter at the wildfire sites), as well as dif-
ferences inweather not accounted for by our model (solar radiation
and precipitation), may also have contributed to differences in
post-fire soil thermal dynamics.

4.3. Effect of post-fire soil thermal dynamics on estimated soil
respiration

We used a simple model to form new testable hypotheses about
how changes in soil temperature regimes could alter soil respira-
tion (Fig. 4). This suggests that temperature differences should in-
crease relative respiration in burnt plots compared to unburnt
during the summer, when soil respiration is at its greatest (Falge
et al., 2002). Furthermore, modelled soil respiration during the
summer was highest in burnt plots where the M/L layer was
manually removed. Therefore, a temperature-driven increase in soil
respiration (Blodau et al., 2007; Dorrepaal et al., 2009) could result
from high severity fires where the M/L layer is consumed. However,
the potential implications of this for a sites' overall carbon balance
is far from clear. For instance, higher soil temperatures could also
result in increased Net Primary Productivity, which may offset
increased respiration (Davidson and Janssens, 2006). In addition,
the effect of an altered post-fire soil microclimate on the soil carbon
budget is superimposed on changes in vegetation community
composition, which is an important, though complex, control on
soil carbon dynamics. For example, vascular plants can increase
peatland soil respiration under warm conditions (Ward et al., 2013;
Walker et al., 2016), whilst the inhibitory action of phenolics
associated with shrubs can lower soil respiration (Wang et al.,
2015). Community response to fire severity is therefore likely to
be an important driver of carbon dynamics in Calluna heathlands,
and could be key in determining the fate of large quantities of
carbon stored in northern soils where higher severity fires are
projected (Albertson et al., 2010). Our simple modelling exercise
therefore points to important directions for future research but the
hypothesised effects of changes in temperature regimes cannot be
considered in isolation.

5. Conclusions

We found that the thickness and moisture content of the M/L
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layer plays a critical role in controlling soil heating in Calluna
heathland fires. Fire-induced soil heating increased significantly in
the absence of the M/L layer overlaying the soil, although, due to
high soil moisture content, temperatures remained at the lower end
of those that could damage plant tissue. Post-fire soil thermal dy-
namics differed between levels of simulated fire severity. Thus with
higher severity fires, where the M/L layer is consumed, soils will be
warmer during summer with greater seasonal and diurnal tem-
perature variation. The altered soil microclimate may increase soil
respiration in the first years following burning. However, further
information on effects of the severity of fires on below- and above-
ground processes, including vegetation community response, is
required to understand long-term consequences of a changing fire
regime on the overall carbon balance. The results suggest that
managed burning, aiming to rejuvenate Calluna heathlands whilst
minimising soil carbon losses, should keep fire severity low to avoid
consumption of the M/L layer by burning when the moisture con-
tent of the soil and the M/L layer are high.
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