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Abstract: We report a Fourier ptychography setup using a raspberry pi camera detector and its 

lens in reversed configuration. In this work, data acquisition was performed by means of a 

raspberry pi 3 board which eliminates the requirement of a computer for data acquisition, thus 

allowing a miniaturized system for remote data acquisition to be built for around £100. 
OCIS codes: (100.5070) Phase retrieval; (170.0180) Microscopy; (110.1758) Computational imaging 

 

1. Introduction 

Optical light microscopy is routinely used for disease diagnosis and progression monitoring. Conventional 

microscopes require expensive optical components to achieve the necessary image quality. In addition, they also 

suffer from numerous other limitations such as small field-of-view and shallow depth-of-field. Computational 

imaging techniques such as Fourier ptychography (FP) [1] and snapshot wavefront coding [2] were proposed to 

address these limitations. Here we present a novel implementation of FP which employs a low-cost raspberry pi 

camera module for data acquisition, thus reducing the cost and size of the system. Sophisticated reconstruction 

algorithms  [3–5] were employed to compensate for the loss in information due to the Bayer pattern. The camera and 

the LED array were interfaced to the Raspberry Pi board which performs the data acquisition; thus, resulting in a 

compact standalone system. In the future, we intend to perform the data processing on the Raspberry Pi board, 

therefore the need for a computer is eliminated completely. Due to its cost and standalone capability, this device can 

be used in remote areas such as would be necessary in developing countries for the diagnosis of diseases such as 

malaria and cancer. This device can also be used inside incubator chambers in research labs due to its small size 

allowing researchers to perform longitudinal studies of events such as cell culture. We also intend to use these 

sensors in multi-aperture Fourier ptychography [6,7] systems in order to further decrease the cost of such systems. 

In the next section we describe the Fourier ptychography principle and the reconstruction procedure adopted in this 

work. We then discuss our miniature FP configuration and present our system which was built using 3D printed 

parts and translation stages. We show some preliminary data recorded from our setup and validate our idea by means 

of numerical simulations of our experimental setup in Matlab. We are currently in the process of calibrating our 

experimental setup and analysing experimental data. 

2. FP principle and Miniature FP setup 

FP is a technique to achieve space-bandwidth product in gigapixels by performing time-sequential simulation of 

high-NA illumination on a low-NA system (Fig. 1c). This system offers large depth-of-field (DoF), longer working 

distances, aberration estimation and correction as well as estimation of the phase of the sample itself. A Gerchberg-

Saxton-Fienup [8] type of algorithm  [4] is used to stitch the low-NA images into a high-resolution complex field 

image. These algorithms do not consider sparsely sampled data such as the Bayer patterned image. Another 

algorithm for sparsely sampled data was proposed in  [3], however, this was never implemented on a Bayer 

patterned image. We use a combination of the above two algorithms to achieve the best performance out of our 

system. 

Our experimental setup employs the Raspberry Pi camera lens as an imaging objective in a finite conjugate mode. 

The distance between the lens and the sensor was fixed by placing them in a 3D printed holder (Fig. 1B). This 

holder sits above the sample stage on a 3D printed translation stage and an LED array sits underneath the sample 

stage. Since the field-of-view is large, an XY translation stage is not required, however this can be embedded into 

the system if required.  

An adafruit LED array with 4mm separation between the LEDs was used for illumination. The LED array and 

camera were interfaced using a raspberry pi 3 board. The distance between the LED array and the sample was 

chosen to be 60mm to provide 69% overlap in frequency space. The focal length of the lens was measured as 4.3mm 
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and an aperture diameter of 2mm was used. A magnification of 1.5 was chosen in order to achieve Nyquist 

sampling. The required system NA can therefore calculated to be 0.138. The pixel size of the sensor is 1.2microns 

but 2.4microns was considered for sampling requirement due to the Bayer pattern. A low-NA raw image obtained 

with 10ms exposure from this system using a red LED is shown in Fig.1D to demonstrate the Bayer pattern 

sampling. 

 

 

Figure 1 Fourier ptychography principle 

3. Simulation results 

We simulated our experimental setup with the parameters mentioned above. The noise of the detector at the 

exposure used to record the images was measured and found to have a standard deviation of 10 counts over 10 bit 

data. We impose similar noise in the simulated images with a Gaussian distribution with standard deviation of 5 

times the amplitude value. A 21x21 LED array was chosen in the simulation in order to achieve a factor of 5 

improvement in the NA. A second order Gauss-Newton reconstruction algorithm with a varying step size and sparse 

sampling with Bayer pattern was used. The results are shown in Fig. 2. 

A synthetic scene with different amplitude and phase patterns was chosen as the sample. This sample was filtered 

according to the LED illumination angle and the pupil function to obtain the low-NA images. These were then 

stitched in the Fourier space using the reconstruction algorithm. The expected ideal reconstruction (sample with 

same set of frequency information as FP images) is shown in the bottom row of Fig. 2. The low-resolution image 

with Bayer pattern is shown in the first row. It can be seen that the red and blue channels are darker than the green 

due to the smaller number of pixels present in those channels. The low-resolution image without Bayer pattern 

(conventional) is shown in the fourth column and first row.  

The amplitude and phase reconstructions of the scene in those individual channels are shown in the second and the 

third row respectively. It can be observed that the reconstruction quality in these different channels is high and 

comparable to the data without sparse sampling. The RMS error between the ideal image and the reconstructed 

image was calculated and is displayed on top of the images. This demonstrates that sparse sampling has negligible 

impact on the reconstruction. This is also due to the fact that we Nyquist sample the data by considering the Bayer 

pattern pixel instead of actual pixel size. This reduces the constraint of sparsely sampling and demonstrates that 

despite sparsely sampling the reconstruction, the quality can be unaffected. 



 
Figure 2 Simulation results 

4. Conclusion 

In this work we have demonstrated that a low-cost Raspberry Pi sensor can be used for FP microscopy with the help 

of simulations, despite having higher detector read noise and Bayer pattern sensor compared to sCMOS sensors. 

Using a Bayer pattern sensor also allows us to record all three colours in parallel. We demonstrated a 3D printed 

setup for the miniature FP microscope, though a large LED array was used in this experiment, it will be replaced by 

an array significantly smaller in future to keep the size to a minimum. Currently, only the data acquisition is 

performed by the raspberry-pi board; however, in the future, the data processing will be performed on the board. 

This makes for a very versatile microscope which can be useful for digital pathology in remote areas of developing 

countries and for incubation chambers in research. 
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