
 
 
 
 
 

Magisano, D., Liang, K., Garcea, G., Leonetti, L. and Ruess, M. (2018) An 

efficient mixed variational reduced order model formulation for non-linear 

analyses of elastic shells. International Journal for Numerical Methods in 

Engineering, 113(4), pp. 634-655. 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 

it. 

 

Magisano, D., Liang, K., Garcea, G., Leonetti, L. and Ruess, M. (2018) An 

efficient mixed variational reduced order model formulation for non-linear 

analyses of elastic shells. International Journal for Numerical Methods in 

Engineering, 113(4), pp. 634-655. (doi:10.1002/nme.5629)  

This article may be used for non-commercial purposes in accordance with 

Wiley Terms and Conditions for Self-Archiving.  

 

 

 
 
http://eprints.gla.ac.uk/145344/  
     

 
 
 
 
 

 
Deposited on: 14 August 2017 

 
 
 
 
 

http://dx.doi.org/10.1002/nme.5629
http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms
http://eprints.gla.ac.uk/145344/
http://eprints.gla.ac.uk/145344/


A
cc

ep
te

d
A

rt
ic

leINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2017; 00:1–30
Published online in Wiley Online Library (www.onlinelibrary.wiley.com). DOI: xx

An efficient mixed variational reduced order model formulation
for non-linear analyses of elastic shells

D. Magisano1 K. Liang2 G. Garcea1 L. Leonetti1 M. Ruess3∗

1 Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica,
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SUMMARY

The Koiter-Newton method had recently demonstrated a superior performance for non-linear analyses
of structures, compared to traditional path-following strategies. The method follows a predictor-corrector
scheme to trace the entire equilibrium path. During a predictor step a reduced order model is constructed
based on Koiter’s asymptotic post-buckling theory which is followed by a Newton iteration in the corrector
phase to regain the equilibrium of forces.
In this manuscript, we introduce a robust mixed solid-shell formulation to further enhance the efficiency of
stability analyses in various aspects. We show that a Hellinger-Reissner variational formulation facilitates the
reduced order model construction omitting an expensive evaluation of the inherent fourth order derivatives
of the strain energy. We demonstrate that extremely large step sizes with a reasonable out-of-balance residual
can be obtained with substantial impact on the total number of steps needed to trace the complete equilibrium
path. More importantly, the numerical effort of the corrector phase involving a Newton iteration of the full
order model is drastically reduced thus revealing the true strength of the proposed formulation. We study
a number of problems from engineering and compare the results to the conventional approach in order to
highlight the gain in numerical efficiency for stability problems.
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1. INTRODUCTION

Classical path-following strategies as used in the numerical analysis of buckling phenomena of
thin-walled structures operate on a linearized form of the non-linear governing equations of the
deforming structure. A predictor step followed by an iterative corrector phase is commonly used to
trace the entire load-displacement equilibrium path in a step-by-step manner [34]. The linearized
equations allow for linear predictor steps only, tangential to the equilibrium path, which results in a
substantial number of steps required to capture the full non-linear structural response. Furthermore,
the detection of bifurcations along the equilibrium path may easily fail using linear predictors unless
a very small step size is adopted. Over the years, a number of asymptotic methods based on Koiter’s
post-buckling theory [21] have been developed to provide a failsafe analysis method at significantly
reduced costs [22, 32, 10, 5, 36, 7, 12]. The Koiter method involves the construction of a reduced
order model which is based on a second order asymptotic expansion using the path tangent and a few
buckling modes. The method reduces the large number of equations needed to model accurately the
elastic buckling behavior of shells to a few non-linear equations representing the modal amplitudes
and the load factor of the deformed structure [29, 13].

This article is protected by copyright. All rights reserved.
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Recently, a novel Koiter-Newton approach has demonstrated successfully a reliable and accurate
prediction of the buckling phenomena of thin-walled structures [23, 25, 24]. The main idea of
this approach is the use of Koiter’s method as a non-linear predictor within the framework of a
path-following strategy. The asymptotic characteristics of the proposed predictor step allows for
significantly larger step sizes at reduced out-of-balance residual forces, the latter having a positive
effect on the overall effort of the corrector phase. The method allows to trace the entire equilibrium
path and to handle reliably snap-back and snap-through phenomena [26]. In an extended version,
the method provides a bifurcation indicator based on the constructed reduced order model which
enables to trace the corresponding bifurcation branches [27]. The method has proven to be a robust
and computationally efficient solution approach though the corrector phase cannot fully profit from
the reduced order model and requires a Newton iteration in each load step, involving the repeated
solution of the linear system of equations of the full order model. In the past, it has been observed
in several studies that mixed (stress and displacement) finite elements show superior properties
compared to pure displacement-based elements in the context of a standard Newton approach for
non-linear analyses [37, 20]. In general, the mixed formulation allows for larger step sizes and
requires less iteration steps to regain equilibrium as highlighted in [17] for beam elements. A more
recent work [28] observed the beneficial convergence properties of mixed model formulations in a
general context, which can be extended to displacement-based finite element formulations following
the mixed integration points strategy proposed in [30]. The studies show that the evolution of the
iterative displacement process is forced to satisfy the constitutive equations in each iteration step
and this constraint leads to a drop of the convergence rate. In contrast, the stress components in the
mixed model are introduced as independent variables which only satisfy the discrete constitutive
equations at convergence.

Focusing on a mixed model formulation, this paper combines the superiority of mixed elements
in terms of convergence properties with the efficiency of the reduced order principles of the
Koiter-Newton approach. We exploit the direct prediction and correction of the stresses to minimize
the number of Newton iteration steps in the corrector phase of each load step. The Koiter predictor
involves the construction of a reduced order model which requires derivatives of the strain energy up
to the fourth order. Geometrically exact shell models [14] or co-rotational approaches [15, 38, 26]
are suited formulations to achieve structural model objectivity. Both strategies make use of finite
rotations which make the evaluation of the strain energy and its derivatives highly complicated
and expensive. In [25] simplified kinematics were proposed to streamline the construction of the
reduced order model at the price of reducing its range of applicability.
In this work, the Koiter-Newton method is implemented for a non-linear Cauchy continuum based
on a Green-Lagrange strain measure and a solid-shell element interpolation [37, 19]. In this way,
the construction of the reduced order model remains simple and favorable, maintaining a geometric
exact strain measure. Furthermore, we adopt the Hellinger-Reissner variational principle in which
the strain energy has only a third order polynomial dependence on the degrees of freedom while
zeroing all fourth order strain energy variations. Thus, the construction of the reduced order model
is simpler and faster [29]. We develop the mixed solid-shell element in the framework of the
Koiter-Newton method and derive the governing equations and algebraic quantities needed for the
context of the reduced order modeling. We verify our proposed model with a number of numerical
tests, critically assessing its performance, its strengths and potential limitations. All numerical
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studies compare the proposed mixed model with the conventional displacement-based model, both
showing a significant improvement compared with classical path-tracing methods.

The paper is organized as follows: in Section 2, we briefly recall the Koiter-Newton method and
provide the governing equations for the construction of the reduced order model. In Section 3, a
solid-shell model is introduced and extended to a mixed formulation providing the first, second and
third algebraic quantities of the asymptotic extension. A number of numerical tests for verification
and validation of the proposed and implemented model is presented in Section 4 which includes
benchmark tests and examples from engineering. Finally, we summarize the main findings and
conclude the presented work in Section 5.

2. REVIEW OF THE KOITER–NEWTON APPROACH

In the following, we briefly recall the principles and properties of the Koiter-Newton approach. The
method is capable to trace automatically the entire equilibrium path of a structure in a step by step
manner. Each step involves the construction of a reduced order model at a known equilibrium state.
The construction is based on Koiter’s asymptotic theory on initial post-buckling stability [21] and
used as a predictor within a path-following analysis. In a corrector phase following each Koiter
prediction, a Newton iteration is used to reduce the residual error to a pre-defined equilibrium level.

2.1. Construction of the reduced order model

The non-linear behavior of an elastic body is analyzed, considering its state of equilibrium.
Following a Principle of Virtual Work-formulation, the N governing non-linear equations of the
discretized structure result in a set of algebraic equations:

lclclR(u, λ) = λ fext − f int(u) = 0 (1)

where R is the residual force vector, fext represents the external load vector and λ is the load factor.
The internal elastic forces f int are dependent on the vector of primal unknowns u:

lclf int =
∂U(u)

∂u
(2)

where U(u) is the strain energy of the structure.
In the Koiter-Newton approach, a reduced order model is established to approximate the

equilibrium equations in the neighborhood of a known equilibrium state (u0, λ0) which is referred
to in the following as nominal configuration. Further, we denote an unknown configuration near the
nominal configuration with (u, λ) where:

lclu = u0 + ∆u . (3)

This article is protected by copyright. All rights reserved.
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Here, the concatenation of unknowns u0 and ∆u, eq. (3), is assumed to be an addition. Considering
beams and shells which take into account finite rotations, the concatenation will depend on the
parametrization of the rotations [2].

The non-linear equilibrium (1) is approximated with a truncated Taylor series expansion up to
the third order with respect to u of the nominal configuration. The expansion terms follow from
differentiation of the strain energy U up to the fourth order with respect to the unknown primal
vector u according to (1) and (2). The equilibrium modifies to:

lclL(∆u) +Q(∆u,∆u) + C(∆u,∆u,∆u) +O(‖∆u‖4) = ∆λfex (4)

where L is a linear form, Q is quadratic form and C is cubic. Regarding a conservative system,
there exists a direct correspondence between the forms of order p in eq. (4) and a symmetric
p-dimensional tensor, applicable to every component of the vector equation. Correspondingly,
the linear, quadratic and cubic form of (4) can be expressed in terms of a two-dimensional,
three-dimensional and four-dimensional tensor, respectively [1]. Furthermore, we use the relations
∆λ = λ− λ0 and f(u0) = λ0fext.

We use the Koiter-Newton method in the context of elastic shell buckling analyses considering
structures with branching equilibrium paths and turning points. It is convenient to consider
perturbation loads which excite neighboring states of equilibrium to allow the system to change
from the primary to a secondary equilibrium path. An appropriate selection of perturbation loads is
discussed in detail in [23]. Taking into account these loads, the third order form of the equilibrium
equations (4) may be extended to consider multiple loading of the form:

lclL(∆u) +Q(∆u,∆u) + C(∆u,∆u,∆u) +O(‖∆u‖4) = Fφ (5)

where the α-th column of F is formed by the a perturbation load vector fα and where the vector φ
represents the load amplitudes. The first column of F is chosen to be the external load vector fext

with a corresponding first amplitude entry φ1 = ∆λ. Further columns of F are formed by sub-loads:

lclfα = Kσvα α = 2, . . . ,m+ 1 (6)

where m is a number of closely spaced buckling modes vα and Kσ is the geometric stiffness matrix
of a linearized buckling problem [23].

The equilibrium (5) forms a m+ 1 dimensional hypersurface for which the solution u is
approximated favorbly by a series expansion. To this end, the equilibrium surface is parametrised in
terms of generalised displacements ξ = {ξ1, · · · , ξm+1}, and the displacement u is expanded to the
third order with respect to ξi:

lcl∆u = uα ξα + uαβ ξαξβ + uαβγ ξαξβξγ +O(‖ξ‖4) (7)

where {α, β, γ} = 1, 2, . . . , 1 +m, and the Einstein summation convention is applied. The first
order displacements uα define the tangent plane to the equilibrium surface at the approximation
point. Additional first order displacements are generated by considering the additional imperfection

This article is protected by copyright. All rights reserved.
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loads of eq. (6). The second order displacements uαβ and third order displacements uαβγ describe
the interactions among first and second order displacement fields, respectively.

The equilibrium surface may be parametrised with an infinite number of choices for ξ. Here,
the paramterization is chosen work-conjugate to the load amplitudes which results in the following
orthogonality constraints:

lclfTαuβ = δαβ (8)

fTαuβγ = 0 (9)

fTαuβγδ = 0 (10)

where δαβ is the Kronecker delta. Similarly, the load amplitudes φ are approximated by a series
expansion to ensure consistency in the governing equations:

lclφ = L(ξ) +Q(ξ, ξ) + C(ξ, ξ, ξ) +O(‖ξ‖4) (11)

with L, Q and C being still to be determined, linear, quadratic and cubic forms.
Using (7) and (11) in the equilibrium (5) and equating the coefficients of the various powers of ξ to
zero results in the following three linear relations:

rclL(uα) = F l̄α (12)

L(uαβ) +Q(uα,uβ) = F ūαβ (13)

L(uαβγ) + 2
3

(
Q(uαβ ,uγ) +Q(uβγ ,uα) +Q(uγα,uβ)

)
+ C(uα,uβ ,uγ) = F c̄αβγ (14)

where lα, uαβ and cαβγ represent each column vectors of the multi-dimensional tensors according
to the linear, quadratic and cubic forms L,Q and C, respectively. Consideration of the orthogonality
constraints (8)-(10) allows to express equations (12)-(14) in terms of two augmented systems of
linear equations:

rcl

[
K −F

−FT 0

][
uα

lα

]
=

[
0

−eα

]
(15)

[
K −F

−FT 0

] [
uαβ

uαβ

]
=

[
−Q(uα,uβ)

0

]
(16)

and the relation:

lclcαβγδ = C(uα,uβ ,uγ ,uδ)− 2
3 [uTαβL(uδγ) + uTβγL(uδα) + uTγαL(uδβ)] (17)

in which K is the (N ×N)-dimensional tangent stiffness matrix at the nominal configuration, i.e.
the tensor representation of the linear form L, where the (N × (m+ 1))-dimensional matrix F

follows from the perturbation loads, eq. (5), and eα denotes the the α-th unit vector with coefficient

This article is protected by copyright. All rights reserved.
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eα = 1. The load vector Q(uα,uβ) is assembled from the solution of (15) with coefficients
(Qiαβ uα uβ).

The solution of the augmented systems of equations for m+ 1 load vectors provides the first and
second order solutions needed to construct the reduced order model. In the following we present a
concise summary of the construction of the reduced order model and the global equilibrium solution.
A detailed summary revealing the relations between the higher order forms of (5) and (11) and the
derived systems of equations can be found in [23]:

the tensor coefficients of the linear form L are obtained from pre-multiplication of (12) with
the first order solution uβ and using the orthogonality condition (8):

lclcll̄αβ = eTβ lα = uTβ L(uα) (18)

the tensor coefficients of the quadratic form Q are obtained from pre-multiplication of (13)
with the first order solution uγ and using the orthogonality condition (9):

lclclq̄γαβ = eTγ uαβ = uTγ Q(uα,uβ) (19)

the tensor coefficients of the cubic form C are obtained from pre-multiplication of (14) with
the first order solution uδ and using the orthogonality condition (10). Assuming a conservative
system, the tensor of the corresponding cubic form is symmetric with coefficients:

lclcαβγδ = C(uα,uβ ,uγ ,uδ)− 2
3

(
uTαβL(uδγ) + uTβγL(uδα) + uTγαL(uδβ)

)
. (20)

where C(uα,uβ ,uγ ,uδ) = uTδ C(uα,uβ ,uγ) depends on the first order displacement solution
only.
with the equations (18)-(20), the following reduced order model of dimension (m+ 1) can be
established for the solution of the unknown generalized displacements ξ:

lclclL(ξ) +Q(ξ, ξ) + C(ξ, ξ, ξ) = φ = ∆λ e1 (21)

where ∆λ is chosen to be the load parameter of the external load fext to determine the
response to the actual loading and e1 is the first unit vector. Equation (21) is conveniently
solved using an arc-length method [34, 3] and its solution sets the generalized displacements
ξ into a non-linear relation to the actual load increment ∆λ, which is mapped to the solution
space of the total problem invoking the displacement expansion:

lclu = u0 + uα ξα + uαβ ξαξβ (22)

and the actual load factor λ = λ0 + ∆λ.

2.2. Koiter-Newton path-following analysis

The reduced order model of the previous sub-section is based on Koiter’s asymptotic expansion
theory and constructed at a known configuration along the non-linear equilibrium path. The model

This article is protected by copyright. All rights reserved.
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solution, eq. (22), is used as a computationally efficient predictor in a step-by-step path-tracing
analysis. Compared to a linearized predictor scheme based on a Newton-type method the pre-
eminence of the Koiter predictor becomes evident due to its asymptotic solution properties towards
the equilibrium path which allows for significantly larger step sizes at reduced out-of-balance forces.
The latter is driven to zero using a few Newton correction steps of the full system. The step size of
the reduced order model is controlled by the following criteria:

lcl
‖R‖
λ‖fex‖

≥ ε (23)

where the value of ε is a user defined measure for an appropriate step size. The applied convergence
criterion for the Newton correction in this work was chosen to be:

lcl
‖R‖
λ‖fex‖

≤ 10−4 . (24)

Following the work of Riks [34], a constraint hyperplane is adopted in order to avoid a possible
loss of convergence near limit loads. Details of the Newton iteration with the Riks constraint can be
found in [30, 17].

The construction of the reduced order model is dominated by the factorization of the governing
system of equations of the augmented problem (15) and (16), respectively. It is important to
note that both systems of equations of dimension (N +m+ 1) have an identical system matrix,
hence factorization is needed only once. The number m of perturbation loads is typically small
(< 10) since only modes which are closely spaced to the nominal configuration are considered.
If buckling is fully absent only the external load vector becomes significant and the reduced
order model degenerates to a model size of one. The computational effort of the correction phase
requires p steps of a Newton iteration using the full order model to ensure sufficient stability of
the scheme. Compared to traditional path-following methods, the Koiter-Newton method allows a
simple consideration of branch switching techniques when multiple paths are present. For example,
the method can be equipped with a bifurcation indicator based on the constructed reduced order
model which allows to trace the corresponding bifurcation branches, as demonstrated in [27].

3. SOLID-SHELL CONCEPT AND MIXED FORMULATION

In the following, we derive a solid-shell element formulation within the framework of the Koiter-
Newton method. The element type is an eight-node hybrid stress element proposed by Sze [37] and
presented here using a Green-Lagrange strain measure. At first, we present a pure displacement-
based solid-shell formulation which we extend in a follower step to a mixed formulation to enhance
the performance of the Koiter-Newton approach in terms of an improved convergence behaviour.

3.1. Displacement-based solid-shell element

Commonly, low-order shell elements are prone to locking phenomena. Here, the chosen element
formulation counteracts shear locking and trapezoidal locking with an Assumed Natural Strain

This article is protected by copyright. All rights reserved.
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Figure 1. Undeformed and deformed shell geometry.

(ANS) approach and Selective Reduced Integration (SRI). Furthermore, to eliminate thickness
locking, an appropriate through-the-thickness normal stress assumption is introduced.

3.1.1. Kinematics We use a Total Lagrangian formulation to identify material points of the current
configuration Ct in terms of their position vector X(ξ, η, ζ) in the reference configuration C0 and the
displacement state d(ξ, η, ζ), cf Fig. 1:

lclx(ξ, η, ζ) = X(ξ, η, ζ) + d(ξ, η, ζ) (25)

where ζ = [ξ, η, ζ] denote convective curvilinear shell coordinates with (ξ, η) representing in-
plane coordinates and ζ being the shell thickness coordinate. The covariant basis vectors in the
undeformed and deformed configuration are obtained from the corresponding partial derivatives of

This article is protected by copyright. All rights reserved.
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the position vectors x and X, respectively:

lcllclcllGi = X,i , gi = x,i = Gi + d,i with i = 1, 2, 3 , (26)

where (),i denotes the partial derivative with respect to ζi. The contravariant basis vectors follow
from the dual basis condition: gi · gj = Gi ·Gj = δji and the metric coefficients are gij = gi · gj
and Gij = Gi ·Gj with (i, j = 1, 2, 3). The motion of material points from the initial reference
configuration C0 to the current configuration Ct is described by the deformation map F : x→ X:

lclclF =
∂x

∂X
= gi ⊗Gi. (27)

Using the deformation gradient (27) and the metric tensor coefficients gij and Gij , the Green-
Lagrange strain tensor is expressed as:

lclclE =
1

2

(
FT F− I

)
= Ēij Gi ⊗Gj (28)

with

lclclĒij =
1

2
(gij −Gij) =

1

2

(
Gi · d,j +d,i ·Gj + d,i ·d,j

)
(29)

Using a Voigt notation we collect the coefficients of the symmetric strain tensor in a vector
ε̄ = [Ēξξ, Ēηη, 2Ēξη, Ēζζ , 2Ēηζ , 2Ēξζ ]

T .

3.1.2. Discretization aspects The displacements of the eight-node hexahedron shell element are
interpolated using trilinear functions:

lcllcld(ζ) = N(ζ) q (30)

where q collects the element nodal displacements and N(ζ) the interpolation functions. The
element geometry is interpolated with the same interpolation functions, following the isoparametric
paradigm.

The discrete element formulation needs to consider additional means to ensure sufficient
robustness of the low order shell element. In order to eliminate shear and trapezoidal locking,
we redefine the transverse shear strain components Ēηζ , Ēξζ and the transverse normal strain
component Ēζζ , respectively, by the Assumed Natural Strain (ANS) technique [4, 35] with number
and location of the sampling points as reported in [37]. To this end, we assume the Z-axis and the
X-Y -plane to be parallel to the ζ-axis and mid-surface of the shell, respectively. To enhance the
in-plane bending response of the element, the in-plane shear strain Ēξη is substituted by its value at
ξ = η = 0 which is a Selective Reduced Integration (SRI) retaining the correct matrix rank.

This article is protected by copyright. All rights reserved.
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The covariant strains are linearized with respect to ζ:

lclε̄ ≈


ē(ξ, η) + ζ χ̄(ξ, η)

Ēζζ(ξ, η)

γ̄(ξ, η)

 (31)

where

ē(ξ, η) =


Ēξξ(ξ, η, 0)

Ēηη(ξ, η, 0)

2Ēξη(ξ, η, 0)

 χ̄(ξ, η) =


Ēξξ,ζ (ξ, η, 0)

Ēηη,ζ (ξ, η, 0)

2Ēξη,ζ (ξ, η, 0)

 γ̄(ξ, η) =

[
2Ēηζ(ξ, η, 0)

2Ēξζ(ξ, η, 0)

]
.

Finally, the generalized covariant strain components are collected in a vector and transformed into
a local Cartesian basis:

lclε(ξ, η) = T(ξ, η)


ē

Ēζζ

χ̄

γ̄

 (32)

where T(ξ, η) denotes the transformation matrix that maps the strain tensor from the covariant basis
to the local Cartesian basis. The coefficients of T are shown in detail in the Appendix A.
The local covariant strains are discretized using component-wise the partial derivatives of the
interpolated displacements, eq. (30), and are expressed in terms of a strain interpolation matrix:

rcllclε = B(q) q with B(q) = BL + 1
2BQ(q) (33)

where BL and BQ(q) denote the linear and quadratic part of the strain displacement equations (32).

3.1.3. Statics The second Piola-Kirchhoff stress tensor S is derived from the constitutive relation
using the Green-Lagrange strain tensor E which follows from tensor coefficients of eq. (32):

lclS = C : E (34)

with C being a material constitutive matrix. The generalized second Piola-Kirchhoff stresses can be
written as:

lclσ = C ε (35)

using the generalized constitutive matrix C which is obtained by analytic pre-integration of C along
ζ so that:

lcl

∫ 1

−1

∫ 1

−1

∫ 1

−1

S : E det(J) dξ dη dζ ≈
∫

Ω0

εTCε (36)
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where from now on, we use the simplifying notation:
∫

Ω0(◦) = 2
∫ 1

−1

∫ 1

−1
(◦) det(J(ξ, η, 0))dξ dη, in

which J denotes the Jacobian matrix J(ξ, η, ζ) = [G1, G2, G3]T of the element.
The slender solid-shell element is also prone to thickness locking which is eliminated assuming

the normal stress component Szz to be constant through the thickness [37].

3.1.4. Displacement-element contributions to the third order form governing equations The third
order form equilibrium of the Koiter-Newton method as presented in the section 2 is expressed in
terms of a linear, quadratic and cubic form which are obtained in the following by differentiating
the strain energy with respect to the global degrees of freedom, cf equation (2).
Notation: The quantities derived in the following refer to an element formulation if not stated
differently. A corresponding element indicating index notation is skipped for the sake of a better
readability.

The strain energy contribution of the shell element and corresponding derivatives are:

rclU =

∫
Ω0

1

2
εTC ε (37)

∂U

∂q
=

∫
Ω0

B̃(q)Tσ(q) = f int(q) (38)

∂2U

∂q2
=

∫
Ω0

B̃(q)TC B̃(q) +

∫
Ω0

∑
i

σi(q) Γi = K(q) (39)

where B̃(q) = BL + BQ(q), K is the element tangent stiffness matrix, cf eq. (15), f int represent
the internal elastic element forces and

rclσ(q) = C B(q) q (40)

are the generalized second Piola-Kirchhoff stresses. The matrices Γi account for the geometric
element stiffness and are defined as:

lclΓi =
∂2εi
∂q2

. (41)

Furthermore, we introduce the following discrete operators to express the quadratic and cubic form
of the equilibrium in a compact notation:

lclσ(qα,qβ) = C B̃(qα) qβ (42)

σL(q) = C BLq (43)

εQ(qα,qβ) = BQ(qα) qβ (44)

σQ(qα,qβ) = C εQ(qα,qβ). (45)

Using (40)-(45), the following forms are derived:
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Linear form The linear form is expressed in terms of the tangent properties at the known reference
point with displacements q0:

lclL(qα) = K(q0) qα . (46)

Quadratic form The quadratic form depends linearly on the known displacement state of the
reference point and mixed quadratically on the first order displacements qα and qβ , respectively,

lclQ(qα,qβ) =

∫
Ω0

BQ(qα)Tσ(q0,qβ) + BQ(qβ)Tσ(q0,qα)

+B̃(q0)TσQ(qα,qβ)(47)

= Q(qα)qβ

with

lclQ(qα) =

∫
Ω0

BQ(qα)TC B̃(q0) + B̃(q0)TC BQ(qα) +
∑
i

σi(q0,qα)Γi . (48)

Cubic form Finally, the cubic form follows as:

lclC(qα,qβ ,qγ ,qδ) =

∫
Ω0

{σQ(qα,qβ)TεQ(qγ ,qδ) + σQ(qα,qγ)TεQ(qβ ,qδ)

+σQ(qα,qδ)
TεQ(qγ ,qβ)} .(49)

Denoting the path tangent in (λ0,q0) with qλ, the geometrical stiffness matrix of the element is:

lclKσ =

∫
Ω

∑
i

σLi(qλ)Γi (50)

where terms related to BQ(qλ) in Q(qλ) are neglected as usual in displacement-based linearized
buckling analysis, so obtaining a robust eigenvalue analysis as discussed in [16].

It is worth to note the following unique features of the derived model with impact to the solution
properties:

the model is purely displacement-based using displacement degrees of freedom only,
the strain energy has a 4th order dependence on the displacement degrees of freedom with
very simple expressions for the derivatives due to the absence of finite rotations,
the Green-Lagrange strain measure is geometrically exact for a solid model,
the expanded non-linear equilibrium, eq. (4), is exact with any truncation error .

3.2. Mixed solid-shell element

In this sub-section we extend the solid-shell element to a mixed formulation. To this end, we
introduce generalized contravariant second Piola-Kirchhoff stress resultants and collect the various
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contributions in a vector:

lclσ̄ =
[
N̄ , s̄ζζ ,M̄, T̄

]T
(51)

where N̄ collects the normal stress resultants, s̄ζζ is the stress resultant orthogonal the shell surface,
M̄ represents the moment stress resultants and where T̄ assembles the transverse shear stress
resultants:

lcllclN̄ =
1

2

∫ 1

−1

σ̄p dζ M̄ = 1
2

∫ 1

−1
ζ σ̄p dζ (52)

s̄ζζ =
1

2

∫ 1

−1

S̄ζζ dζ T̄ = 1
2

∫ 1

−1
τ̄ dζ (53)

with the stress components:

lcllclσ̄p =

S̄ξξS̄ηη

S̄ξη

 τ̄ =

[
S̄ξζ

S̄ηζ

]
. (54)

The generalized contravariant stresses are interpolated using an optimal interpolation approach
[37], similar to the model proposed by Pian [31]:

lclσ̄(ξ, η) = N̄σ(ξ, η)β (55)

where β collects the 18 discrete stress degrees of freedom of the element and N̄σ(ξ, η) contains the
18 stress interpolation functions, accordingly, as explicitly reported in [29]. Finally the generalized
Cartesian stresses are transformed into the local Cartesian coordinate system:

lclclσ(β) = T−T (0, 0) σ̄ = Nσ β (56)

where the matrix T, cf Appendix A, is evaluated at ξ = 0, η = 0 to preserve a constant stress state.
The element vector of degrees of freedom is now extended by the unknowns β:

lclu =

[
β

q

]
(57)

and all further algebraic element quantities are split accordingly. Following the principle of
Hellinger-Reissner [31] the strain energy expression can be rewritten in mixed form as:

lclUM (u) =

∫
Ω0

σTε− 1

2
σTC−1σ (58)

where the subscript M indicates the mixed formulation.
Here, it is important to note that the independent interpolation of the stresses allows to reduce

the order of the polynomial dependence of the strain energy on the discrete degrees of freedom,
resulting in σ being linear in β and ε being quadratic in q.
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3.2.1. Mixed-element contributions to the third order form governing equations The mixed internal
force vector of the element is

lclsM (u) =

[
sβ

sq

]
(59)

with

lclsβ =

∫
Ω0

NT
σ

(
ε(q)−C−1σ(β)

)
(60)

sq =

∫
Ω0

B̃(q)Tσ(β) (61)

and the mixed element stiffness matrix is:

lclKM (u) =

[
Kββ Kβq(q)

Kβd(q)
T

Kqq(β)

]
(62)

with

lclKββ = −
∫

Ω0

NT
σ C−1 Nσ (63)

Kβq(q) =

∫
Ω0

NT
σ B̃(q) (64)

Kqq(β) =

∫
Ω0

∑
i

σi(β) Γi (65)

which are evaluated as the gradient and the Hessian of the strain energy, respectively.
The linear, quadratic and cubic form of the Koiter-Newton equilibrium equations follow in

analogy to the displacement formulation of 3.1:

lclLM (uα) = KM (u0) uα (66)

QM (uα,uβ) =

[
Qβ(qα,qβ)

Qq(uα,uβ)

]
(67)

with

lclQβ(uα,uβ) =

∫
Ω0

NT
σ εQ(qα qβ) (68)

Qq(uα,uβ) =

∫
Ω0

BQ(qα)T σ(ββ) + BQ(qβ)Tσ(βα) (69)
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The geometric stiffness matrix of the element is evaluated as

lclKσ(βλ) =

[
0 0

0 Kσqq(βλ)

]
(70)

with

lclKσqq(βλ) =

∫
Ω0

∑
i

σi(βλ)Γi . (71)

Finally, we note that the cubic form simplifies with:

lclCM (uα,uβ ,uγ ,uδ) = 0 (72)

which is a consequence of the introduced stress variables. The variables are independent and
condensed out on element level before assembly, thus not increasing the global number of equations.
The disappearance of the cubic form has significant impact on the computational efficiency,
especially with increasing dimension of the reduced order model. This is a unique feature of
the proposed mixed solid-shell model combined with the Green-Lagrange strain measure. The
condensation steps are shown in detail in Appendix B.

4. NUMERICAL TESTS

In this section, we consider various numerical tests with regard to buckling of thin-walled structures
to study the performance of the proposed mixed solid-shell element within the framework of the
Koiter-Newton method. We will demonstrate the numerical performance in terms of convergence
measures compared to the pure displacement-based formulation as introduced in [23]. The focus of
these tests is primarily on the reduction of the number of Newton iteration steps in the corrector
phase in comparison to the original approach, which requires the consideration of the full order
model thus dominating the numerical complexity of the analysis. A comparison of the Koiter-
Newton method with traditional path-following methods, revealing the method’s ability to carry
out a full non-linear analysis with considerably fewer load steps, has been carefully documented in
[24, 26, 25, 27] and therefore is not considered here though this strength of the method is also an
immanent property of the modified version proposed in this contribution.

The chosen examples include a benchmark test of a U-shape thin-walled beam under compression
to verify the overall concept and a modified thin-walled beam structure from engineering. The
equilibrium paths of both structures show a distinct non-linear behavior but a minor affinity to
global buckling. With a thin cylinder structure we demonstrate the method’s ability to trace reliably
snap-back behavior. Finally, we have selected a thin-walled frame structure to reveal the reliability
of the method in presence of bifurcation after a strong non-linear pre-critical behavior.

In the Koiter-Newton method the equilibrium path is reconstructed evaluating just a few true
equilibrium points. The solution between two consecutive points can be recovered exploiting the
asymptotic reduced-order model predictor. Weak discontinuities in path in terms of kinks or a
sudden change of the path tangent are identified as bifurcation points and reported accordingly.
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4.1. U-shape cantilever beam

Figure 2. U-shape cantilever beam: model properties.

The U-shaped cantilever beam considered here is a standard benchmark problem to verify the
non-linear properties of the method, including local buckling phenomena [30]. Nevertheless, the
problem is a severe test case for the Koiter-Newton approach due to a distinct non-linear pre-critical
behavior which must be represented in the reduced order model by the degree of freedom associated
with the external load. The geometry, the material properties and boundary conditions are depicted
in Fig. 2. The cantilever beam is subjected to an end shear force.

The analysis result in terms of solution steps along the equilibrium path is shown in Fig. 3. The
path was fully traced within 5 Koiter-Newton steps. We selected the first 4 buckling modes which,
together with the external load, ended in a reduced order model of dimension 5. Both, the mixed
and the displacement-based version show virtually identical results. In addition to the result of the
non-linear analysis, we report in the figures depicting the load-displacement equilibrium path the
buckling load of the linearized problem which is used to construct the first reduced order model at
the reference configuration.

The asymptotic character of the Koiter-Newton predictor followed closely the non-linear
equilibrium path. Still, an average number of 5 iteration steps in the corrector phase of each load step
were necessary for the displacement-based solution to recover equilibrium at a sufficient accuracy
level. In Tab. I we compare the corrector effort of the two approaches, the solution-based and the
mixed model. The results clearly reveal a superiority of mixed model which needed on average less
than 3 iteration steps to provide equilibrium of equivalent accuracy. Recalling the dominance of
the corrector phase in the complexity analysis of the Koiter-Newton method and keeping in mind
that the construction of the reduced order model is computationally cheaper for the mixed model
avoiding the evaluation of the third order form, this improvement is quite encouraging with regard
to larger problems.

In Figures 4 and 5, the first and the second mode used to construct the reduced order model at
the reference configuration and at the equilibrium point 3, respectively, are depicted. The distinct
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Figure 3. U-shape cantilever beam: equilibrium path with Koiter-Newton steps.

displacement mixed

step 1 3 2
step 2 5 3
step 3 4 3
step 4 5 2
step 5 8 4

total 25 14

Table I. U-shape beam: number of iteration steps in the corrector phase of each load step.

non-linear pre-critical path entails essential changes of the relevant modes along the equilibrium
path which requires a repeated construction of the reduced order model to capture reliably the limit
point and any post-critial behaviour. This is confirmed, regarding the deformed configuration at the
equilibrium point 4, which is well represented by the modes of the reduced order model, evaluated
at 3.
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Figure 4. U-shape cantilever beam: first mode (left) and second mode (right) of the reduced order model
constructed at the reference configuration.

Figure 5. U-shape cantilever beam: first mode (left) and second mode (right) of the reduced order model
constructed at 3.

Figure 6. U-shape cantilever beam: deformed configuration (scale factor 10) at 4.

4.2. Lipped channel column

Next, we consider a lipped channel column modeled as thin-walled structure under pressure load.
The geometry, material properties and loads are shown in Fig. 7. The cross-sectional in-plane
displacements were constrained at both ends. The model is a perfect representative of structures
with global-local buckling interaction [11] leading to a high imperfection sensitivity and had been
studied previously in [8].

The structure was analysed with 4 different amplitudes of the imperfection load to study the
column’s sensitivity properties. The analysis results for the different imperfection loads are depicted
in Fig. 8 in which P denotes the cross-section perimeter, showing highly varying limit loads.
The corresponding reduced order model of each analysis was constructed from 4 buckling modes
adopting 3 Koiter-Newton steps to trace the complete equilibrium path. In Tab. II, the number of
iteration steps in the corrector phase of each load step for the mixed and the displacement-based
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Figure 7. Lipped channel column: model properties.

approach is reported. Again a reduction of the computational effort of more than 30% was observed.
Compared to the results of 4.1 the gain in computational efficiency using the mixed model has
slightly dropped but still is very clearly visible and indicates a superior performance.

displacement mixed

step 1 3 2
step 2 3 2
step 3 3 2

total 9 6

Table II. Lipped channel column: number of iteration steps in the corrector phase of each load step.

The evolution of the deformed configuration along the equilibrium path is depicted in Fig. 9. A
combination of torsional and local buckling is clearly visible.

4.3. Laminate composite cylinder subjected to axial compression

Cylinder buckling is a severe numerical test case for non-linear solution methods since a
pronounced snap-back behavior must be reliably captured with strongly degrading algebraic
properties of the governing system of equations. Nevertheless, a steadily growing tendency to use
laminate composite cylindrical structures as primary structures in aerospace engineering and other
lightweight engineering disciplines emphasizes the importance of a highly reliable, accurate and
computationally efficient prognosis of stability properties.

The cylinder considered in the following and labelled Z33 and was manufactured and tested
by DLR (German Aerospace Center) and is commonly used as validation model for numerical
developments in the context of laminate composite shell design [39, 6]. The laminate stacking
sequence is in[0/0/19/− 19/37/− 37/45/− 45/51/− 51]out with the angles measured from the
cylinder axis with respect to the outward normal. The cylinder has a height of 510, a radius
of R = 250 and a wall-thickness of t = 1.25, cf Fig. 10. The ply properties are E1 = 123.6,
E2 = E3 = 8.7, ν12 = 0.32, ν13 = ν23 = 0, G12 = G13 = G23 = 5.7.
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Figure 8. Lipped channel column: equilibrium paths for different perturbation loads.

Figure 9. Lipped channel column: deformed configurations (scale factor 10) at 1, 2 and 3.
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Figure 10. Laminate composite cylinder: model properties.

The cylinder model is clamped at the bottom face and has a pinned support in radial direction at
the top. A uniformly distributed load along the top rim was applied in axial direction. A geometric
imperfection was introduced by a single perturbation load halfway up the cylinder axis. The end-
shortening result was measured at a single node of the cylinder’s top rim, labeled as displacement
uA.

The complete equilibrium path was traced with 7 Koiter-Newton steps, cf Fig. 11. As common
for compressed cylinders, the elastic response is characterized by an almost linear pre-critical path,
followed by a bifurcation and snap-back behaviour. The cylinder problem demonstrates the ability
of the non-linear Koiter predictor to capture accurately the bifurcation point, which is a potential
failure mode for standard arc-length techniques with linear predictor, unless a very small step size
is used.

The constructed reduced order model used only a single buckling mode in addition to the path
tangent. The first and the second mode used to construct the reduced order model at the undeformed
configuration and at the equilibrium point 1, respectively, are depicted in Figs. 12 and 13. From Fig.
14 it can be seen that the modes change along the equilibrium path due to the applied imperfection
load. As a consequence, a repeated reconstruction of the reduced order model was required to
capture accurately the bifurcation and the post-critical deformation.

Finally, the number of iteration steps in the corrector phase of each load step is reported in Tab.
III. Interestingly, the gain of computational efficiency using the mixed approach is very moderate
compared to the pure displacement formulation which can be mainly attributed to an already
extremely good performance of the the displacement-based Koiter-Newton model which is more
than four times less compared to standard Newton-based method [24].
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Figure 11. Laminate composite cylinder: equilibrium path.

Figure 12. Laminate composite cylinder: first and second modes of the reduced order model at the reference
configuration.

Figure 13. Laminate composite cylinder: first and second mode of the reduced order model at 1.

4.4. Thin-walled frame

Finally, we choose a thin-walled frame structure which undergoes a distinct non-linear deformation
with a bifurcation in the equilibrium path [13]. The geometry and boundary conditions are illustrated
in Fig. 15. The material properties are E = 3.10275 and ν = 0.3.
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Figure 14. Laminate composite cylinder: deformed configuration (scale factor 25) at 2

displacement mixed

step 1 3 2
step 2 2 2
step 3 2 2
step 4 2 2
step 5 2 2
step 6 2 2
step 7 3 2

total 16 14

Table III. Laminate composite cylinder: number of iteration steps in the corrector phase of each load step.

Figure 15. Thin-walled frame: model properties.

The equilibrium path is depicted in Fig. 16 which is characterised by the bifurcation along a non-
linear pre-critical path due to a local buckling near the clamped section. This can be seen from the
evolution of the deformed configuration shown in Fig. 17.

The Koiter-Newton analysis was carried out with 4 steps using a reduced order model which was
constructed on the basis of the first 6 buckling modes. Again, the proposed mixed formulation shows
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Figure 16. Thin-walled frame: equilibrium path.

a significant improvement in terms of the total number of Newton iteration steps which reduced by
more than 40% compared to the conventional model, cf Tab. IV.

displacement mixed

step 1 4 2
step 2 3 2
step 3 4 2
step 4 3 2

total 14 8

Table IV. Thin-walled frame: number of iterations required.
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Figure 17. Thin-walled frame: evolution of the deformed configuration (scale factor 15).

5. SUMMARY, CONCLUSIONS & OUTLOOK

In this paper, we explored the performance properties of a mixed model formulation in the
framework of the recently introduced Koiter-Newton method which is a reduced order model
approach for geometric non-linear analyses with an emphasis on buckling failure of thin-walled
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structures. In this context, a solid shell model was formulated following the Hellinger-Reissner
variational principle which proved to be highly beneficial towards the computational efficiency
of the analysis. The Koiter-Newton method is a step-by-step equilibrium path tracing approach
which exploits the asymptotic expansion properties of Koiter’s post-buckling theory in the predictor
phase while mapping the solution space to a reduced order model. The construction of the reduced
order model is based on the expansion of the elastic inner forces at a known state of equilibrium
using the path tangent and a few closely spaced linear buckling modes, thus exciting bifurcating
branches of the equilibrium path. In general, the expansion applies derivatives of the strain energy
up to the fourth order which requires the evaluation of linear, quadratic and cubic forms during the
construction of the reduced order model. Using a mixed model, as favoured in this work, the cubic
form vanishes due to independently behaving degrees of freedom representing the unknown stress
resultants on element level with beneficial consequences in terms of a simplified formulation for the
reduced order model and increased computational efficiency.

Here, we have started with a compact presentation of the Koiter-Newton approach to set the
necessary terminology, to reveal the principal characteristics and aspects of the method. We then
introduced a displacement based solid shell element which was extended in a follower step to
a mixed formulation. The element formulation can be summarized highlighting the following
features:

the element is an eight-node solid element using a trilinear interpolation approach with a
Green-Lagrange strain measure. This basic element type was chosen to facilitate the extension
to a mixed formulation and to keep the algebraic expressions of the higher order forms simple.
In this context a future extension to a high-order element formulation [18, 9, 33] will be
a reasonable extension to profit from a higher order approximation quality of the involved
displacement derivatives,
an Assumed Natural Strain approach was used in combination with a selective reduced
integration strategy to counteract the element’s affinity to locking. Furthermore, thickness
locking was prevented by a constant normal stress assumption, both being well established
techniques which have proven stability and reliability in low-order element formulations
where high slenderness may lead to a loss of mechanical performance. Again, a future
extension to a higher order approximation scheme which may remove any locking by order
elevation promises to be a significant improvement in terms of stability and accuracy,
in the mixed element formulation additional unknown stress degrees of freedom were
introduced. The variables are independent of adjacent elements and thus can be eliminated
on system level by an element-wise static condensation. The third order form vanishes in
the mixed formulation thus simplifying and economizing the expensive contribution to the
construction of the reduced order model.

The proposed formulation was tested with several numerical tests and compared to the
conventional Koiter-Newton method which, in a number of studies [23, 24, 26], has already proven
a superior performance compared to classical path-tracing technologies. The asymptotic Koiter
predictor towards the equilibrium path allows for significantly increased step sizes such that the full
path often can be traced within a few steps, revealing all neuralgic points along the path, including
limit and branching points. Furthermore, a snap-back and snap-through behavior as common in the
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analysis of thin shells and slender structures is reliably captured and makes the approach a robust
technology for stability analyses. The real strength of the proposed formulation was revealed with
the corrector phase in each step which uses a Newton iteration on the full order model to drive
the force residual below the chosen accuracy level and therefore represents numerically the most
expensive part of the analysis. We have shown that the novel approach can significantly reduce the
number of iteration steps, partly by more than 50% and even in presence of bifurcation and for
very large step sizes of problems which showed highly non-linear deformation properties in the
pre-critical range. In all tested cases we observed an average number of two Newton iteration steps
to regain equilibrium.

We believe that the proposed Koiter-Newton approach is an essential extension of the
conventional approach towards a reliable and robust non-linear analysis tool for thin-walled
structures, in particular when buckling is the dominant physical phenomenon. We see a strong
relevance of such methods in the systematic analysis of the various types of imperfections in shell
buckling which often requires the consideration of a large number of test cases in deterministic
and stochastic studies. The mixed model formulation should be extended in future work to more
sophisticated element types which exploit higher order approximation properties and will be
able to further enhance the analysis quality in terms of accuracy and continuity of the elastic
buckling response of geometric imperfect structures. Acknowledgments: The first author gratefully

acknowledges the support from the School of Engineering, University of Glasgow, during his six
months research stay at Glasgow.

Appendix A. Strain tensor transformation from co-variant to Cartesian coordinates

The generalized coefficients of the covariant strain tensor, eq. (32) of sub-section 3.1.1, are
transformed into the local Cartesian coordinate system with the transformation matrix:

lclT[ξ, η] =


Tp 0 0 0

0 Tz 0 0

0 0 Tp 0

0 0 0 Tt


where the sub-matrices are:

lclTz = 1/J2
33

Tp =


J2

11 J2
12 2J11J12

J2
21 J2

22 2J21J22

J21J11 J22J12 J22J11 + J21J12


−T

Tt =

[
J12J33 + J13J32 J13J31 + J11J33

J22J33 + J23J32 J23J31 + J21J33

]−T
.
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and where J denotes the Jacobian matrix.

Appendix B. Static condensation for the governing element equations

The introduction of independent unknown stress coefficients in sub-section 3.2 provides a natural
split of the governing element equations of the mixed formulation:

lcl

[
Kββ Kβq

Kβq
T Kqq

][
β

q

]
=

[
fβ

fq

]

which allows a static condensation of the stress coefficients β:

rclβ = Kββ
−1 fβ −Kββ

−1 Kβq q

−Kβq
T Kββ

−1 Kβqq = fq −Kβq
T Kββ

−1 fβ

which results in the condensed relation:

lclKc q = f c

where

lclKc = −Kβq
T Kββ

−1 Kβq

f c = fq −Kβq
T Kββ

−1 fβ .

Similarly, for the linear buckling equations follows:

lcl

[
Kββ Kβq

Kβq
T Kqq

][
β

q

]
+ λ

[
0 0

0 Kσqq

][
β

q

]
= 0

with

rclKcq + λKσqq q = 0

β = −Kββ
−1 Kβq q .
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11. G. Garcea, R. Gonçalves, A. Bilotta, D. Manta, R. Bebiano, L. Leonetti, D. Magisano, and D. Camotim.
Deformation modes of thin-walled members: A comparison between the method of Generalized Eigenvectors and
Generalized Beam Theory. Thin-Walled Structures, 100:192–212, 2016.
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