
Figure 2: Clustering of PV system types (fixed or tracking) using k-means with principal

component analysis. The Indian red cluster shows the PV systems with fixed

orientations; the turquoise cluster shows the PV systems with trackers. The cluster

centers are indicated with black crosses.

The resulting clusters are displayed in Fig. 2. It can be seen from the biplot that

some features, namely, vchange and change.idx, are less variable than others

across all time series; they contribute less in terms of separating the systems.

The figure also reveals some opposing features, e.g., curvature and linearity;

lshift and cpoints. Time series with high linearity in general expects a low

curvature. It is worth to mention that the separation of the two clusters is along

the direction of lshift, the level shift using rolling window. As this feature

computes the maximum absolute difference between consecutive mean values

from a rolling window, the tracker systems with more rapid power changes have

higher lshift values than those systems with fixed orientations.

4.2. Irradiance monitoring network design (application-

specific features)

4.2.1. SUNY data
The State University of New York (SUNY) gridded satellite derived irradiance

data is used in this application. The full dataset contains hourly estimates (using

the Perez et al., 2002 model) of global, diffuse and direct irradiance over a 10

km (about 0:1 latitude and longitude) grid for all states in the United States,

except for Alaska where satellite cannot resolve cloud cover information, for

1998–2005.

Figure 3: Maps of four PCA features extracted from kt time series. (a) The highest mean 

value (location parameter) from the mixture distribution fitting; (b) the autocorrelation at 

lag 12; (c, d) optimal PV tilt and azimuth angles that maximize the annual yield of a flat 

surface collector.

Table 2: Six application-specific time series features used for irradiance monitoring 

network design.

4.2.2. Choice of features
We are interested in constructing a proximity so that the similarity in irradiance

at different locations can be quantified. The most intuitive features under this

consideration are perhaps the geographical locations, namely, the latitude and

longitude of each pixel. Besides the geographical locations, the next best

approach to generate characteristics is using statistics. Watanabe et al. (2016)

used sample mean, variance and entropy to evaluate the variation in solar

irradiance.

Generally speaking, a random variable can be well characterized by its

distribution function (Kobayashi et al., 2011). There are various ways to

describe a distribution function. For instance, we can use quantiles to describe

an empirical distribution function, and use parameters to describe a parametric

distribution function. In the monitoring network design problem, it is found that

some descriptive statistics are more useful than others. Two features, namely,

the lag 12 autocorrelation of the clearness index time series and the highest

location parameter in the fitted skew normal mixture distribution, are most

informative. Besides statistical features, features with physical and engineering

implications can also be considered.
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1. Introduction
With increasing photovoltaic (PV) installations, large amounts of time series data

from utility-scale PV systems such as meteorological data and string level

measurements are collected. Such lengthy time series data from solar systems

are highly multi-dimensional and challenging to process, due to the following.

1. Due to fluctuations in irradiance and temperature, PV data is highly stochastic.

2. Spatio-temporal differences with potential time-lagged correlation are also

exhibited, due to the wind directions affecting cloud movements.

3. Different types of PV systems in terms of power output and wiring configuration,

as well as localised PV effects like partial shading and module mismatches.

2. Objectives

In this work, a data analytics algorithm is applied to mitigate some of the

complexities and make sense of the large time series data in PV systems. The

time series data is processed to extract features through clustering and identify

correspondence between specific measurements and geographical location of the

PV systems. This characterisation of the time series data can be used for several

PV applications, namely, (1) PV fault identification, (2) PV network design and (3)

PV type pre-design for PV installation in locations with different geographical

attributes.

3. Methods

3.1. Principle Component Analysis (PCA)
For a centered dataset X, an n×p matrix, where n is the number of time series

(observation, each time series is considered as one observation) and p is the

number of time series features (variable), PCA computes the most meaningful

basis to re-express X.

If Z is the re-represented data, the above statement can be written as Z =XA,

where A is an p×p matrix and its columns are a set of basis vectors for

representing of columns of X. PCA assumes all basis vectors are orthonormal.

A normalized direction is selected in p-dimensional space along which the

variance in X is maximized; this basis vector is denoted as a1. In other words, we

maximize V(a1
Tx), where x is vector of p random variables. Since the maximum

will not be achieved with finite a1, a normalization constraint is imposed, namely,

a1
Ta1=1. The subsequent direction is again selected based on the maximum

variance criterion, however, due to the orthonormal assumption, the choice is

limited to the directions that are perpendicular to a1. The procedure continues until

p directions are selected. Thus ak
Tx is defined as the k-th sample principal

components and zik=ak
Txi is the score for the i-th observation on the k-th PC.

3.2. Biplot

A biplot represents both the observations and variables of a matrix of multivariate

data on the same plot. It uses points to represent the scores of the observations

on the principal components, and uses vectors to represent the coefficients of the

variables on the principal components (Jolliffe, 2002).

At this stage, several interpretations are summarized:

1. Biplots are scatter plots, the points in a biplot can therefore be interpreted the

same way: closer points correspond to observations that have similar scores on

the PCs. This interpretation is useful for clustering applications.

2. Projection of points onto a vector gives original values of that variable. By

examining points along the particular direction of a vector (and its opposite

direction as well), samples with anomalous values on what the variable measures

can be identified.

3. Angle between two vectors denotes their correlation. Vectors that point in the

same direction correspond to variables that have similar response profiles.

4. The apparent length of a vector gives an idea about the variance of that

variable. This can be used to conclude the importance of a variable during

clustering.

4. Applications

4.1. PV system type identification (generic time series features)

The first, and arguably the simplest, application is PV system type identification. In

particular, we are interested in identifying whether a PV system has a fixed

orientation or single-axis tracking; these two types of systems are more utilized

than dual-axis tracking systems due to their better cost, reliability and energy

production trade-off (Mousazadeh et al., 2009; Nann, 1990).

The data used in this application comes from the western wind and solar

integration study (WWSIS) conducted by the National Renewable Energy

Laboratory (NREL) to explore the operational impact of high renewable

penetration into an electricity grid. The full dataset contains approximately 6000

PV plants of different size in western US locations, however, for demonstration

purposes, only data from 405 plants in California are used.

Fig. 1 shows some samples of the normalized time series from the WWSIS

dataset (five random samples from each type of systems). It can be seen that the

power output from those PV systems with trackers (plotted in the column on the

right) has a flatter top, due to the DNI gain by the sun-tracking panels. This effect

is most apparent in the late morning and early afternoon hours. Although

identifying PV systems types by visually inspecting the time series transient is

easy, the method is not scalable when thousands or more series need to be

identified. The proposed framework can be useful in this application.

Due to the simplicity of this application, using only generic time series features

would suffice. Hyndman et al. (2015) consolidated a total of 15 generic time series

features; these features are listed verbatim in Table 1. After normalization, the

series should have zero mean and unit variance. Two features, namely, the mean

and variance, can thus be dropped. The 13 time series features are computed for

each of the 405 normalized PV power time series. After running PCA, the data

points are projected onto the two-dimensional feature space as shown in Fig. 2.

After the projection, two linearly separable clusters can immediately be seen. At

this stage, any sensible 2-dimensional clustering algorithm could be used to

identify the system types. For our choice, k-means clustering with 2 centers and

25 random initialization of centers is used.

Table 1: Fifteen non-seasonal time series features used for PV system type identifications.

These generic features are adopted from Hyndman et al. (2015).

Figure 1: Sample time series from the WWSIS dataset during 2006 August 1–7. Power output from PV systems with trackers (right column) has a flatter top as compared to that from 

systems with fixed orientations (left column).

For example, it is well known that the optimal orientation of a PV system, in terms of

maximizing its annual yield, is subjected to not only the Sun path, but also the

intricate geographical and climatic conditions (Smith et al., 2016; Lave et al., 2015;

Khoo et al., 2014). Suppose one of the tasks of the designed monitoring network is

to help monitor the PV performance in its proximity, features such as the optimal tilt

and azimuth angles are useful. These two features, together with the earlier

features, are arranged in Table 2; four feature maps are plotted in Fig. 3. It is

observed that all four features contain strong spatial structure (see discussion

below), which is in favor of the linearity assumption in PCA.

4.2.3. Clustering results
Once the data matrix is prepared, PCA is performed and the corresponding biplot is

shown in the left panel of Fig. 4. Unlike the previous application, it is observed that

the clusters are not linearly separable in this case. It is therefore necessary to

choose a ‘‘k” during clustering. As mentioned earlier, Zagouras et al. (2013)

computed two indices, namely, the DB index (Davies and Bouldin, 1979) and CH

index (Calin´ ski and Harabasz, 1974). As both indices decrease with the number of

clusters, the elbow method (Thorndike, 1953) was then used to identify the optimal

value of k. Besides these two indices, the elbow method can be applied to many

other evaluation metrics, such as the percentage of variance explained (Goutte et

al., 1999) and Silhouette index (Rousseeuw, 1987). It is not our immediate interest

to advise on the ‘‘most appropriate” validation index for irradiance monitoring

network design in this work. Instead, a fixed number of clusters, 10, is adopted. This

fixed number can be thought of in a practical context as the number of sensors that

an installation budget allows. Based on the setting of k = 10, the final cluster map is

shown on the right panel of Fig. 4.

Figure 4: (Left) Biplot of the satellite-derived irradiance data; a total of 6 features are 

considered during PCA. (Right) The k-means clustering results. Pixels with same colors have 

similar properties, and thus can be approximated by a single sensor.

The clustering results show a series of important findings. Firstly, latitude and 

longitude appear to be the major features defining the first and second principal 

components, respectively. This indicates that the geographical location contributes 

the most to the overall variation in the time series feature space, i.e., a major 

deciding factor in our network design setup. Secondly, the small angle between 

latitude and the optimal PV tilt suggests that the optimal PV tilt depends largely on 

the site’s latitude (the two variables are highly correlated), but not on longitude; this 

knowledge is known a priori. Another important observation is that the clustering 

results shown in Fig. 4 agree well with the features maps. For example, the 

chartreuse cluster along the vector representing optimal PV azimuth can be related 

to the observations shown in the bottom left corner of Fig. 3(d), namely, the lime 

green patch; the pink and light steel blue clusters along the µ1 vector can be linked 

to the high µ1 values depicted in the left side of Fig. 3(a). We conclude that the 

geographical shapes of the final clusters are influenced by the selected features. 

This linkage between the feature maps and clustering results gives flexibility and 

practical advantages to our network design approach. The design framework can be 

applied to any features that are thought appropriate, and the results are readily 

interpretable.

5. Concluding Remarks

An analytics method for handling big time series data is discussed. In this method,

each time series is reduced to a set of features, either generic or application-

specific. The reduced feature space facilitates visualization and analyses. Two solar

engineering applications are considered to demonstrate the idea. Traditional

approaches to these applications consider data points as individuals; the present

approach that considers time series as entities is thus novel in terms of data

handling. Principal component analysis and biplot are the main tools in all three

applications. Biplots make the results of PCA interpretable. By examining the biplots,

geometrical relationships among the features and original time series can be

established, which leads to insights that are otherwise unobservable using

traditional methods. The analytics method is flexible in terms of feature design and

can be applied to a variety of other applications. However, common to all dimension

reduction strategies, extracting time series features may result in information loss.

One should be cautious when replacing the traditional methods with the present

method.
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