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Abstract 

Recent progresses in plasmon-induced hot electrons open up the possibility to achieve photon 

harvesting effiiencies beyond the fundamental limit imposed by band-to-band transitions in 

semiconductors. To obtain high efficiency, both the optical absorption and electron emission/collection 

are crucial factors that need to be addressed in the design of hot electron devices. Here, we demonstrate 

a photoresponse as high as 3.3mA/W at 1500nm on a silicon platform using a plasmonic absorber (PA) 

and an omni-Schottky junction integrated photodetector, reverse biased at 5V and illuminated with 

10mW. The PA fabricated on silicon consists of a monolayer of random Au nanoparticles (NPs), a 

wide-band gap semiconductor (TiO2) and an optically thick Au electrode, resulting in broadband 

near-infrared (NIR) absorption and efficient hot-electron transfer via an all-around Schottky emission 

path. Time and spectral photoresponse measurements reveal that when the embedded NPs absorb the 

indicent radiation they act as local heating sources and transfer their energy to electricity via the 

photothermal mechanism, which until now has not been adequately assessed or rigorously 

differentiated from the photoelectric process in plasmon-mediated photon harvesting nano-systems 
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1. Introduction 

The photovoltaic (PV) effect in semiconductors is the basic physical process converting photon 

energy to electricity. Relying on band-to-band transitions, a number of materials have been used over 

the past decades to address photodetection requirements across the electromagnetic spectrum, from the 

ultraviolet to mid-infrared [1]. With continuous shrinking of the feature size in modern integrated 

circuits, the integration of silicon photonics with electronic functionalities has emerged as the leading 

candidate to overcome electric interconnect bottleneck [2-4]. A vital challenge faced by silicon 

photonics is the design of efficient photodetectors integrated on silicon for the telecom regime. Since 

the photo-response of silicon undergoes cut-off around 1200 nm, epitaxial growth of relaxed 

germanium (Ge) or wafer bonding of III-V semiconductors on silicon is the commonly used method for 

achieving NIR photodetection on a silicon platform [5,6]. These approaches however have significant 

drawbacks such as thermal mismatch, the complexity in fabrication, high cost and integration issues. 

Aiming at all-silicon based NIR photodetection, trap-assisted absorption, two photon absorption and 

impurity-mediated sub-band gap response mechanisms have been investigated [7,8]. 

Parasitic plasmonic absorption has long been recognized as an energy loss process in many 

plasmonic optical or optoelectronic nanodevices [9-13] and is generally cosidered to be unwanted. 

However, on the flipside it offers the opportunity to effectively heat nanostructures and thus be useful 

in applications such as photothermal therapy [14]. Only receently  has the parasitic absorption 

phenomena also been revealed to be useful for photon-to-electricity harvesting [15-26]. Associated 

with nonradiative plasmonic decay, the highly energetic electrons, also known as ‘hot electrons’, can be 

captured before thermalization by constructing a metal-semiconductor (M-S) Schottky junction or 

metal-insulator-metal (MIM) configuration. One of the most exciting aspects of hot electron harvesting 

is that a photoelectric response is induced if the hot carriers gain sufficient kinetic energy to overcome 

the energy barrier, without the limitations imposed by band-to-band transition of semiconductors. 

Realization of sub-band gap photodetection, spectral modulation [27] and imaging [28] on a silicon 

platform by plasmonic hot electrons is technically important for future chip-scale optoelectronic 

devices. Very recently, various plasmonic hot electron mediated on-chip and free-space photodetectors 

were proposed and demonstrated experimentally in the literature [29-36]. For instance, using the 

self-aligned approach of local oxidation of silicon (LOCOS) on a silicon-on-insulator substrate, a 

waveguide-based hot electron photodetector operating at telecom wavelengths has been demonstrated 



exhibiting a responsivity of 12.5 mA/W [30]. Notably, by forming asymmetric MSM junctions on the 

side facets of the silicon waveguide, researchers have succeeded in obtaining a data repetition rate of 

40 Gbit/s [32]. Such behaviour is possible  on account of the ultrafast dynamics of the hot electron 

generation and injection. These silicon waveguide-based plasmonic photodetectors with strong mode 

confinement allow the guiding waves to propagate and be naturally absorbed adjacent to the Schottky 

interface and therefore enable efficient hot electron ejection. In contrast, free-space NIR photodetectors 

relying on the excitation of localized or propagating surface plasmons were realised by fabricating 

nano-antenna or metallic nano-gratings onto the silicon substrate [15,33,34]. However, inefficient 

optical absorption by the metallic emitters results in a relatively low responsivity and detectivity for 

such plasmonic hot electron devices. To this end, efforts have been made towards obtaining perfect 

absorption in the metal structures of hot electron based silicon photodetectors, This has been achieved 

by coating a thin layer of Au on the nano- or micro-structured silicon substrates [35,36]. With the 

elongated light-matter interaction path, perfect absorption in conjunction with an enhanced responsivity 

up to 1 mA/W in the range of 1250-1400 nm has been reported in deep silicon micro-trench supported 

Schottky devices [36]. To improve the electrical performance different device schemes relying on MIM 

tunneling [18] and embedding the M-S junction [34,37] have been proposed however strategies 

simultaneously optimising both the optical and electrical characteristics are urgently needed to achieve 

more efficient hot electron harvesting devices. 

Besides the photoelectric hot electron emission process, the interband absorption in materials is 

also unavoidably accompanied by a photothermal process, which can be manifested as the photovoltaic 

or photoconductive response for optoelectronic devices operating in the NIR or even IR spectral range 

[38-42]. However, the photothermal response has rarely been discussed or discerned from the 

photoelectric effect in recent reported hot electron M-S photodetectors that show a response 

enhancement through external biasing [24,25]. Particularly, the relatively slow response on the order of 

tens of seconds or even minutes has been observed in some previous studies on hot electron devices 

[25].  

Here, we present an approach by combining both optical and electrical perspectives into the design 

and experimental realization of a high performance plasmonic photodetector on a silicon platform. The 

proposed device contains Au nanoparticles (NPs) sandwiched between two electron-accepting 

semiconductors, TiO2 and silicon, enabling high emission probability for the hot electrons due to the 



formation of omni-directional M-S junctions. The plasmonic absorber (PA) based optical enhancing 

scheme is incorporated into a MSM configuration in order to obtain highly localized and perfect photon 

absorption in the mono-layered Au NPs. Exploiting benefits from embedding the plasmonic hot 

electron emitter [34] and PA [43-45] simultaneously, our results show that the proposed photodetector 

allows broad-band and perfect absorption along with a clear enhancement in both the hot electron and 

photothermal processes in the NIR regime. Through systematic investigations of the temporal response, 

the photoelectric and photothermal contributions to the total photoresponse were unequivocally 

distinguished. 

 

Figure 1. (a) Schematic drawings of the proposed PA integrated Si photodetectors. The typical morphology of the 

Au NPs formed via our thermal dewetting technique  is depicted to enhance the illustration. (b) Energy band 

diagrams (top) and field distributions (bottom) under thermal equilibrium. The energy band alignments are sliced 

along the stacking direction of the MSM at two different positions. 

2. Design principles and optoelectrical considerations for the PA integrated silicon photodetector 

The proposed PA integrated photodetector is schematically illustrated in Fig. 1a. The trilayer PA 

structure fabricated on one side of silicon wafer consists of random Au NPs, an electron-accepting 

semiconductor and an optically thick Au reflector thatalso serves as the anode. Anti-reflection (AR) 

coatings are introduced on the other side of silicon substrate to suppress specular reflection loss. By 

tailoring the sizes, shapes and spatial distributions of the Au NPs, the PA structures can be readily 

designed to obtain broad-band and perfect plasmonic absorption in the NIR region where silicon is 

transparent. In addition, our optical studies indicate that the electromagnetic field is highly localized in 

the vicinity of Au NPs meaning that the photon absorption and therefore the hot electron excitation 

takes place mainly aorund the NPs.  

In addition to considering the  optical perfromance, the trilayer PA structure is also required to 



promote hot electron ejection from the Au NPs. This was accomplished by employing a wide-band gap 

semiconductor, TiO2, together with the underlying silicon as the electron-accepting semiconductor to 

fully surround the Au NPs. The feasibility of the PA device from an electrical standpoint was 

demonstrated with proof-of-principle calculations based on the drift-diffusion carrier transport 

framework (see Supporting Information S2 for details). As shown in Fig. 1b, at thermal equilibrium, 

there exists a high electric field distribution around the Au NPs due to the formation of a built-in 

electric potential adjacent to the M-S contact area. The photoexcited hot electrons with sufficient 

energy can therefore thermally emit into the surrounding electron-accepting materials and become 

majority carriers to be swept away from junctions. This process is highlighted by the corresponding 

energy band diagram plot (Fig. 1b, upper left). The reported electron affinity of the TiO2 is around 4.0 

eV [46] which is almost equal to the value of silicon, implying that there is no energy offset in the 

conduction band between TiO2 and silicon. As depicted in the energy diagram (Fig. 1b, upper right), the 

whole PA structure resembles a Schottky diode. Thus, the hot electrons emitted into the TiO2 can travel 

freely towards the cathode and contribute to photocurrents (the arrows in the band diagrams of Fig. 1b 

represent the drift flow of the emitted hot electrons), as they encounter the drift field posed by the rear 

Schottky contact. Moreover, the utilization of a wide-band gap semiconductor introduces a large 

valence band offset between TiO2 and silicon which can be regarded as a hole-blocking barrier  

suppressing electron-hole recombination. 

For the purpose of achieving broad-band plasmonic absorption, multiplexed plasmonic 

nano-antennas in a cascading form have been used [47] as an efficient way to extend the wavelengths 

of localized plasmonic responses. Instead of using lithography-based nano-fabrication, the metal 

thin-film thermal dewetting technique was employed to fabricate the Au NPs [44]. For the proposed PA 

structure shown in Fig. 1a, the size and filling ratio of the nano-antenna as well as the thickness of the 

TiO2 loss-less cavity are critical parameters in determining the plasmonic resonance wavelength. To 

obtain high plasmonic absorption at the transparency window of silicon  attelecom wavelengths, the 

optimal diameter of Au NPs is around 100-200 nm according to the optical simulations (see Supporting 

Information S4). The morphology of the Au NPs can be tuned in terms of their diameter and 

inter-spacing from several nanometers to micrometers via controlling the initial Au film thickness and 

the thermal dewetting process, thus providing great freedom to design a structure with the desired 

optical absorption properties. Figure 2a shows the morphologies of Au NPs prepared on silicon 



substrates after being subjected to different dewetting temperatures. In general, increasing the 

dewetting temperature leads to a more uniform and well-defined size of Au NPs. For a temperature of 

850 ℃, most of the Au NPs have a hexagonal shape. Accompanying the morphology evolution, the 

degree of crystallinity of Au NPs improves with increasing dewetting temperatures, as illustrated in Fig. 

2b. It has been reported that metal nanostructures with improved crystalline quality can offer superior 

plasmonic properties compared to polycrystalline ones. Moreover,  single-crystalline NPs with 

reduced grain boundaries could offer additional benefits in increasing the emission probability of the 

hot electrons. From the statistical analysis shown in Fig. 2c, Au NPs prepared by initial 14 nm Au 

thin-films and undergoing the dewetting process at 850 ℃ exhibit a size distribution with a large 

population in the range of 100-200 nm diameter, satisfying the requirement for obtaining broad-band 

NIR absorption. 

 

Figure 2. (a) Scanning electron microscopy (SEM) images of the Au NPs with different thermal dewetting 

temperatures. Thermal dewetting was performed in a rapid thermal processor (RTP) under nitrogen environment 

for 2 minutes. The initial mean thickness of the sputtered Au film is around 14 nm. The scale bar in each plot is 1 

μm. (b) X-ray diffraction (XRD) patterns of themono-layer Au NPs on silicon substrates as a function of thermal 

dewetting temperature. The insert shows the morphology evaluation of Au NPs with increasing dewetting 

temperature. (c) Size histogram of the Au NPs prepared at 850 ℃ via statistical analysis. 

Figure 3a shows the process flow for fabrication of the PA photodetectors. First, thin-film Au layers 

of different thicknesses were sputtered on the silicon substrate (n-type, 1-10Ω‧ cm). Note that the 

native oxide was not removed in order to give better dewetting behavior of Au films, as the thermal 

expansion coefficient of Si differs greatly from that of Au. After the 2 minute thermal dewetting 

process TiO2 thin films were deposited onto the Au NPs using e-beam evaporation and then 

post-annealed in nitrogen at 400 °C for 2 hours. After annealing the TiO2 has an optical band edge of 



3.1 eV and is completely lossless in the NIR (see Supporting Information S3, Fig. S1a). Figure 3b 

shows the typical morphology of Au NPs before and after the TiO2 deposition and post-annealing. The 

thermal annealing treatment does not change the NP distribution and shape but further facilitates the 

sidewall coverage of TiO2 onto them. Next the rear Schottky and front ohmic electrodes were 

fabricated by sputtering thick layers of Au and Al respectively through a shadow mask. Finally,  an 

AR coating comprised of 140 nm of silicon nitride and 100 nm of silicon dioxide was deposited via 

plasma-enhanced chemical vapor deposition. The AR coating suppresses the specular reflection loss to 

within 5% between 1150-1900 nm (Supporting Information S5).  

 

Figure 3. (a) Fabrication procedure for the PA photodetectors. The optical micrographs in the lower rightare the 

front side and back side views of five devices with different active areas (the smallest is 4mm2). (b) SEM images 

of the Au NPs before (top) and after deposition of the TiO2 layer. Scale bar: 500 nm. 

According to our optical simulations, the PAs with a fixed diameter of NPs (arranged in periodic 

square lattices) have a perfect absorption band in NIR with a FWHM of approximately 300 nm. The 

resonance wavelength depends mainly on the size of NPs if the thickness of TiO2 remains constant 

(Supporting Information S4, Fig. S2b). The self-assembled Au NPs with random diameters and 

positions can therefore be regarded as independent nano-antennas with their resonances at geometry 

specific wavelengths. To quantitatively evaluate the collective response of the variation in NP diameter, 

numerically reconstructed PA using the realistic morphology of the Au NPs were studied via the 

three-dimensional FEM simulation, as shown in Figs. 4. The randomly distributed nano-antennas 

resembles to our previous cascading approach can significantly increase the bandwidth of PA response. 

As shown in Fig. 4d, broad-band absorption is obtained between 1200nm and 1800nm. The electric 

field distributions at three selected wavelengths are presented to explain the physical origin of the 

broadened PA absorption band with the simulation results also given in Fig. 4d. At short wavelengths, 



it can be seen that the EM field is localized strongly around the small diameter NPs but moderately for 

the others. In contrast, at long wavelengths the EM coupling is prominent only for the larger NPs, 

resulting in weaker absorption. However, at the wavelength where the reflection minimum occurs, 

most of the NPs reveal a strong resonance character and therefore contribute to the high light 

absorption of the PA. In Fig. 4c, the power loss inside the PA is presented along with cross-sectional 

side-views of the complete structures. We see that most of the power is absorbed by the Au NPs and 

only a very small portion of light decays into the rear reflector. Nevertheless, it is significant to note 

that both the power absorption in NPs and rear reflector can contribute to the photocurrent. 

 

Figure 4. Optical simulations of PA structures using the realistic morphology of the random Au NPs. (a) SEM 

images of the Au NPs with optimized distributions for broad-band NIR plasmonic response. The white box 

represents the selected area to construct the optical models of the PA. (b) Cross-section in-plane views of the Au 

NPs with a self-adaptive mesh via finite-element method (FEM). (c) Side-view SEM images of the completed PA 

structures (top) and the cross-sectional side-view along with the normalized power absorbed per unit volume (Pabs) 

of the PA at a position where a NPs is present. A slightly tapered geometry of the NP was assumed in our 

simulation. The height of NPs is fixed to h=50 nm (average height of the prepared NPs) and thickness of TiO2 is 

60nm. (d) The simulated reflection spectra of the numerically reconstructed PA and the normalized electric field 

distributions plotted over an in-plane cross-section of the PA at three wavelengths. 

3. Optical and electrical behaviour of the PA integrated devices 

Experimental characterization of the optical performance of PA structures was performed and the 

results are summarized in Fig. 5a. Four PA structures containing Au NPs with different size distribution 

as well as a planar reference (absence of Au NPs) were fabricated and considered herein. The overall 



dimensions including the diameter and inter-spacing of Au NPs can be efficiently tuned in the range of 

tens of nanometers to several hundred nanometers via selecting different initial Au film thickness. 

Generally, thinner initial Au films results in smaller diameters and inter-spacing distances and vice 

versa for the thicker initial Au thicknesses. Therefore, four initial Au films with mean thickness of 5, 8, 

10, 14 nm were chosen to fabricate the PA structures shown in Fig. 5a. From the experimental 

absorption spectra, it is observed that the planar structure (AR/silicon/TiO2/Au) has a very small 

absorption (around 10%) in the NIR region due to the highly reflective nature of the flat Au anode. In 

contrast, the introduction of Au NPs in the PA significantly improves the light absorption. Increasing 

the Au NPs size results in an obvious absorption enhancement and red-shift of the resonance band. The 

optimized PA (initial Au film thickness of 14 nm) has a remarkably high absorption in the wavelength 

range of 1300-1800 nm, thus satisfying the optical design requirement for the NIR photodetector. 

The dark current-voltage (I-V) characteristics of Schottky devices can provide essential insights 

into the quality and barrier height of the M-S junctions that determine the efficiency and the cut-off 

wavelength of the hot electron conversion. Figure 5b shows the measured I-V curves of three 

photodetectors based on PA (with optimized Au NPs) and planar reference structures. Here, a PA device 

containing indium tin oxide (ITO) as the cavity material was also included (fabricated with same 

procedure as the TiO2 based PA devices). For the planar reference and TiO2 based PA devices, their 

electrical properties are mainly determined by the Au anode/TiO2 M-S contact and both show a clear 

rectifying behavior in the I-V plot. However, the presence of Au NPs in the PA device slightly modifies 

the energy band alignment situation and also introduces a leakage path allowing the Au anode to 

electrically contact the silicon. As a result, the TiO2 PA device tends to turn-on earlier than the planar 

device. For the ITO based PA device, the highly conductive ITO layer itself serves as the anode and 

forms a Schottky-like contact with silicon. Compared with the TiO2 devices, it is found that the ITO 

based PA device has a relatively large reverse saturation current and lower turn-on voltage. This can be 

attributed to the smaller work function of ITO (4.8 eV) compared with Au (5.12 eV). To quantitatively 

determine the Schottky barrier of the three photodetectors, we fit the measured I-V curves in the 

forward voltage bias region to the Richardson-Schottky equation based on thermionic emission [48]. 

As illustrated in the logarithmic plot of Fig. 5b, the fitted curves are in good agreement with 

measured results for all three devices. The derived effective barrier heights of the planar reference, 

TiO2 and ITO based PA devices are 0.89, 0.74 and 0.72 eV, respectively. The theoretical formula of the 



fitting model and other derived electrical parameters can be found in Supporting Information S6. 

 

Figure 5. (a) The experimental absorption spectra of the PA structures with different particle sizes. The inset 

histograms illustrate the respective size distributions for two selected PAs with the smallest and largest NPs. The 

result for a planar reference device is also given. (b) Typical dark current-voltage curves for the PA and planar 

reference devices. PA devices consisting of TiO2 and ITO as the cavity materials were considered. The inset shows 

a logarithmic plot where the fitted data (thermionic emission model, hollow circle) is also presented. (c) 

Responsivity of the different PA devices and planar device. The inset shows the theoretical results for two distinct 

response schemes. (d) The time-dependent current changes under fast switching of the laser illumination. 

4. Spectral responsivity and omnidirectional hot electron emission of the PA integrated devices 

We proceed now to fully evaluate the spectral harnessing potential of the proposed PA 

photodetectors. The photocurrent signal in response to chopped illumination (333Hz) was measured 

through the lock-in amplifier technique in the absence of external bias. Such a phase-sensitive detection 

set-up allows the contributions of the various photoresponse mechanisms to be distinguished, and 

importantly the ultrafast hot electron ejection process discerned against thermally induced responses. 

Figure 5c shows the measured spectral responsivity of various devices. All investigated devices reveal 

a high photoresponse at wavelengths shorter than about 1200nm, which is shown to be due to 

band-to-band transition related electron-hole pair generation in the silicon. Consistent with the optical 

absorption spectra, the planar reference device exhibits a dramatically decreased response near the 

cut-off wavelength of silicon. In contrast, the photoresponse of the PA devices can be divided into two 

wavelength regions (see Fig. 5c). For wavelengths below 1200nm the absorption is due to intrinsic loss 



in the silicon while for wavelengths above 1200nm the absorption is due to the metallic PA. 

Contributions from the hot electron ejection can be distinguished by comparing the two TiO2 based PA 

devices with the planar device. As direct evidence of the benefits of our optical design we observe that 

the optimized PA device has a higher responsivity compared to the PA with smaller NPs (initial 

thickness of Au for dewetting is 5 nm) which is in good agreement with their optical absorption 

characteristics. The TiO2 based optimized PA device has a purely metallic response in the telecom 

wavelength range of 1300-1500 nm, with a responsivity ranging from 2.3 to 0.24 mA/W.  

To provide a qualitative perspective of the observed photoresponse of the PA devices, a theoretical 

model based on the Fowler emission theory was adopted to reveal the spectral response potential of the 

hot electron ejection. The modified Fowler equation can be written as [34]:𝑌 = 𝐶𝑓𝐴(ℎ𝜈 − Ф)2/ℎ𝜈, 

where, Cf is the Fowler emission coefficient, A is the experimental absorption spectra of the PA device, 

Φ is the Schottky barrier height and hν is the energy of incident photon. With a weighted experimental 

absorption spectra term, the modified Fowler formula gives rise to a spectral responsivity shown in the 

inset of Fig. 5c. For the sake of simplicity we assumed that the Si response is proportional to the 

absorption spectra of a Si wafer with an AR coating which can be derived from its absorption 

coefficient. The resulting Si and metal spectral response determined from the above calculations are 

consistent with the experimental data revealing two distinct photoresponse mechanisms as discussed 

above. Notably, we observe that the simple Fowler model predicts a similar cut-off wavelength of the 

hot electron response as the experimental value. Further, the barrier height used herein is 0.71 eV,  

close to the previously determined value from the dark I-V curve of the TiO2 MPA device. 

In order to validate the enhancement of the hot electron ejection probability from the complete 

embedded absorber electrical design, we included a different control scenario, the ITO-based PA device 

(its dark I-V characteristics are detailed in Fig. 5b). This control device has similar high optical 

absorption properties as that of the TiO2 PA devices (refer to Supporting Information S3 and S4) 

however its electrical characteristics are intrinsically different. The highly conductive and metallic-like 

ITO (carrier density ~ 1020 cm-3 according to Hall data) is more likely to form the M-S contact with 

silicon, but not the embedded Au NPs. As demonstrated in Fig. 5c, the proposed TiO2 based PA device 

exhibits superior performance compared to the ITO scenario. For the TiO2 PA structure, the Au NPs are 

switched by two semiconductors, both of which are excellent electron-accepting materials, hence 

resulting in an efficient omni-directional hot electron ejection. However, for the ITO control device, 



only the hot electrons generated near the Au NPs/silicon M-S interface can be harvested, while those 

localized close to the NPs/ITO interface contribute to the ohmic losses. Finally, the replicability and 

stability of the proposed PA photodetector under alternately laser-on and laser-off illumination was 

examined. As confirmed in Fig. 5d, the hot electron mediated response remains unchanged after several 

cycles of on-off switching of the illumination and is capable of following the fast switching optical 

signal.  

5. Distinguishing the Photoelectric and photothermal response in biased PA devices 

In the above studies, the photodetectors were operated without external bias, where the hot electron 

was identified to be the dominant photoresponse mechanism. However, based on previous reports, 

other mechanisms can contribute, and in some cases even dominate the response in electrically biased 

interband photodetectors [7,8,38-42]. Among them, the photothermoelectric (PTE) [38,42] and 

bolometric effects [39-41] are more relevant in plasmonic device systems with both of these two 

mechanisms thermally driven. The former is known as the photo-thermoelectric or Seebeck effect 

which results in a built-in electric field allowing migration of the photoexcited carriers. The latter 

mechanism relies on local photothermal heating and also results in a reduction in the conductivity. 

Moreover, it should be also noted that electrically biased M-S or MIM junction can facilitate hot 

electron ejection. To evaluate the influence of these mechanism on the total photoresponse we studied a 

PA device operating under various external biasing conditions and a fixed illumination power of 10 

mW.  

 

Figure 6. (a) Time-resolved photoresponse of the optimized PA photodetector at zero and various negative bias 



voltages under steady laser illumination. (b) Photoresponsivity of the devices extracted from (a), the black line 

represents the fast hot electron response while the red line is the result after the photocurrent approaches saturation. 

(c) Time-resolved photoresponse of the PA photodetector applied with a large reverse bias (~5V) and small 

forward bias (~0.18V) under the same illumination conditions. These two voltage biases were chosen as they 

resulted in  identical absolute dark current (I0) values. (d) The time-resolved response under laser illuminations 

with various wavelengths along with the absorption spectra (red hollow circle, reproduced from Fig. 5a) of the 

reversely biased PA device. (e) Schematic drawing of the carrier transport dynamics of the hot electron and 

photothermally generated carrier under different applied drift fields. 

Figure 6a shows the time-resolved photoresponse of the PA photodetector at various reverse bias 

voltages. We observe that when the device is reverse biased at small voltages (0~100 mV), after the 

laser is switched on, the current increases instantaneously and then remains steady until the 

illumination terminates. This behaviour implies that the response is dominated by the ultrafast hot 

electron process as we have detailed previously. However, one fascinating aspect that should be 

highlighted is the slightly improved photocurrent of the PA device in the presence of applied voltage. 

The enhancement of the hot electron related photoresponse becomes more apparent for larger reverse 

biases, manifested by the several times larger change in current at the initial stage (sub-second) of 

switching on or off the illumination, as compared to the results without bias. After the fast hot electron 

dynamic, the continuous light exposure on the PA device with large bias leads to a further increase in 

the photocurrent which takes tens of seconds before reaching a steady state, indicating the presence of 

the photothermally induced response. We extract the fast photocurrent (i.e. the hot electron response) 

and the total photocurrent (steady state) from Fig. 6a by subtracting the dark current and the resulting 

responsivity as a function of bias voltage which is plotted in Fig. 6b. For the hot electron related 

process, increasing the bias increases the responsivity. At a reverse bias of 5V, a responsivity of around 

1.05 mA/W is observed for the hot electron component, which is four times larger than devices 

operating in the absence of an external voltage bias. The observed enhancement of the hot electron 

response can be largely attributed to the image force effects under a reverse bias which modify the 

barrier profile and improve the probability of hot electron ejection. In addition, the negative applied 

voltage on Au anode facilitates the migration of emitted hot electrons, especially for those generated in 

the TiO2 cavity. 

Taking into account the thermally induced component in Fig. 6b, we obtained the total 

photoresponse with a responsivity of 3.3 mA/W for the PA device reversely biased at 5 V. This 

photothermal response is also pronounced for the forward bias, as shown in Fig. 6c. In this plot, a large 



reverse and a small forward bias was selected to ensure the PA device outputs dark currents with 

identical magnitude but opposite polarity. It is found that the photothermal response dominates upon 

illumination for a forward bias. However, a small dip (marked by the red circle) can be clearly resolved 

at the moment of illumination turn-on, which is due to the transient opposite photocurrent flow created 

by hot electron ejection. The magnitude of the photothermal photocurrent when the device is forward 

biased appears to be very close to the results of the slow response component when the device is 

reverse biased, implying an electrically driven origin. Regarding the photocurrent polarity, we can rule 

out involvement of the PTE process as it has a fixed polarity dependent on the direction of the internal 

built-in electric field. The bolometric mechanism, however, is a photoconductive response and exhibits 

the same polarity as the DC drive current regardless of the bias conditions. Together with the results 

shown in Fig. 6c, we can therefore safely classify the observed photothermal response to the bolometric 

effect. Under illumination, the superior absorption properties of the optimized PA results in efficient 

local heating at the MSM area and causes a temperature elevation across the device. Such a plasmonic 

heating effect increases the conductivity (△σ) of the device and hence generates a thermalelectric-like 

response for the devices under external bias (the origin of the decrease in conductivity with increasing 

temperature of the Schottky devices will be discussed in the next section). Since it is highly dependent 

upon the temperature change, its spectral response appears to be in good agreement with the absorption 

spectrum of the PA and does not experience a responsivity cutoff in the investigated wavelength regime, 

as demonstrated in Fig. 6d. A conceptual description of the two distinct photoresponse processes 

observed for the PA devices operating under external bias conditions is presented in Fig. 6e. Under 

reverse bias, both the hot electron and the photothermal responses are enhanced and contribute to the 

photocurrent. While for forward bias, the hot electron photocurrent has the opposite polarity as the DC 

current flow but its magnitude is substantially decreased due to the raised emission barrier. In this case, 

the photothermal process exclusively dominates the photoresponse of the PA device. The observed 

photothermal signal stemming from diode bolometric effect has a slow response compared to previous 

micro-sized devices (on a time scale of ns~μs) [40,41], which is mainly attributed to the large size of 

our fabricated devices. 

Fig.7a shows the dependence of the photoresponse on the incident power for the PA devices 

reversely biased at 5V (laser operation at a fixed wavelength 1500 nm). Over the experimentally 

accessible power range of our tunable laser, both the induced photoelectric and photothermal currents 



increase almost linearly with increasing photon flux. The linear behavior of the hot electron response 

observed herein is consistent with previous reports [34,36], since it is dominated by the conversion of 

incident photons into hot electrons. In contrast, for the photothermal components, some non-linear 

effects might be expected to appear. The aforementioned rise in conductivity of the PA devices is 

driven by the modified thermal emission of M-S junction resulting from the elevated temperature. 

According to the thermal emission theory of an ideal Schottky diode, the saturation current density is 

given by  Js=A*T2exp(-Ф/kT) (A* is Richardson constant, Ф is the barrier height and T is the 

temperature of device). The increase in the diode temperature modfies the total distribution of the 

electron energies in the Schottky electrode, resulting in a change of the saturation current. Thus, under 

reverse bias, the reverse current density (-Js) is dominated by the thermal emission process and will 

increase in a non-linear manner with increasing device temperature. Such a non-linear relationship 

between the reverse current and temperature due to the modified thermal emission of M-S junctions 

was confirmed by performing I-V measurements on the PA devices in the temperature range of 27- 

47 °C, as shown in Fig. 7b. If we assume that the slow photon-response (refer to the photothermal 

current IPT ~23 μA for the incident power P~10 mW, inset of Fig. 7a) stems from photothermal heating, 

we obtain a temperature rise of approximately 6-7 °C for the device with 10 mW laser illumination 

according to the fitted △I~△T relationship (reverse bias 5V) shown in the inset of Fig. 7b. Thus, with 

such a small interval of temperature rise for the device illuminated with our experimentally 

accessible power range (0~10 mW), the non-linear behavior of its IPT -P characteristic is not very 

prominent. 



 

Figure 7. (a) Time dependent response of the PA integrated device illuminated with different incident powers. The 

inset shows the photoelectric and photothermal current versus the incident power. (b) I-V characteristics of PA 

device under different temperatures (heated in an oven). The inset shows the current dependence on temperature 

for a device with a negative bias of 5V. (c) Coupled EM-HT method for the modeling of the local heating effect of 

the PA device. In EM simulations, perfect magnetic conductor (PMC) and perfect electric conductor (PEC) 

boundaries were used to truncate the domain to one quarter of the full geometry containing the 5×5 NP array. The 

incident power density is estimated from experiments (laser power 4~10 mW, spot diameter~2.5 mm at 1500nm). 

In HT simulations, the combination of the thermal insulation and open boundaries allow us to mimic the effect of 

heat spreading over the non-illuminated device area and  reduce the simulation volume to one quarter. (d) 

Calculated steady-state temperature elevation of PA device as a function of incident power. The insets show the 

temperature distribution in the simulated devices under steady-state (note that the temperature different across the 

device is smaller than 0.1 °C). 

Finally, to give a quantitative measurement of the photothermal heating in the proposed PA 

integrated devices, we performed additional studies to analyze the temperature elevation for a given 

radiation power. Fully coupled EM-HT (electromagnetic wave - heat transfer) models in Comsol 

Multiphysics were developed for this purpose. The schematic of the multiphysics simulation model is 

shown in Fig. 7c. Both the simulation domains for the EM and HT calculations were reduced to one 

quarter by imposing appropriate boundary conditions in the side-facets. The EM-HT problem is solved 

for a finite illuminating area containing a 5×5 rectangular array of Au NPs. Individual NPs have a 150 

nm diameter, arranged in a lattice of period 350 nm. As depicted in Supporting Information Fig. S2b, 

this periodic PA structure can absorb 85% of the incident radiation at 1500 nm. The resulting 

volumetric power absorption (Qs, W/m3) from the EM simulations is coupled to HT module as the heat 

source which eventually causes temperature elevation. In order to account for the spreading of the heat 



to the surrounding areas not illuminated by the laser the simulation domain has been made larger in the 

HT domain compared to the EM domain and its side-facets are assigned to be open boundaries. At the 

front/rear facets of the HT domain we use a convective heat flux boundary condition driven by the 

temperature difference between the front/rear surfaces of the device and the surrounding atmosphere: 

q=-h(T-Text). Here q is the inward heat flux, Text is the ambient air temperature, and h (~10 W/m2K) is 

the heat transfer coefficient for natural convection of air. 

The calculated steady-state temperature elevation of the PA device as a function of incident power 

is shown in Fig. 7d. We also include a simplified model (labeled as model B) which ignores the effects 

of the heat spread over the non-illuminated device area. This model simulates a unit cell containing a 

single NP with thermal insulation boundaries imposed on all of the side-facets (the front/rear surfaces 

sremain convective). Thus, model B predicts the maximum attainable temperature rise for a device with 

the optimum thermal insulation design. Both model A and B (the complete EM-HT model shown in Fig. 

7c) predict a linear-dependence of temperature rise withincident power. For calculated structures under 

the same power density as our experimental laser illumination with a power of 10 mW, model B gives 

rise to a temperature elevation of 6.05 °C, which is very consistent with the value (6-7 °C) we extracted 

from the inset of Fig. 7b. For the “thermally isolated’ model A, the elevated temperature is around 

58.5 °C, much higher than the value predicted by model B, thus identifying opportunities for further 

improvement in the photothermal response of our PA device. 

6. Conclusions 

In conclusion, we have proposed and successfully demonstrated an efficient MIR detectorbased on 

PA integrated silicon photodetectors. The easily fabricated PA is composed of a monolayer of random 

Au NPs and exhibits near-perfect and broad-band absorption at telecommunication wavelengths. 

Utilizing a MSM architecture to form the PA enables omnidirectional hot electron emission due to the 

formation of an all-around M-S contact between the plasmonic absorbers and electron-accepting 

semiconductors. By optimising both the optical and electrical properties of our MSM PA device, we 

experimentally show that the hot electron-mediated process provides significantly extended response 

beyond the silicon cut-off wavelength with responsivities up to 1.05 mA/W at 1500 nm for a reverse 

bias of 5V. In addition, the photothermally induced response arising from the plasmonic local heating 

effect further contributes to the performance of the PA photodetectors. The combination of the PA and 



embedded nano-emitter on a silicon platform is a new design paradigm for realizing efficient on-chip 

NIR photodetection and imaging. 
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